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Basis theorems.

A basis theorem is a theorem of the form:

For any nonempty effectively closed set

in Euclidean space, at least one member

of the set is “close to being computable”.

Some well known basis theorems are:

• the Low Basis Theorem,

• the R.E. Basis Theorem,

• the Hyperimmune-Free Basis Theorem,

• the Cone Avoidance Basis Theorem,

• the Randomness Preservation Basis Thm.

Less well known is a basis theorem of

Higuchi/Hudelson/Simpson/Yokoyama

on preservation of partial randomness.

Basis theorems are important for applications

in the foundations of mathematics: models of

arithmetic, Scott sets, ω-models of WKL0

and WWKL0, reverse mathematics, etc.

We discuss the possibilities for combining

these basis theorems.
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Three basis theorems.

Let ≤T denote Turing reducibility.

Let ′ denote the Turing jump operator.

The Low Basis Theorem:

For any nonempty effectively closed set Q,

there exists Z ∈ Q such that Z ′ ≤T 0′.

The R.E. Basis Theorem:

For any nonempty effectively closed set Q,

there exists Z ∈ Q such that Z is

of recursively enumerable Turing degree.

We say that Z is hyperimmune-free if

(∀ functions f ≤T Z) (∃ recursive function g)

∀n (f(n) < g(n)).

The Hyperimmune-Free Basis Theorem:

For any nonempty effectively closed set Q,

(∃Z ∈ Q) (Z is hyperimmune-free).

These three basis theorems are due to

Jockusch/Soare 1972.

3



Can we combine these basis theorems?

No. The Jockusch/Soare basis theorems

are known to be “pairwise incompatible.”

1. The Arslanov Completeness Criterion

provides a nonempty effectively closed Q

such that for all r.e. sets A,

if (∃Z ∈ Q) (Z ≤T A) then 0′ ≤T A.

Therefore, the Low Basis Theorem and

the R.E. Basis Theorem cannot be

combined into one basis theorem.

2. It is known that for hyperimmune-free Z

one cannot have 0 <T Z ≤T 0′.

Therefore, the Hyperimmune-Free Basis

Theorem cannot be combined with the

Low Basis Theorem or with the R.E.

Basis Theorem.
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Two more basis theorems.

The Cone Avoidance Basis Theorem:

For any nonempty effectively closed set Q,

if A �T 0 then (∃Z ∈ Q) (A �T Z).

More generally,

if ∀i (Ai �T 0) then (∃Z ∈ Q)∀i (Ai �T Z).

Gandy/Kreisel/Tait, 1960.

Let MLR = {X | X is Martin-Löf random}.
Let MLRZ = {X | X is Martin-Löf random

relative to Z}.

The Randomness Preservation Basis Theorem:

For any nonempty effectively closed set Q,

if X ∈ MLR then (∃Z ∈ Q) (X ∈ MLRZ).

Reimann/Slaman, 2005,

Downey/Hirschfeldt/Miller/Nies, 2005,

Simpson/Yokoyama, 2011.
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More combinations of basis theorems?

It is known that Cone Avoidance can be

combined with the Low Basis Theorem, or

with the Hyperimmune-free Basis Theorem,

but not with the R.E. Basis Theorem. (See

for instance Downey/Hirschfeldt §2.19.3.)

Also, Randomness Preservation cannot be

combined with the Low or the R.E. or the

Hyperimmune-Free Basis Theorem.

Specifically, let Ω ∈ MLR be such that

Ω ≡T 0′. It is known that such reals exist

(Chaitin, Kučera/Gács). We then have:

1. Any Z ≤T 0′ such that Ω ∈ MLRZ

is K-trivial, hence not PA-complete.

(See Chapter 11 of Downey/Hirschfeldt 2010

or Chapter 5 of Nies 2009.)

2. Any hyperimmune-free Z such that

Ω ∈ MLRZ is recursive.

(See Theorem 8.1.18 of Nies 2009.)
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Combining basis theorems.

Low R.E. H.I.F. C.A. R.P.

Low 1 0 0 1 0

R.E. 0 1 0 0 0

H.I.Free 0 0 1 1 0

Cone Av. 1 0 1 1 ???

Rand. Pres. 0 0 0 ??? 1

Remaining question: Can Cone Avoidance

be combined with Randomness Preservation?

The answer to this question involves

LR-reducibility.

