Sets Have Simple Members ${ }^{1}$

Samuel Epstein
Boston University (Joint work with Leonid A. Levin)

9th International Conference on Computability, Complexity and Randomness (CCR 2014)

National University of Singapore Institute for Mathematical Science

June 20th, 2014

Overview

- Sets Have Simple Members:

Incompleteness meets Occam's Razor

- New General Proof Technique:

Separate Enumeration and Combinatorics

- Algorithmic Foundations of Quantum Mechanics

Overview

- Sets Have Simple Members:

Incompleteness meets Occam's Razor

- New General Proof Technique:

Separate Enumeration and Combinatorics

- Algorithmic Foundations of Quantum Mechanics
- Quantum Chain Rule
- Random Measurements
- Generalized No Communication Theorem
- Equivalences Between Quantum Entropies

Mutual Information with Halting Sequence

- Leverage the term: $\mathbf{I}(x ; \mathcal{H})=\mathbf{K}(x)-\mathbf{K}(x \mid \mathcal{H})$.
- Information non growth: we have $\mathbf{I}(A(x) ; \mathcal{H})<^{+} \mathbf{I}(x ; \mathcal{H})$.

Mutual Information with Halting Sequence

- Leverage the term: $\mathbf{I}(x ; \mathcal{H})=\mathbf{K}(x)-\mathbf{K}(x \mid \mathcal{H})$.
- Information non growth: we have $\mathbf{I}(A(x) ; \mathcal{H})<^{+} \mathbf{I}(x ; \mathcal{H})$.
- No Go Theorems
- If string x has high value \mathcal{P} then $\mathbf{I}(x ; \mathcal{H})$ is high.
- Therefore is no algorithm that can produce x with high \mathcal{P}.

Mutual Information with Halting Sequence

- Leverage the term: $\mathbf{I}(x ; \mathcal{H})=\mathbf{K}(x)-\mathbf{K}(x \mid \mathcal{H})$.
- Information non growth: we have $\mathbf{I}(A(x) ; \mathcal{H})<{ }^{+} \mathbf{I}(x ; \mathcal{H})$.
- No Go Theorems
- If string x has high value \mathcal{P} then $\mathbf{I}(x ; \mathcal{H})$ is high.
- Therefore is no algorithm that can produce x with high \mathcal{P}.
- Any total extension $U:\{0,1\}^{*} \rightarrow\{0,1\}$ of first 2^{n} inputs of universal partial predicate $u:\{0,1\}^{*} \rightarrow\{0,1\}$ has $n<\log ^{\ln }(U ; \mathcal{H})$.

"Finitize" Theorems

Theorem

- $\mathbf{K}(x)$ is not recursive.
\Rightarrow
Theorem
- Any set γ of 2^{n} unique pairs $\langle x, \mathbf{K}(x)\rangle$ has $n<^{\log } \mathbf{I}(\gamma ; \mathcal{H})$.

"Finitize" Theorems

Theorem

- $\mathbf{K}(x)$ is not recursive.
\Rightarrow
Theorem
- Any set γ of 2^{n} unique pairs $\langle x, \mathbf{K}(x)\rangle$ has $n\left\langle^{\log } \mathbf{I}(\gamma ; \mathcal{H})\right.$.

Problem (June 19th)

- What is $\mathbf{I}(\gamma ; \mathcal{H})$ for a set γ of n strings containing k entries $\langle x,[x$ is random $]\rangle$.

Problem (June 20th)
What properties does $\mathbf{I}\left(x ; \emptyset^{\prime \prime}\right)$ have?

Sets have Simple Members

Definition (Prior of a Set)
For a set D, we have $\mathbf{m}(D)=\sum_{x \in D} \mathbf{m}(x)$.

Theorem
$\min _{x \in D}-\log \mathbf{m}(x)<\log -\log \mathbf{m}(D)+\mathbf{I}(D ; \mathcal{H})$.

Sets have Simple Members

Definition (Prior of a Set)
For a set D, we have $\mathbf{m}(D)=\sum_{x \in D} \mathbf{m}(x)$.

Theorem
$\min _{x \in D}-\log \mathbf{m}(x) \ll^{\log }-\log \mathbf{m}(D)+\mathbf{I}(D ; \mathcal{H})$.

The prior of natural sets are dominated by its simplest element.

All Sampling Methods have Outliers

Definition (Deficiency of Randomness)
For computable measure P, we have:
$\mathbf{d}(a \mid P)=-\log P(a)-\mathbf{K}(a)$.

Theorem
$\log \|D\|<{ }^{\log } \max _{a \in D} \mathbf{d}(a \mid P)+\mathbf{I}(D ; \mathcal{H})$.
All natural samples D of size 2^{n} have an outlier $x \in D$ with score n.

New Proof Technique

- Separate enumerative and combinatorial arguments.

1. Start with definitions
2. Make everything computable $\mathbf{m} \rightarrow \mathbf{m}^{\prime}$.
3. Perform combinatorics
4. Convert back $\mathbf{m}^{\prime} \rightarrow \mathbf{m}$. (Error term $\mathbf{I}(; \mathcal{H})$).

Quantum Results

- Generalize randomness notions from Cantor space Ω to Hilbert space \mathcal{H}_{n} of n qubits.
- Use Gács entropy-2 of quantum state $|\psi\rangle$.
- $\mathbf{H}(|\psi\rangle)=-\log \sum_{|\phi\rangle} \mathbf{m}(|\phi\rangle)\langle\phi \mid \psi\rangle^{2}$.

Quantum Results

- Generalize randomness notions from Cantor space Ω to Hilbert space \mathcal{H}_{n} of n qubits.
- Use Gács entropy-2 of quantum state $|\psi\rangle$.
- $\mathbf{H}(|\psi\rangle)=-\log \sum_{|\phi\rangle} \mathbf{m}(|\phi\rangle)\langle\phi \mid \psi\rangle^{2}$.

$$
\begin{aligned}
& \text { Theorem (Chain Rule Inequality) } \\
& \mathbf{H}(|\psi\rangle)+\mathbf{H}(|\phi\rangle \mid \text { Encode }(\psi))<^{\log } \mathbf{H}(|\psi\rangle|\phi\rangle) \text {. } \\
& \text { Theorem (Relation between Entropies) } \\
& \mathbf{H}(|\psi\rangle)<^{\log } \mathrm{Kq}(|\psi\rangle) \leq \mathbf{H}(|\psi\rangle)+\mathbf{I}(|\psi\rangle ; \mathcal{H}) \text {. } \\
& \mathbf{H}(|\psi\rangle)<^{\log } Q C(|\psi\rangle) \text {. }
\end{aligned}
$$

Thank You

Kolmogorov (left) delivers a talk at a Soviet information theory symposium. (Tallinn, 1973).

