Ornstein Isomophism and Algorithmic Randomness

Mrinalkanti Ghosh ${ }^{1}$, Satyadev Nandakumar ${ }^{2}$, and Atanu Pal ${ }^{3}$
${ }^{1}$ Toyota Technological Institute, Chicago
${ }^{2}$ Indian Institute of Technology Kanpur
${ }^{3}$ Strand Genomics, Bangalore

June 12, 2014

Introduction

Dynamical Systems Kolmogorov's Programme: KSentropy
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ
LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma
References

Introduction

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

Kolmogorov's Programme:
"The application of probability theory can be put on a uniform basis. It is always a matter of hypotheses about the impossibility of reducing in one way or another the complexity of the description of objects in question."

Introduction

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Kolmogorov's Programme:
"The application of probability theory can be put on a uniform basis. It is always a matter of hypotheses about the impossibility of reducing in one way or another the complexity of the description of objects in question."

Consider theorems in Probability theory which hold "almost everywhere".

Introduction

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Kolmogorov's Programme:
"The application of probability theory can be put on a uniform basis. It is always a matter of hypotheses about the impossibility of reducing in one way or another the complexity of the description of objects in question."

Consider theorems in Probability theory which hold "almost everywhere". Can we show that if an object has maximum descriptional complexity, (i.e. is "random"), then it obeys the theorem?

Kolmogorov Theme

Dynamical Systems	Computability Theory
KSentropy	
KS theorem	
Converse	
Setting	
Overview	Compressibility
Computability of ϕ	
LC	
Marker	
Skeletons	
Fillers	Information Theory
Marriage Lemma	
Assignment Lemma	
References	

Kolmogorov Theme

Dynamical Systems KSentropy KS theorem Converse	Computability Theory	
Setting Overview Computability of ϕ LC		Compressibility
Marker Skeletons Fillers Marriage Lemma Assignment Lemma	Information Theory	
References	Entropy	
	Dynamical Systems	

Dynamical Systems

Definition 1. Let (X, \mathcal{F}, P) be a probability space.

Dynamical Systems

Definition 1. Let (X, \mathcal{F}, P) be a probability space.
A measurable transformation $T: X \rightarrow X$ is called measure-preserving if for every $A \in \mathcal{F}, P\left(T^{-1} A\right)=P(A)$.

Dynamical Systems

Definition 1. Let (X, \mathcal{F}, P) be a probability space.
A measurable transformation $T: X \rightarrow X$ is called measure-preserving if for every $A \in \mathcal{F}, P\left(T^{-1} A\right)=P(A)$.

A measure-preserving map T is ergodic if for all $A \in \mathcal{F}, T A=A$ only when $P(A) \in\{0,1\}$.

Dynamical Systems

Definition 1. Let (X, \mathcal{F}, P) be a probability space.
A measurable transformation $T: X \rightarrow X$ is called measure-preserving if for every $A \in \mathcal{F}, P\left(T^{-1} A\right)=P(A)$.

A measure-preserving map T is ergodic if for all $A \in \mathcal{F}, T A=A$ only when $P(A) \in\{0,1\}$.

Example. If X is a finite set with the uniform distribution on it, then every permutation is a measure-preserving transformation.

Dynamical Systems

Definition 1. Let (X, \mathcal{F}, P) be a probability space.
A measurable transformation $T: X \rightarrow X$ is called measure-preserving if for every $A \in \mathcal{F}, P\left(T^{-1} A\right)=P(A)$.

A measure-preserving map T is ergodic if for all $A \in \mathcal{F}, T A=A$ only when $P(A) \in\{0,1\}$.

Example. If X is a finite set with the uniform distribution on it, then every permutation is a measure-preserving transformation.

Any permutation consisting of a single cycle is an ergodic transformation.

Dynamical Systems

Definition 1. Let (X, \mathcal{F}, P) be a probability space.
A measurable transformation $T: X \rightarrow X$ is called measure-preserving if for every $A \in \mathcal{F}, P\left(T^{-1} A\right)=P(A)$.

A measure-preserving map T is ergodic if for all $A \in \mathcal{F}, T A=A$ only when $P(A) \in\{0,1\}$.

Example. If X is a finite set with the uniform distribution on it, then every permutation is a measure-preserving transformation.

Any permutation consisting of a single cycle is an ergodic transformation.

Definition 2. A system (X, \mathcal{F}, P, T) where (X, \mathcal{F}, P) is a probability space and T is measure-preserving with respect to it, is called a dynamical system.

Partitions

Dynamical
Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ
LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Partitions

Dynamical
Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ
LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Kolmogorov-Sinai Entropy

Dynamical Systems
\square KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ
LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

The entropy of a partition $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ of X is

$$
H(\alpha)=\sum_{i=0}^{n-1} P\left(\alpha_{i}\right) \log \left(\frac{1}{P\left(\alpha_{i}\right)}\right) .
$$

Kolmogorov-Sinai Entropy

Dynamical Systems
\square KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

The entropy of a partition $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ of X is

$$
H(\alpha)=\sum_{i=0}^{n-1} P\left(\alpha_{i}\right) \log \left(\frac{1}{P\left(\alpha_{i}\right)}\right) .
$$

The k-step entropy is

$$
h_{k}(\alpha, T)=\frac{H\left(\alpha \vee \cdots \vee T^{-k+1} \alpha\right)}{k} .
$$

Kolmogorov-Sinai Entropy

Dynamical Systems
\square KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

The entropy of a partition $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ of X is

$$
H(\alpha)=\sum_{i=0}^{n-1} P\left(\alpha_{i}\right) \log \left(\frac{1}{P\left(\alpha_{i}\right)}\right) .
$$

The k-step entropy is

$$
h_{k}(\alpha, T)=\frac{H\left(\alpha \vee \cdots \vee T^{-k+1} \alpha\right)}{k} .
$$

The entropy of a transformation T wrt α is

$$
h(\alpha, T)=\lim _{k \rightarrow \infty} h_{k}(\alpha, T) .
$$

Kolmogorov-Sinai Entropy

Dynamical Systems
\square KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

The entropy of a partition $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ of X is

$$
H(\alpha)=\sum_{i=0}^{n-1} P\left(\alpha_{i}\right) \log \left(\frac{1}{P\left(\alpha_{i}\right)}\right) .
$$

The k-step entropy is

$$
h_{k}(\alpha, T)=\frac{H\left(\alpha \vee \cdots \vee T^{-k+1} \alpha\right)}{k} .
$$

The entropy of a transformation T wrt α is

$$
h(\alpha, T)=\lim _{k \rightarrow \infty} h_{k}(\alpha, T) .
$$

The entropy of a transformation T is

$$
h(T)=\sup \{h(\alpha, T) \mid \alpha \text { is a finite partition of } X\} .
$$

Kolmogorov-Sinai Theorem

Dynamical Systems KSentropy
\triangleright KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

The partition α of X is called a generator if the σ-algebra on X is generated by $\cdots \vee T^{-2} \alpha \vee T^{-1} \alpha \vee \alpha \vee T \alpha \vee T^{2} \alpha \ldots$.