Define A ≤LR B ⇐⇒ MLRB ⊆ MLRA. Clearly

A ≤T B implies A ≤LR B, and it is known that

A ≤LR 0 implies A′ ≤T 0′. A major theorem of

Nies is that A ≤LR 0 ⇐⇒ A is K-trivial. See

Nies 2009 or Downey/Hirschfeldt 2010.
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A theorem which combines Cone Avoidance

and Randomness Preservation:

Theorem 1 (Simpson/Stephan, 2013).

For any nonempty effectively closed set Q,

if X ∈ MLR and ∀i (Ai �LR 0 or Ai �T X),

then (∃Z ∈ Q) (X ∈ MLRZ and ∀i (Ai �T Z)).

On the other hand, let Ω ∈ MLR be such that

Ω ≡T 0′. It is well known that such reals exist

(Chaitin, Kučera/Gács).

Theorem 2 (Simpson/Stephan, 2013).

∃ nonempty effectively closed set Q such that

(∀A ≤LR 0) (∀Z ∈ Q) (Ω ∈ MLRZ ⇒ A ≤T Z).

Summary of Theorems 1 and 2:

Cone Avoidance is “almost compatible” with

Randomness Preservation.

The only obstacle to full compatibility is the

existence of non-computable K-trivial cones,

i.e., A ≤LR 0 and A �T 0.
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Proofs of Theorems 1 and 2.

To prove Theorem 1, we use

the Cone Avoidance Basis Theorem,

relativized to X.

To prove Theorem 2, we use

K = prefix-free Kolmogorov complexity.

(1) If Ω ∈ MLRZ then |K(n)−KZ(n)| ≤ O(1)

for infinitely many n. (Miller 2010.)

(2) If Ω ∈ MLRZ and Z is PA-complete,

then there exist a Z-recursive function F

and an infinite Z-recursive set A such that

|K(n)− F(n)| ≤ O(1) for all n ∈ A.

(3) Let C = plain Kolmogorov complexity.

Chaitin 1976 proved: every C-trivial real is

computable. Using F and A as in (2), we

similarly prove: every K-trivial real is ≤T Z.

For details, see Simpson/Stephan 2013.
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An application.

Recall that WKL0 is a subsystem of Z2

which is good for the reverse mathematics

of compactness (Heine-Borel, Arzela-Ascoli,

Hahn-Banach, fixed points, prime ideals, . . . ).

And, WWKL0 is a subsystem of WKL0

which is good for the reverse mathematics

of measure theory (countable additivity,

Monotone and Dominated Convergence

theorems, Vitali Covering Lemma, . . . ).

Let M be a countable ω-model of WWKL0.

By Simpson/Yokoyama 2011, we get

a countable ω-model M1 ⊇ M of WKL0

such that C ∩M 6= ∅ for every M1-coded

closed set C of positive measure.

Call this a good extension of M .

As an application of Theorem 1, we get

two good extensions M1,M2 ⊇ M such that

M = M1 ∩M2.
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Partial randomness.

Let f : {0,1}∗ → [0,∞) be computable.

For S ⊆ {0,1}∗ let wtf(S) =
∑

σ∈S
2−f(σ),

pwtf(S) = sup{wtf(P) | P ⊆ S prefix-free},
and JSK = {X ∈ {0,1}N | ∃n (X↾n ∈ S)}.
We say that X is strongly f-random if

X /∈
∞⋂

i=0

JSiK for all uniformly r.e. Si ⊆ {0,1}∗

such that ∀i (pwtf(Si) ≤ 2−i).

Martin-Löf randomness is the special case

f(σ) = |σ|. In this case pwtf(S) = λ(JSK)
where λ is the fair coin measure on {0,1}N.

Theorem (Partial Randomness Preservation,

Higuchi/Hudelson/Simpson/Yokoyama 2011).

For any nonempty effectively closed set Q,

if X is strongly f-random then (∃Z ∈ Q)

(X is strongly f-random relative to Z).

More generally, if ∀i (Xi is strongly fi-random)

then (∃Z ∈ Q) ∀i (Xi is strongly fi-random

relative to Z).
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Problem: To what extent can we combine

the Partial Randomness Preservation Basis

Theorem with cone avoidance?

Theorem 3 (implicit in H/H/S/Y 2011).

For any nonempty effectively closed set Q,

if ∀i (Ai �LR 0 and Xi is strongly fi-random),

then (∃Z ∈ Q) ∀i (Ai �LR Z and Xi is strongly

fi-random relative to Z).

