Sets Have Simple Members¹

Samuel Epstein Boston University (Joint work with Leonid A. Levin)

9th International Conference on Computability, Complexity and Randomness (CCR 2014)

> National University of Singapore Institute for Mathematical Science

> > June 20th, 2014

¹© Samuel Epstein

Overview

Sets Have Simple Members:

Incompleteness meets Occam's Razor

New General Proof Technique:

Separate Enumeration and Combinatorics

Algorithmic Foundations of Quantum Mechanics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Overview

Sets Have Simple Members:

Incompleteness meets Occam's Razor

New General Proof Technique:

Separate Enumeration and Combinatorics

Algorithmic Foundations of Quantum Mechanics

- Quantum Chain Rule
- Random Measurements
- Generalized No Communication Theorem
- Equivalences Between Quantum Entropies

Mutual Information with Halting Sequence

- Leverage the term: $\mathbf{I}(x; \mathcal{H}) = \mathbf{K}(x) \mathbf{K}(x|\mathcal{H}).$
- ▶ Information non growth: we have $I(A(x); H) <^+ I(x; H)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Mutual Information with Halting Sequence

- Leverage the term: $\mathbf{I}(x; \mathcal{H}) = \mathbf{K}(x) \mathbf{K}(x|\mathcal{H}).$
- ▶ Information non growth: we have $I(A(x); H) <^+ I(x; H)$.
- No Go Theorems
 - If string x has high value \mathcal{P} then $I(x; \mathcal{H})$ is high.
 - Therefore is no algorithm that can produce x with high \mathcal{P} .

Mutual Information with Halting Sequence

- Leverage the term: $\mathbf{I}(x; \mathcal{H}) = \mathbf{K}(x) \mathbf{K}(x|\mathcal{H}).$
- ▶ Information non growth: we have $I(A(x); H) <^+ I(x; H)$.
- No Go Theorems
 - If string x has high value \mathcal{P} then $I(x; \mathcal{H})$ is high.
 - Therefore is no algorithm that can produce x with high \mathcal{P} .
- Any total extension U : {0,1}* → {0,1} of first 2ⁿ inputs of universal partial predicate u : {0,1}* → {0,1} has n <^{log} I(U; H).

"Finitize" Theorems

Theorem

• $\mathbf{K}(x)$ is not recursive.

\Rightarrow

Theorem

• Any set γ of 2^n unique pairs $\langle x, \mathbf{K}(x) \rangle$ has $n < \log \mathbf{I}(\gamma; \mathcal{H})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

"Finitize" Theorems

Theorem

▶ **K**(x) is not recursive.

 \Rightarrow

Theorem

• Any set γ of 2^n unique pairs $\langle x, \mathbf{K}(x) \rangle$ has $n < ^{\log} \mathbf{I}(\gamma; \mathcal{H})$.

Problem (June 19th)

 What is I(γ; H) for a set γ of n strings containing k entries (x, [x is random]).

Problem (June 20th)

What properties does $I(x; \emptyset'')$ have?

Sets have Simple Members

Definition (Prior of a Set) For a set *D*, we have $\mathbf{m}(D) = \sum_{x \in D} \mathbf{m}(x)$.

Theorem $\min_{x \in D} - \log \mathbf{m}(x) <^{\log} - \log \mathbf{m}(D) + \mathbf{I}(D; \mathcal{H}).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sets have Simple Members

Definition (Prior of a Set) For a set *D*, we have $\mathbf{m}(D) = \sum_{x \in D} \mathbf{m}(x)$.

Theorem $\min_{x \in D} - \log \mathbf{m}(x) <^{\log} - \log \mathbf{m}(D) + \mathbf{I}(D; \mathcal{H}).$

The prior of natural sets are dominated by its simplest element.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

All Sampling Methods have Outliers

Definition (Deficiency of Randomness) For computable measure P, we have: $\mathbf{d}(a|P) = -\log P(a) - \mathbf{K}(a)$.

```
Theorem

\log \|D\| <^{\log} \max_{a \in D} \mathbf{d}(a|P) + \mathbf{I}(D; \mathcal{H}).
```

All natural samples D of size 2^n have an outlier $x \in D$ with score n.

New Proof Technique

Separate enumerative and combinatorial arguments.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. Start with definitions
- 2. Make everything computable $\mathbf{m} \rightarrow \mathbf{m}'$.
- 3. Perform combinatorics
- 4. Convert back $\mathbf{m}' \to \mathbf{m}$. (Error term $\mathbf{I}(; \mathcal{H})$).

Quantum Results

- Generalize randomness notions from Cantor space Ω to Hilbert space H_n of n qubits.
- Use Gács entropy-2 of quantum state $|\psi\rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\blacktriangleright \mathbf{H}(|\psi\rangle) = -\log \sum_{|\phi\rangle} \mathbf{m}(|\phi\rangle) \langle \phi |\psi\rangle^2.$$

Quantum Results

- Generalize randomness notions from Cantor space Ω to Hilbert space H_n of n qubits.
- Use Gács entropy-2 of quantum state $|\psi\rangle$.
- $\blacktriangleright \mathbf{H}(|\psi\rangle) = -\log \sum_{|\phi\rangle} \mathbf{m}(|\phi\rangle) \langle \phi |\psi\rangle^2.$

Theorem (Chain Rule Inequality) $H(|\psi\rangle) + H(|\phi\rangle|Encode(\psi)) <^{\log} H(|\psi\rangle|\phi\rangle).$ Theorem (Relation between Entropies) $H(|\psi\rangle) <^{\log} Kq(|\psi\rangle) \leq H(|\psi\rangle) + I(|\psi\rangle; \mathcal{H}).$ $H(|\psi\rangle) <^{\log} QC(|\psi\rangle).$

Thank You

Kolmogorov (left) delivers a talk at a Soviet information theory symposium. (Tallinn, 1973).