Kolmogorov-Sinai Theorem

Dynamical Systems KSentropy
\triangleright KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

The partition α of X is called a generator if the σ-algebra on X is generated by $\cdots \vee T^{-2} \alpha \vee T^{-1} \alpha \vee \alpha \vee T \alpha \vee T^{2} \alpha \ldots$.

Theorem 3. If α is a generator, then $h(\alpha, T)=h(T)$.

Kolmogorov-Sinai Theorem

Dynamical Systems KSentropy
\triangleright KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker Skeletons
Fillers
Marriage Lemma
Assignment Lemma

The partition α of X is called a generator if the σ-algebra on X is generated by $\cdots \vee T^{-2} \alpha \vee T^{-1} \alpha \vee \alpha \vee T \alpha \vee T^{2} \alpha \ldots$.

Theorem 3. If α is a generator, then $h(\alpha, T)=h(T)$.
(α is a "natural" partition induced by T.)

Kolmogorov-Sinai Theorem

Dynamical Systems
KSentropy
\triangleright KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

The partition α of X is called a generator if the σ-algebra on X is generated by $\cdots \vee T^{-2} \alpha \vee T^{-1} \alpha \vee \alpha \vee T \alpha \vee T^{2} \alpha \ldots$.

Theorem 3. If α is a generator, then $h(\alpha, T)=h(T)$.
(α is a "natural" partition induced by T.)
Definition 4. An isomorphism $\phi: A \rightarrow B$ is a function such that $\phi \circ T_{A}=T_{B} \circ \phi$.

Kolmogorov-Sinai Theorem

Dynamical Systems
KSentropy
\triangleright KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

The partition α of X is called a generator if the σ-algebra on X is generated by $\cdots \vee T^{-2} \alpha \vee T^{-1} \alpha \vee \alpha \vee T \alpha \vee T^{2} \alpha \ldots$

Theorem 3. If α is a generator, then $h(\alpha, T)=h(T)$.
(α is a "natural" partition induced by T.)
Definition 4. An isomorphism $\phi: A \rightarrow B$ is a function such that $\phi \circ T_{A}=T_{B} \circ \phi$.

Theorem 5. If two dynamical systems are isomorphic to each other, then they have the same Kolmogorov-Sinai entropy.

Converse of the KS theorem

Dynamical Systems KSentrooy \quad Let Σ_{A} and Σ_{B} be two finite alphabets. KS theorem
Δ Converse
Setting
Overview
Computability of ϕ
LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma
References

Converse of the KS theorem

Dynamical Systems KSentropy
KS theorem
\triangleright Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

Let Σ_{A} and Σ_{B} be two finite alphabets.
Let $A=\left(\Sigma_{A}^{\infty}, \mathcal{B}\left(\Sigma_{A}^{\infty}\right), P_{A}, T_{A}\right)$ and $B=\left(\Sigma_{B}^{\infty}, \mathcal{B}\left(\Sigma_{B}^{\infty}\right), P_{B}, T_{B}\right)$ be two Bernoulli systems with the same KS entropy.

Converse of the KS theorem

Dynamical Systems	Let Σ_{A} and Σ_{B} be two finite alphabets.
KSentropy KS theorem	
Converse Setting Overview Computability of ϕ LC	Let $A=\left(\Sigma_{A}^{\infty}, \mathcal{B}\left(\Sigma_{A}^{\infty}\right), P_{A}, T_{A}\right)$ and $B=\left(\Sigma_{B}^{\infty}, \mathcal{B}\left(\Sigma_{B}^{\infty}\right), P_{B}, T_{B}\right)$
Marker Skeletons Fillers Marriage Lemma Assignment Lemma	be two Bernoulli systems with the same KS entropy.
References	

Converse of the KS theorem

Dynamical Systems KSentropy
KS theorem
\triangleright Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

Let Σ_{A} and Σ_{B} be two finite alphabets.
Let $A=\left(\Sigma_{A}^{\infty}, \mathcal{B}\left(\Sigma_{A}^{\infty}\right), P_{A}, T_{A}\right)$ and $B=\left(\Sigma_{B}^{\infty}, \mathcal{B}\left(\Sigma_{B}^{\infty}\right), P_{B}, T_{B}\right)$ be two Bernoulli systems with the same KS entropy.

Are the two systems necessarily isomorphic?
(Note: Σ_{A} and Σ_{B} need not have the same cardinality.)

Converse of the KS theorem

Dynamical Systems KSentropy
KS theorem
\triangleright Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Let Σ_{A} and Σ_{B} be two finite alphabets.
Let $A=\left(\Sigma_{A}^{\infty}, \mathcal{B}\left(\Sigma_{A}^{\infty}\right), P_{A}, T_{A}\right)$ and $B=\left(\Sigma_{B}^{\infty}, \mathcal{B}\left(\Sigma_{B}^{\infty}\right), P_{B}, T_{B}\right)$ be two Bernoulli systems with the same KS entropy.

Are the two systems necessarily isomorphic?
(Note: Σ_{A} and Σ_{B} need not have the same cardinality.)
Answer: Yes [Orn70]. In fact, there is a finitary isomorphism between them [KS79].

Setting

Dynamical Systems
KSentropy
KS theorem
Converse
\triangleright Setting
Overview
Computability of ϕ
LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

The finite portions $x[-m \ldots 0 \ldots m]$ of an infinite sequence x are the cylinders of x.

Setting

Dynamical Systems
KSentropy
KS theorem
Converse
\triangleright Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

The finite portions $x[-m \ldots 0 \ldots m]$ of an infinite sequence x are the cylinders of x.

A finitary map $\phi: A \rightarrow B$ is one where for every $x \in A$ such that $\phi(x)$ is defined, there is an N such that

Setting

Dynamical Systems
KSentropy
KS theorem
Converse
\triangleright Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

The finite portions $x[-m \ldots 0 \ldots m]$ of an infinite sequence x are the cylinders of x.

A finitary map $\phi: A \rightarrow B$ is one where for every $x \in A$ such that $\phi(x)$ is defined, there is an N such that $\phi(x[-N \ldots 0 \ldots N])$ determines $\phi(x)[0]$.

Setting

Dynamical Systems
KSentropy
KS theorem
Converse
\triangleright Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

The finite portions $x[-m \ldots 0 \ldots m]$ of an infinite sequence x are the cylinders of x.

A finitary map $\phi: A \rightarrow B$ is one where for every $x \in A$ such that $\phi(x)$ is defined, there is an N such that $\phi(x[-N \ldots 0 \ldots N])$ determines $\phi(x)[0]$.

This N, in general, depends on the x.