On the other hand, because of Theorem 2,

we cannot always replace ≤LR by ≤T.

Can we sometimes replace ≤LR by ≤T?

A typical question:

Define X to be strongly half-random ⇐⇒
X is strongly f-random where f(σ) = |σ|/2.

Let Q be nonempty and effectively closed.

If A �T 0 and X is strongly half-random,

does there exist Z ∈ Q such that A �T Z

and X is strongly half-random relative to Z?
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More on partial randomness.

Under mild hypotheses on f , Hudelson proved

the existence of a strong f-random which

does not compute any (strong) g-random,

if g grows significantly faster than f .

Theorem (Hudelson). Let f and g be

computable, convex, unbounded, and

length-invariant such that

f(σ) + 2 log2 f(σ) ≤ g(σ) for all σ.

Then ∃X (X is strongly f-random

and (∀Y ≤T X) (Y is not g-random)).

This generalizes results of Miller

and Greenberg/Miller.

Example. We can find an X such that

K(X↾n) ≥+ √
n and there is no Y ≤T X

such that K(Y ↾n) ≥+ √
n+ log2 n.

Reference. W. M. Phillip Hudelson,

Mass problems and initial segment complexity,

Journal of Symbolic Logic, 79, 2014, 20–44.
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Note. Hudelson’s theorem provides

many natural examples of Muchnik degrees

of mass problems associated with

nonempty Π0
1 subsets of {0,1}N.
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Partial randomness and µ-randomness.

Several authors (Levin/Gács, Day/Miller,

Reimann/Slaman, Day/Reimann, . . . )

have defined what it means for X ∈ {0,1}N
to be µ-random where µ is an arbitrary

Borel probability measure on {0,1}N.

If µ = λ = the fair coin measure on {0,1}N,
then µ-randomness = Martin-Löf randomness.

In general, µ need not be computable.

From now on, let f : {0,1}∗ → [0,∞)

be computable and convex, i.e.,

wtf(σ) ≤ wtf(σ
a〈0〉) + wtf(σ

a〈1〉) for all σ.

This is a mild assumption.

We can characterize strong f-randomness

in terms of µ-randomness:

Effective Capacitability Theorem

(Reimann, Kjos-Hanssen, Simpson/Stephan).

X is strongly f-random ⇐⇒
∃µ (X is µ-random∧∃c∀σ (µ(JσK) ≤ 2c−f(σ))).
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A product theorem for µ× ν-randomness:

Theorem. X ⊕ Y is µ× ν-random ⇐⇒ X is

µ-random and Y is ν-random relative to X,µ.

Combine with Effective Capacitability:

Theorem 4 (Simpson/Stephan 2013).

If X is strongly f-random, and

if Y is Martin-Löf random relative to X,

then X is strongly f-random relative to Y .

Theorem 4 resembles an older result:

Theorem (H/H/S/Y 2011).

If X is strongly f-random and ≤T Y

where Y is Martin-Löf random relative to Z,

then X is strongly f-random relative to Z.

However, we do not know how to deduce

Theorem 4 from H/H/S/Y or vice versa.

Jason Rute has used Effective Capacitability

to prove an Ample Excess Lemma for strong

f-randomness:

Theorem (Rute). If X is strongly f-random,

then
∞∑

n=0

2f(X↾n)−K(X↾n) < ∞.
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Complexity and autocomplexity.

Definition (Kjos-Hanssen/Merkle/Stephan).

X ∈ {0,1}N is complex (autocomplex)

if there exists an unbounded h : N → N
such that K(X↾n) ≥ h(n) for all n, and

h is computable (computable from X).

Theorem (K-H/M/S 2006).

X is complex (autocomplex) ⇐⇒
there exists a DNR function ≤tt X (≤T X).

Theorem (H/H/S/Y 2011).

X is autocomplex (complex) ⇐⇒
X is strongly f-random for some

computable (computable length-invariant)

f such that {f(X↾n) | n ∈ N} is unbounded.

Theorem (Reimann/Slaman, Simpson/Stephan).

1. X is autocomplex relative to some oracle

⇐⇒ ∃µ (X is µ-random∧µ({X}) = 0),

⇐⇒ X is non-computable.

2. X is complex relative to some oracle

⇐⇒ ∃µ (X is µ-random∧∀Y (µ({Y }) = 0)).
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Thank you for your attention!
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