Setting

Dynamical Systems
KSentropy
KS theorem
Converse
\triangleright Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

The finite portions $x[-m \ldots 0 \ldots m]$ of an infinite sequence x are the cylinders of x.

A finitary map $\phi: A \rightarrow B$ is one where for every $x \in A$ such that $\phi(x)$ is defined, there is an N such that $\phi(x[-N \ldots 0 \ldots N])$ determines $\phi(x)[0]$.

This N, in general, depends on the x.
Further, $\phi(x)$ may not be defined on some x.

Setting

Dynamical Systems
KSentropy
KS theorem
Converse
\triangleright Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

The finite portions $x[-m \ldots 0 \ldots m]$ of an infinite sequence x are the cylinders of x.

A finitary map $\phi: A \rightarrow B$ is one where for every $x \in A$ such that $\phi(x)$ is defined, there is an N such that $\phi(x[-N \ldots 0 \ldots N])$ determines $\phi(x)[0]$.

This N, in general, depends on the x.
Further, $\phi(x)$ may not be defined on some x.

Overview of the Proof

$$
\begin{array}{ccccc}
000 & 00 & 0 & 00 & 00000 \\
x \in \mathcal{A} & & & & \\
000 & 00 & 0 & 00 & 00000 \\
\phi(x) \in \mathcal{C} & & & &
\end{array}
$$

Overview of the Proof

Overview of the Proof

$\phi(x) \in \mathcal{C}$

Overview of the Proof

Computability of ϕ

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of
- ϕ
LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

Definition 6. A dynamical system $A=\left(\Sigma_{A}^{\infty}, \mathcal{B}\left(\Sigma_{A}^{\infty}\right), P_{A}, T_{A}\right)$ is called computable if $P_{A}: \Sigma_{A}^{*} \rightarrow[0,1]$ is computable, and $T_{A}: \Sigma_{A}^{*} \rightarrow \Sigma_{A}^{*}$ is a computable monotone transformation.

Computability of ϕ

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of

- ϕ

LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

Definition 6. A dynamical system $A=\left(\Sigma_{A}^{\infty}, \mathcal{B}\left(\Sigma_{A}^{\infty}\right), P_{A}, T_{A}\right)$ is called computable if $P_{A}: \Sigma_{A}^{*} \rightarrow[0,1]$ is computable, and $T_{A}: \Sigma_{A}^{*} \rightarrow \Sigma_{A}^{*}$ is a computable monotone transformation.

Let us assume that A and B are computable systems.

Computability of ϕ

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of

- ϕ

LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

Definition 6. A dynamical system $A=\left(\Sigma_{A}^{\infty}, \mathcal{B}\left(\Sigma_{A}^{\infty}\right), P_{A}, T_{A}\right)$ is called computable if $P_{A}: \Sigma_{A}^{*} \rightarrow[0,1]$ is computable, and $T_{A}: \Sigma_{A}^{*} \rightarrow \Sigma_{A}^{*}$ is a computable monotone transformation.

Let us assume that A and B are computable systems.
Does this make ϕ computable?

Computability of ϕ

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of

- ϕ

LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Definition 6. A dynamical system $A=\left(\Sigma_{A}^{\infty}, \mathcal{B}\left(\Sigma_{A}^{\infty}\right), P_{A}, T_{A}\right)$ is called computable if $P_{A}: \Sigma_{A}^{*} \rightarrow[0,1]$ is computable, and $T_{A}: \Sigma_{A}^{*} \rightarrow \Sigma_{A}^{*}$ is a computable monotone transformation.

Let us assume that A and B are computable systems.
Does this make ϕ computable?
No! ϕ is undefined at several points - it is defined on some measure 1 proper subset, but may be undefined on a measure 0 , nonempty set.

Computability of ϕ

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of

- ϕ

LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Definition 6. A dynamical system $A=\left(\Sigma_{A}^{\infty}, \mathcal{B}\left(\Sigma_{A}^{\infty}\right), P_{A}, T_{A}\right)$ is called computable if $P_{A}: \Sigma_{A}^{*} \rightarrow[0,1]$ is computable, and $T_{A}: \Sigma_{A}^{*} \rightarrow \Sigma_{A}^{*}$ is a computable monotone transformation.

Let us assume that A and B are computable systems.
Does this make ϕ computable?
No! ϕ is undefined at several points - it is defined on some measure 1 proper subset, but may be undefined on a measure 0 , nonempty set.

Where exactly is the isomorphism well-defined?

Computability of ϕ

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of

- ϕ

LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Definition 6. A dynamical system $A=\left(\Sigma_{A}^{\infty}, \mathcal{B}\left(\Sigma_{A}^{\infty}\right), P_{A}, T_{A}\right)$ is called computable if $P_{A}: \Sigma_{A}^{*} \rightarrow[0,1]$ is computable, and $T_{A}: \Sigma_{A}^{*} \rightarrow \Sigma_{A}^{*}$ is a computable monotone transformation.

Let us assume that A and B are computable systems.
Does this make ϕ computable?
No! ϕ is undefined at several points - it is defined on some measure 1 proper subset, but may be undefined on a measure 0 , nonempty set.

Where exactly is the isomorphism well-defined?

Computability of ϕ

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of

- ϕ

LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Definition 6. A dynamical system $A=\left(\Sigma_{A}^{\infty}, \mathcal{B}\left(\Sigma_{A}^{\infty}\right), P_{A}, T_{A}\right)$ is called computable if $P_{A}: \Sigma_{A}^{*} \rightarrow[0,1]$ is computable, and $T_{A}: \Sigma_{A}^{*} \rightarrow \Sigma_{A}^{*}$ is a computable monotone transformation.

Let us assume that A and B are computable systems.
Does this make ϕ computable?
No! ϕ is undefined at several points - it is defined on some measure 1 proper subset, but may be undefined on a measure 0 , nonempty set.

Where exactly is the isomorphism well-defined?
Answer: (At least) over the Martin-Löf random points in the systems.

Layerwise Computability

Most strings in Σ^{n} are random.

Layerwise Computability

Most strings in Σ^{n} are random. Similarly, a measure 1 subset of any computable space consist of "random" objects.

Layerwise Computability

Most strings in Σ^{n} are random. Similarly, a measure 1 subset of any computable space consist of "random" objects.

Let U_{1}, U_{2}, \ldots be some computable enumeration of open intervals with rational endpoints, in the space.

Layerwise Computability

Most strings in Σ^{n} are random. Similarly, a measure 1 subset of any computable space consist of "random" objects.

Let U_{1}, U_{2}, \ldots be some computable enumeration of open intervals with rational endpoints, in the space. A constructive measure 0 set is one which can be expressed as

$$
\bigcap_{m>0} \bigcup_{n=1}^{\infty} U_{i_{n}, m}
$$

where for each m, we have that the open cover $\bigcup_{n=1}^{\infty} U_{i_{n}, m}$ has probability less than $\frac{1}{2^{m}}$.

Layerwise computability

Since there is a universal Turing machine, there is a largest constructive measure 0 set.

Layerwise computability

Since there is a universal Turing machine, there is a largest constructive measure 0 set.

The complement of this set is the smallest co-constructive measure 1 set, which is called the set of Martin-Löf random objects.

Layerwise computability

Since there is a universal Turing machine, there is a largest constructive measure 0 set.

The complement of this set is the smallest co-constructive measure 1 set, which is called the set of Martin-Löf random objects.

Let us denote $K_{m}=U_{m}^{c}$. The sequence $\left\langle K_{m}\right\rangle_{m=1}^{\infty}$ is called a layering of X.

Layerwise computability

Since there is a universal Turing machine, there is a largest constructive measure 0 set.

The complement of this set is the smallest co-constructive measure 1 set, which is called the set of Martin-Löf random objects.

Let us denote $K_{m}=U_{m}^{c}$. The sequence $\left\langle K_{m}\right\rangle_{m=1}^{\infty}$ is called a layering of X. If a function $\phi\left(K_{m}\right)$ is computable uniformly in m, we say that it is layerwise computable. (Such computations converge on all random points.)

Layerwise computability

Since there is a universal Turing machine, there is a largest constructive measure 0 set.

The complement of this set is the smallest co-constructive measure 1 set, which is called the set of Martin-Löf random objects.

Let us denote $K_{m}=U_{m}^{c}$. The sequence $\left\langle K_{m}\right\rangle_{m=1}^{\infty}$ is called a layering of X. If a function $\phi\left(K_{m}\right)$ is computable uniformly in m, we say that it is layerwise computable. (Such computations converge on all random points.)

Structure of the Proof

We will construct a layerwise computable isomorphism which will take Martin-Löf random points in A to those in B and conversely.

1. The Marker Lemma
2. The Skeleton Lemma
3. The Filler Lemma
4. The Marriage Lemma
5. The Assignment Lemma

Marker Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC

- Marker

Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Reduce the problem to the following: construct an isomorphism between two mixing Markov systems with the same entropy and

Marker Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC

- Marker

Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Reduce the problem to the following: construct an isomorphism between two mixing Markov systems with the same entropy and having some symbol with equal probability.

Marker Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC

- Marker

Skeletons
Fillers
Marriage Lemma
Assignment Lemma

Reduce the problem to the following: construct an isomorphism between two mixing Markov systems with the same entropy and having some symbol with equal probability.

Sort Σ_{A} and Σ_{B} in decreasing order of probability. ${ }^{1}$ Designate the symbol with the highest probability in Σ_{A} as 0 , and that with the least probability in Σ_{B} as 1 .

Marker Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC

- Marker

Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Reduce the problem to the following: construct an isomorphism between two mixing Markov systems with the same entropy and having some symbol with equal probability.

Sort Σ_{A} and Σ_{B} in decreasing order of probability. ${ }^{1}$ Designate the symbol with the highest probability in Σ_{A} as 0 , and that with the least probability in Σ_{B} as 1 .

Construct a mixing Markov system C with approximately the same entropy as A and B, with $P_{C}(0)=P_{A}(0)$ and $P_{C}(1)=P_{B}(1)$.

Marker Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC

- Marker

Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Reduce the problem to the following: construct an isomorphism between two mixing Markov systems with the same entropy and having some symbol with equal probability.

Sort Σ_{A} and Σ_{B} in decreasing order of probability. ${ }^{1}$ Designate the symbol with the highest probability in Σ_{A} as 0 , and that with the least probability in Σ_{B} as 1 .

Construct a mixing Markov system C with approximately the same entropy as A and B, with $P_{C}(0)=P_{A}(0)$ and $P_{C}(1)=P_{B}(1)$.
Fix an alphabet size c large enough that the entropy of the partition Σ_{C} is greater than that of Σ_{A} and Σ_{B}.

Marker Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
\triangleright Marker
Skeletons
Fillers
Marriage Lemma Assignment Lemma

Reduce the problem to the following: construct an isomorphism between two mixing Markov systems with the same entropy and having some symbol with equal probability.

Sort Σ_{A} and Σ_{B} in decreasing order of probability. ${ }^{1}$ Designate the symbol with the highest probability in Σ_{A} as 0 , and that with the least probability in Σ_{B} as 1 .

Construct a mixing Markov system C with approximately the same entropy as A and B, with $P_{C}(0)=P_{A}(0)$ and $P_{C}(1)=P_{B}(1)$.
Fix an alphabet size c large enough that the entropy of the partition Σ_{C} is greater than that of Σ_{A} and Σ_{B}.

Now, we need an algorithm to define the probabilities of strings $x \in \Sigma^{*}$.
${ }^{\text {I }}$ We work with $\left(1 \pm \epsilon_{n}\right)$ approximations of probability.

Marker Lemma - Algorithm

Let m be the memory of the Markov systems.

1. Input: a string $x \in \Sigma^{*}$ and $n \in \mathbb{N}$ where we require

$$
\left|H_{A}-H_{C}\right|,\left|H_{B}-H_{C}\right|<\frac{1}{2^{n}} .
$$

Marker Lemma - Algorithm

Let m be the memory of the Markov systems.

1. Input: a string $x \in \Sigma^{*}$ and $n \in \mathbb{N}$ where we require

$$
\left|H_{A}-H_{C}\right|,\left|H_{B}-H_{C}\right|<\frac{1}{2^{n}} .
$$

2. If $x \in\{0\}^{*}$, then output $P_{A}\left(0^{*}, n\right)$. If $x \in\{1\}^{*}$, then output $P_{B}\left(1^{*}, n\right)$.

Marker Lemma - Algorithm

Let m be the memory of the Markov systems.

1. Input: a string $x \in \Sigma^{*}$ and $n \in \mathbb{N}$ where we require

$$
\left|H_{A}-H_{C}\right|,\left|H_{B}-H_{C}\right|<\frac{1}{2^{n}} .
$$

2. If $x \in\{0\}^{*}$, then output $P_{A}\left(0^{*}, n\right)$. If $x \in\{1\}^{*}$, then output $P_{B}\left(1^{*}, n\right)$.
3. If $|x|<m+1$, then adjust the probabilities of the alphabet symbols in C such that the entropy condition holds.

Marker Lemma - Algorithm

Let m be the memory of the Markov systems.

1. Input: a string $x \in \Sigma^{*}$ and $n \in \mathbb{N}$ where we require

$$
\left|H_{A}-H_{C}\right|,\left|H_{B}-H_{C}\right|<\frac{1}{2^{n}} .
$$

2. If $x \in\{0\}^{*}$, then output $P_{A}\left(0^{*}, n\right)$. If $x \in\{1\}^{*}$, then output $P_{B}\left(1^{*}, n\right)$.
3. If $|x|<m+1$, then adjust the probabilities of the alphabet symbols in C such that the entropy condition holds.
4. If $|x|>m+1$, then compute $P(c \mid z)$ for all $c \in \Sigma_{C}$, and $z \in \Sigma^{m}$, and compute $P_{C}(x)$.

Skeleton Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ
LC
Marker
\triangleright Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Now, $P_{A}(0)=P_{C}(0)$. We will identify finite strings from Σ_{A}^{*} which can be mapped to finite strings in Σ_{C}^{*}.

Skeleton Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
\triangleright Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Now, $P_{A}(0)=P_{C}(0)$. We will identify finite strings from Σ_{A}^{*} which can be mapped to finite strings in Σ_{C}^{*}.

Idea: We will potentially match strings in A and C if their patterns of 0 s is the same.

Skeleton Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
\triangleright Skeletons
Fillers
Marriage Lemma
Assignment Lemma

Now, $P_{A}(0)=P_{C}(0)$. We will identify finite strings from Σ_{A}^{*} which can be mapped to finite strings in Σ_{C}^{*}.

Idea: We will potentially match strings in A and C if their patterns of 0 s is the same.

Let $N_{0}<N_{1}<\ldots$ be a sequence of positive integers.

Skeleton Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ
LC
Marker
\triangleright Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Now, $P_{A}(0)=P_{C}(0)$. We will identify finite strings from Σ_{A}^{*} which can be mapped to finite strings in Σ_{C}^{*}.

Idea: We will potentially match strings in A and C if their patterns of 0 s is the same.

Let $N_{0}<N_{1}<\ldots$ be a sequence of positive integers.
Map all non-zero symbols in a sequence (from A or C) to .. A skeleton of rank r at position i in x, denoted $S(x, r, i)$ is defined as the shortest string enclosing $x[i]$ and delimited by N_{r} many zeroes on either end.

Skeleton Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ
LC
Marker
\triangleright Skeletons
Fillers
Marriage Lemma
Assignment Lemma

References

Now, $P_{A}(0)=P_{C}(0)$. We will identify finite strings from Σ_{A}^{*} which can be mapped to finite strings in Σ_{C}^{*}.

Idea: We will potentially match strings in A and C if their patterns of 0 s is the same.

Let $N_{0}<N_{1}<\ldots$ be a sequence of positive integers.
Map all non-zero symbols in a sequence (from A or C) to - . A skeleton of rank r at position i in x, denoted $S(x, r, i)$ is defined as the shortest string enclosing $x[i]$ and delimited by N_{r} many zeroes on either end.

A skeleton $S(x, r, i)$ can be decomposed uniquely into skeletons of rank r - 1 .

Skeletons

$$
\begin{array}{ccccc}
000 & 00 & 0 & 00 & 00000 \\
x \in \mathcal{A} & & & & \\
000 & 00 & 0 & 00 & 00000 \\
\phi(x) \in \mathcal{C} & & & &
\end{array}
$$

Skeletons

$$
\begin{array}{ccccc}
000 & 00 & 0 & 00 & 00000 \\
x \in \mathcal{A} & & & & \\
& \text { Skeletons } & & \\
000 & 00 & 0 & 00 & 00000 \\
\phi(x) \in \mathcal{C} & & & &
\end{array}
$$

Skeletons

$$
\begin{array}{ccccc}
000 & 00 & 0 & 00 & 00000 \\
x \in \mathcal{A} & & S_{0} & & \\
& & & & \\
& \text { Skeletons } & & \\
000 & 00 & 0 & 00 & 00000 \\
\phi(x) \in \mathcal{C} & & & &
\end{array}
$$

Skeletons

$$
\begin{array}{cccc}
000 & \begin{array}{c}
0 \\
S_{0}
\end{array} & 00 & 00000 \\
x \in \mathcal{A} & \begin{array}{c}
S_{1} \\
\text { Skeletons }
\end{array} & & \\
000 & 00 & 0 & 00 \\
\phi(x) \in \mathcal{C} & & & \\
\hline
\end{array}
$$

Skeletons

$$
\begin{array}{cccc}
000 & \begin{array}{c}
0 \\
S_{0}
\end{array} & 00 & 00000 \\
x \in \mathcal{A} & \begin{array}{c}
S_{2} \\
\text { Skeletons }
\end{array} & \\
\longleftrightarrow & & \\
000 & 00 & 0 & 00
\end{array}
$$

Skeleton Lemma

Lemma Let $\left\langle L_{r}\right\rangle_{r=1}^{\infty}$ be an increasing sequence of positive integers. Then there is a layering $\left\langle K_{r}^{\prime}\right\rangle_{r=1}^{\infty}$ of A and an increasing sequence of positive integers $\left\langle N_{r}\right\rangle_{r=0}^{\infty}$ uniformly computable in r such that for every $r \in \mathbb{N}$ and every $x \in K_{r}^{\prime}$, the following hold.

Skeleton Lemma

Lemma Let $\left\langle L_{r}\right\rangle_{r=1}^{\infty}$ be an increasing sequence of positive integers. Then there is a layering $\left\langle K_{r}^{\prime}\right\rangle_{r=1}^{\infty}$ of A and an increasing sequence of positive integers $\left\langle N_{r}\right\rangle_{r=0}^{\infty}$ uniformly computable in r such that for every $r \in \mathbb{N}$ and every $x \in K_{r}^{\prime}$, the following hold.
$\square \quad$ There is a skeleton centered at $x[0]$ delimited by N_{r} many zeroes. (denoted $S(x, r, 0)$.)

Skeleton Lemma

Lemma Let $\left\langle L_{r}\right\rangle_{r=1}^{\infty}$ be an increasing sequence of positive integers. Then there is a layering $\left\langle K_{r}^{\prime}\right\rangle_{r=1}^{\infty}$ of A and an increasing sequence of positive integers $\left\langle N_{r}\right\rangle_{r=0}^{\infty}$ uniformly computable in r such that for every $r \in \mathbb{N}$ and every $x \in K_{r}^{\prime}$, the following hold.
$\square \quad$ There is a skeleton centered at $x[0]$ delimited by N_{r} many zeroes. (denoted $S(x, r, 0)$.)
$\square \quad S(x, r, 0)$ has at least L_{r} many gaps.

Skeleton Lemma

Lemma Let $\left\langle L_{r}\right\rangle_{r=1}^{\infty}$ be an increasing sequence of positive integers. Then there is a layering $\left\langle K_{r}^{\prime}\right\rangle_{r=1}^{\infty}$ of A and an increasing sequence of positive integers $\left\langle N_{r}\right\rangle_{r=0}^{\infty}$ uniformly computable in r such that for every $r \in \mathbb{N}$ and every $x \in K_{r}^{\prime}$, the following hold.
$\square \quad$ There is a skeleton centered at $x[0]$ delimited by N_{r} many zeroes. (denoted $S(x, r, 0)$.)
$\square \quad S(x, r, 0)$ has at least L_{r} many gaps.

Proof Idea: If such skeletons occur only finitely often on x, we can form a layerwise computable integrable test that will attain ∞ on x.

Skeleton Lemma

Lemma Let $\left\langle L_{r}\right\rangle_{r=1}^{\infty}$ be an increasing sequence of positive integers. Then there is a layering $\left\langle K_{r}^{\prime}\right\rangle_{r=1}^{\infty}$ of A and an increasing sequence of positive integers $\left\langle N_{r}\right\rangle_{r=0}^{\infty}$ uniformly computable in r such that for every $r \in \mathbb{N}$ and every $x \in K_{r}^{\prime}$, the following hold.
$\square \quad$ There is a skeleton centered at $x[0]$ delimited by N_{r} many zeroes. (denoted $S(x, r, 0)$.)
$\square \quad S(x, r, 0)$ has at least L_{r} many gaps.

Proof Idea: If such skeletons occur only finitely often on x, we can form a layerwise computable integrable test that will attain ∞ on x.
Then $x \notin$ MLR.

Filler Lemma

We have identified potential matches between elements in A and C based on identical skeletons. We have to decide what goes in the gaps.

Filler Lemma

We have identified potential matches between elements in A and C based on identical skeletons. We have to decide what goes in the gaps.

Let η_{r} and θ_{r} denote the minimum and the maximum conditional probabilites of symbols in A and C at precision r. Fix a sequence of numbers L_{r}, $r=1,2, \ldots$ such that

$$
\lim _{r \rightarrow \infty} \frac{1}{\eta_{r}} 2^{-L_{r}\left(1 / 2^{r}\right)}=0
$$

Filler Lemma

We have identified potential matches between elements in A and C based on identical skeletons. We have to decide what goes in the gaps.

Let η_{r} and θ_{r} denote the minimum and the maximum conditional probabilites of symbols in A and C at precision r. Fix a sequence of numbers L_{r}, $r=1,2, \ldots$ such that

$$
\lim _{r \rightarrow \infty} \frac{1}{\eta_{r}} 2^{-L_{r}\left(1 / 2^{r}\right)}=0
$$

Let $S(x, r, i)$ have ℓ blanks in positions $s_{1}, s_{2}, \ldots, s_{\ell}$. We fix the filler alphabet as Σ_{A}^{ℓ} and Σ_{C}^{ℓ} in A and C respectively.

Filler Lemma

We have identified potential matches between elements in A and C based on identical skeletons. We have to decide what goes in the gaps.

Let η_{r} and θ_{r} denote the minimum and the maximum conditional probabilites of symbols in A and C at precision r. Fix a sequence of numbers L_{r}, $r=1,2, \ldots$ such that

$$
\lim _{r \rightarrow \infty} \frac{1}{\eta_{r}} 2^{-L_{r}\left(1 / 2^{r}\right)}=0
$$

Let $S(x, r, i)$ have ℓ blanks in positions $s_{1}, s_{2}, \ldots, s_{\ell}$. We fix the filler alphabet as Σ_{A}^{ℓ} and Σ_{C}^{ℓ} in A and C respectively.

For a filler F, let $J(F, n) \subseteq\left\{s_{1}, \ldots, s_{\ell}\right\}$ be an index set of the positions in S filled by F.

Filler Lemma

We have identified potential matches between elements in A and C based on identical skeletons. We have to decide what goes in the gaps.

Let η_{r} and θ_{r} denote the minimum and the maximum conditional probabilites of symbols in A and C at precision r. Fix a sequence of numbers L_{r}, $r=1,2, \ldots$ such that

$$
\lim _{r \rightarrow \infty} \frac{1}{\eta_{r}} 2^{-L_{r}\left(1 / 2^{r}\right)}=0
$$

Let $S(x, r, i)$ have ℓ blanks in positions $s_{1}, s_{2}, \ldots, s_{\ell}$. We fix the filler alphabet as Σ_{A}^{ℓ} and Σ_{C}^{ℓ} in A and C respectively.

For a filler F, let $J(F, n) \subseteq\left\{s_{1}, \ldots, s_{\ell}\right\}$ be an index set of the positions in S filled by F.

Define an equivalence relation $\sim_{n}: F \sim_{n} F^{\prime}$ if $J(F, n)=J\left(F^{\prime}, n\right)$ and F agrees with F^{\prime} on $J(F, n)$.

Constructing $J(F, n)$

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ
LC
Marker
Skeletons
\triangleright Fillers
Marriage Lemma
Assignment Lemma

References

```
The equivalence classes are constructed inductively on the rank.
```


Constructing $J(F, n)$

Dynamical Systems KSentropy KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
\triangleright Fillers
Marriage Lemma
Assignment Lemma

The equivalence classes are constructed inductively on the rank.

For a rank 1 skeleton, set $J(F, n)$ to be the largest subset P of $\left\{s_{1}, \ldots, s_{\ell}\right\}$ such that the probability of the cylinder specified by P is at least $\frac{3}{2 \eta_{1}} 2^{-L_{1}\left(H-\varepsilon_{1}\right)}$.

Constructing $J(F, n)$

Dynamical Systems KSentropy KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
\triangleright Fillers
Marriage Lemma
Assignment Lemma

The equivalence classes are constructed inductively on the rank.

For a rank 1 skeleton, set $J(F, n)$ to be the largest subset P of $\left\{s_{1}, \ldots, s_{\ell}\right\}$ such that the probability of the cylinder specified by P is at least $\frac{3}{2 \eta_{1}} 2^{-L_{1}\left(H-\varepsilon_{1}\right)}$.

Let $P_{r}=\left\{s_{j_{1}}, \ldots, s_{j_{k}}\right\}$ be fixed by skeletons of rank $\leq r$.

Constructing $J(F, n)$

Dynamical Systems KSentropy KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
D Fillers
Marriage Lemma
Assignment Lemma

References

The equivalence classes are constructed inductively on the rank.

For a rank 1 skeleton, set $J(F, n)$ to be the largest subset P of $\left\{s_{1}, \ldots, s_{\ell}\right\}$ such that the probability of the cylinder specified by P is at least $\frac{3}{2 \eta_{1}} 2^{-L_{1}\left(H-\varepsilon_{1}\right)}$.

Let $P_{r}=\left\{s_{j_{1}}, \ldots, s_{j_{k}}\right\}$ be fixed by skeletons of rank $\leq r$.
For a skeleton of rank $r+1$, pick the largest subset of P of $\left\{s_{1}, \ldots, s_{\ell}\right\}-P_{r}$ so that the probability of the cylinder specified by $P_{r} \cup P$ is at least

$$
\frac{\left(1+\varepsilon_{r}\right)}{\eta_{r}} 2^{-L_{r}\left(H-\varepsilon_{r}\right)} .
$$

Constructing $J(F, n)$

Dynamical Systems KSentropy KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
D Fillers
Marriage Lemma
Assignment Lemma
References

The equivalence classes are constructed inductively on the rank.

For a rank 1 skeleton, set $J(F, n)$ to be the largest subset P of $\left\{s_{1}, \ldots, s_{\ell}\right\}$ such that the probability of the cylinder specified by P is at least $\frac{3}{2 \eta_{1}} 2^{-L_{1}\left(H-\varepsilon_{1}\right)}$.

Let $P_{r}=\left\{s_{j_{1}}, \ldots, s_{j_{k}}\right\}$ be fixed by skeletons of rank $\leq r$.
For a skeleton of rank $r+1$, pick the largest subset of P of $\left\{s_{1}, \ldots, s_{\ell}\right\}-P_{r}$ so that the probability of the cylinder specified by $P_{r} \cup P$ is at least

$$
\frac{\left(1+\varepsilon_{r}\right)}{\eta_{r}} 2^{-L_{r}\left(H-\varepsilon_{r}\right)} .
$$

Then $J(F, n)$ for a rank $r+1$ skeleton is $P_{r} \cup P$.

Filler Lemma

Lemma There is a layering $\left\langle K_{p}^{\prime \prime}\right\rangle_{p=1}^{\infty}$ such that or every n, there is a large enough r such that for every skeleton S of rank r and length ℓ corresponding to $x \in K_{r}^{\prime \prime}$, we have:

Filler Lemma

Lemma There is a layering $\left\langle K_{p}^{\prime \prime}\right\rangle_{p=1}^{\infty}$ such that or every n, there is a large enough r such that for every skeleton S of rank r and length ℓ corresponding to $x \in K_{r}^{\prime \prime}$, we have:

1. For all $F \in \mathcal{F}(S)$,

$$
-\log _{2} \mathbf{P}_{\mathbf{A}}\left(\tilde{\mathbf{F}}_{\mathbf{r}}, \mathbf{n}\right)+\log _{2}\left(1-\varepsilon_{n}\right) \leq \mathbf{L}\left(\mathbf{H}-\varepsilon_{\mathbf{r}}\right)
$$

Filler Lemma

Lemma There is a layering $\left\langle K_{p}^{\prime \prime}\right\rangle_{p=1}^{\infty}$ such that or every n, there is a large enough r such that for every skeleton S of rank r and length ℓ corresponding to $x \in K_{r}^{\prime \prime}$, we have:

1. For all $F \in \mathcal{F}(S)$,
$-\log _{2} \mathbf{P}_{\mathbf{A}}\left(\tilde{\mathbf{F}}_{\mathbf{r}}, \mathbf{n}\right)+\log _{2}\left(1-\varepsilon_{n}\right) \leq \mathbf{L}\left(\mathbf{H}-\varepsilon_{\mathbf{r}}\right)$
2. For all $F \in \mathcal{F}(S)$ except maybe on a set of measure ε_{n} :
(a) $-\log _{2} \mathbf{P}_{\mathbf{A}}\left(\tilde{\mathbf{F}}_{\mathbf{r}}, \mathbf{n}\right)+\log _{2} \frac{\left(1-\varepsilon_{r}\right) \eta_{r}}{\left(1+\varepsilon_{n}\right)^{2}}>\mathbf{L}\left(\mathbf{H}-\varepsilon_{\mathbf{r}}\right)$

Filler Lemma

Lemma There is a layering $\left\langle K_{p}^{\prime \prime}\right\rangle_{p=1}^{\infty}$ such that or every n, there is a large enough r such that for every skeleton S of rank r and length ℓ corresponding to $x \in K_{r}^{\prime \prime}$, we have:

1. For all $F \in \mathcal{F}(S)$,
$-\log _{2} \mathbf{P}_{\mathbf{A}}\left(\tilde{\mathbf{F}}_{\mathbf{r}}, \mathbf{n}\right)+\log _{2}\left(1-\varepsilon_{n}\right) \leq \mathbf{L}\left(\mathbf{H}-\varepsilon_{\mathbf{r}}\right)$
2. For all $F \in \mathcal{F}(S)$ except maybe on a set of measure ε_{n} :
(a) $-\log _{2} \mathbf{P}_{\mathbf{A}}\left(\tilde{\mathbf{F}}_{\mathbf{r}}, \mathbf{n}\right)+\log _{2} \frac{\left(1-\varepsilon_{r}\right) \eta_{r}}{\left(1+\varepsilon_{n}\right)^{2}}>\mathbf{L}\left(\mathbf{H}-\varepsilon_{\mathbf{r}}\right)$
(b) $\frac{1}{L}|J(F, r)|>1-\frac{3}{\left|\log _{2} \theta_{r}\right|} \varepsilon_{r}$
where $L=\ell+\left|Z_{S}\right|$.

Filler Lemma

Lemma There is a layering $\left\langle K_{p}^{\prime \prime}\right\rangle_{p=1}^{\infty}$ such that or every n, there is a large enough r such that for every skeleton S of rank r and length ℓ corresponding to $x \in K_{r}^{\prime \prime}$, we have:

1. For all $F \in \mathcal{F}(S)$,
$-\log _{2} \mathbf{P}_{\mathbf{A}}\left(\tilde{\mathbf{F}}_{\mathbf{r}}, \mathbf{n}\right)+\log _{2}\left(1-\varepsilon_{n}\right) \leq \mathbf{L}\left(\mathbf{H}-\varepsilon_{\mathbf{r}}\right)$
2. For all $F \in \mathcal{F}(S)$ except maybe on a set of measure ε_{n} :
(a) $-\log _{2} \mathbf{P}_{\mathbf{A}}\left(\tilde{\mathbf{F}}_{\mathbf{r}}, \mathbf{n}\right)+\log _{2} \frac{\left(1-\varepsilon_{r}\right) \eta_{r}}{\left(1+\varepsilon_{n}\right)^{2}}>\mathbf{L}\left(\mathbf{H}-\varepsilon_{\mathbf{r}}\right)$
(b) $\frac{1}{L}|J(F, r)|>1-\frac{3}{\left|\log _{2} \theta_{r}\right|} \varepsilon_{r}$
where $L=\ell+\left|Z_{S}\right|$.
Proof Idea: Estimates follow from the effective Shannon-McMillan-Breiman theorem [Hoc09], [Hoy12].

Marriage Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
\triangleright Marriage Lemma
Assignment Lemma

References

We have a bipartite graph G with left set: \sim_{n}-equivalence classes of fillers for A, and right set: \sim_{n}-equivalence classes of fillers for B. Each vertex \tilde{F} on the left has probability $P_{A}(\tilde{F})$ and each vertex \tilde{G} on the right has probability $P_{C}(\tilde{G})$.

Marriage Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
\triangleright Marriage Lemma
Assignment Lemma

We have a bipartite graph G with left set: \sim_{n}-equivalence classes of fillers for A, and right set : \sim_{n}-equivalence classes of fillers for B. Each vertex \tilde{F} on the left has probability $P_{A}(\tilde{F})$ and each vertex \tilde{G} on the right has probability $P_{C}(\tilde{G})$.

A society f is a relation so that for every subset S of left vertices, $P_{A}(S) \leq P_{C}(f(S))$.

Marriage Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
\triangleright Marriage Lemma Assignment Lemma

References

We have a bipartite graph G with left set: \sim_{n}-equivalence classes of fillers for A, and right set: \sim_{n}-equivalence classes of fillers for B. Each vertex \tilde{F} on the left has probability $P_{A}(\tilde{F})$ and each vertex \tilde{G} on the right has probability $P_{C}(\tilde{G})$.

A society f is a relation so that for every subset S of left vertices, $P_{A}(S) \leq P_{C}(f(S))$.

This implies that for every subset T of right vertices, $P_{C}(T) \leq P_{A}\left(f^{-1} T\right)$. (i.e. The "dual" graph also defines a society.)

Marriage Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
\triangleright Marriage Lemma Assignment Lemma

References

We have a bipartite graph G with left set: \sim_{n}-equivalence classes of fillers for A, and right set : \sim_{n}-equivalence classes of fillers for B. Each vertex \tilde{F} on the left has probability $P_{A}(\tilde{F})$ and each vertex \tilde{G} on the right has probability $P_{C}(\tilde{G})$.

A society f is a relation so that for every subset S of left vertices, $P_{A}(S) \leq P_{C}(f(S))$.

This implies that for every subset T of right vertices, $P_{C}(T) \leq P_{A}\left(f^{-1} T\right)$. (i.e. The "dual" graph also defines a society.)

A minimal society is a society where the removal of any edge violates the condition for a society.

Marriage Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ
LC
Marker
Skeletons
Fillers
\triangleright Marriage Lemma
Assignment Lemma

References

Every society has a minimal subsociety which is produced by a joining - that is, a joint distribution on $L \times R$ with marginals P_{A} and P_{C}.

Marriage Lemma

Dynamical Systems KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
\triangleright Marriage Lemma
Assignment Lemma

References

Every society has a minimal subsociety which is produced by a joining - that is, a joint distribution on $L \times R$ with marginals P_{A} and P_{C}.

In a minimal subsociety, there is at least one vertex on the right which knows at most one left vertex.

Marriage Lemma

Dynamical Systems KSentropy KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
\triangleright Marriage Lemma Assignment Lemma

References

Every society has a minimal subsociety which is produced by a joining - that is, a joint distribution on $L \times R$ with marginals P_{A} and P_{C}.

In a minimal subsociety, there is at least one vertex on the right which knows at most one left vertex.

Our modification: a society is called ϵ-robust if for every left set $S, P_{A}(S)(1+\epsilon) \leq P_{B}(f(S))(1-\epsilon)$, and for every right set $T, P_{B}(1-\epsilon) \leq P_{A}\left(f^{-1}(T)\right)(1+\epsilon)$,

Assignment Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment
\triangleright Lemma

Lemma 7 (Assignment Lemma). If $x \in A$ such that $x \in K_{r^{\prime}} \cap K_{r^{\prime}}^{\prime}$ with $x[0]$ not contained in a block of 0 longer than m, then there is an even r, computable from r^{\prime}, such that

1. With respect to the society $R_{S_{r}(x)}: \overline{\mathcal{G}}\left(S_{r}(x)\right) \rightsquigarrow \tilde{\mathcal{F}}\left(S_{r}(x)\right)$, $R_{S_{r}(x)}^{-1}\left(\tilde{\mathcal{F}}_{r}(x)\right)$ is a singleton, say, $\overline{\mathcal{G}}_{r}(x)$.
2. $\quad i_{r}(x) \in J_{0}\left(\overline{\mathcal{G}}_{r}(x)\right)$.

Assignment Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment
\triangleright Lemma

References

Lemma 7 (Assignment Lemma). If $x \in A$ such that $x \in K_{r^{\prime}} \cap K_{r^{\prime}}^{\prime}$ with $x[0]$ not contained in a block of 0 longer than m, then there is an even r, computable from r^{\prime}, such that

1. With respect to the society $R_{S_{r}(x)}: \overline{\mathcal{G}}\left(S_{r}(x)\right) \rightsquigarrow \tilde{\mathcal{F}}\left(S_{r}(x)\right)$, $R_{S_{r}(x)}^{-1}\left(\tilde{\mathcal{F}}_{r}(x)\right)$ is a singleton, say, $\overline{\mathcal{G}}_{r}(x)$.
2. $\quad i_{r}(x) \in J_{0}\left(\overline{\mathcal{G}}_{r}(x)\right)$.

Intuitively, this lemma says that $\phi(x)[0]$ is determined from some long enough central cylinder of x.

Assignment Lemma

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment
\triangleright Lemma

References

Lemma 7 (Assignment Lemma). If $x \in A$ such that $x \in K_{r^{\prime}} \cap K_{r^{\prime}}^{\prime}$ with $x[0]$ not contained in a block of 0 longer than m, then there is an even r, computable from r^{\prime}, such that

1. With respect to the society $R_{S_{r}(x)}: \overline{\mathcal{G}}\left(S_{r}(x)\right) \rightsquigarrow \tilde{\mathcal{F}}\left(S_{r}(x)\right)$,
$R_{S_{r}(x)}^{-1}\left(\tilde{\mathcal{F}}_{r}(x)\right)$ is a singleton, say, $\overline{\mathcal{G}}_{r}(x)$.
2. $\quad i_{r}(x) \in J_{0}\left(\overline{\mathcal{G}}_{r}(x)\right)$.

Intuitively, this lemma says that $\phi(x)[0]$ is determined from some long enough central cylinder of x.
ϕ commutes with T_{A} and T_{C}. The image of Martin-Löf points under measure-preserving transformations is Martin-Löf random. Hence for $x \in \mathrm{MLR}_{A}$, every co-ordinate of $\phi(x)$ is determined in a layerwise computable way.

```
Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of }
LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma
D
References
```

Thank You.

References

Dynamical Systems
KSentropy
KS theorem
Converse
Setting
Overview
Computability of ϕ LC
Marker
Skeletons
Fillers
Marriage Lemma
Assignment Lemma
References
[Hoc09] Michael Hochman. Upcrossing inequalities for stationary sequences and applications. Annals of Probability, 37(6):2135-2149, 2009.
[Hoy12] Mathieu Hoyrup. The dimension of ergodic random sequences. In Symposium on Theoretical Aspects of Computer Science, pages 567-576, 2012.
[KS79] Michael Keane and Meier Smorodinsky. Bernoulli schemes of the same entropy are finitarily isomorphic. Annals of Mathematics, 109(2):397-406, 1979.
[Orn70] Donald Ornstein. Bernoulli shifts with the same entropy are isomorphic. Advances in Mathematics, 4(3):337352, 1970.

