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If a real computes a function which is not dominated by any
computable function, it also computes a weakly 1-generic real.

In other words,
.
......every unbounded real contains an information of a Cohen real

in the computability-theoretic setting.

However, the negation of the above property is consistent in set
theory in the sense that
.

......

if G is a Laver or Miller generic over M |= ZFC,
then M[G] has a function not dominated by any M-function,
whereas M[G] contains no real Cohen over M.
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Indeed, the so-called Laver property implies the failure of a much
weaker property that
.
......every unbounded real contains an information of a nontrivial real

in the sense that
.

......

if G is a Laver or Miller generic over M |= ZFC,
then M[G] has a function not dominated by any M-function,
whereas M[G] contains only M-trivial reals.

Here, a real x ∈ 2ω is M-trivial if
for every partial prefix-free function φ :⊆ 2<ω → 2<ω in M
there exists a partial prefix-free function ψ :⊆ 2<ω → 2<ω in M
such that Kψ(x ↾ n) ≤ Kφ(n) + O(1).
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The Laver property is a key notion in the proof of Richard Laver’s
theorem (1976):
.
...... “the Borel conjecture is independent of ZFC”

where the Borel conjecture (Emile Borel 1919) states that
.
...... “every strong measure zero set X ⊆ R is countable”.

.

......

A notion P of forcing satisfies the Laver property if for every
P-name ġ and for every function f ∈ ωω in the ground model, if

⊩P ġ ∈ ωω & (∀n ∈ ω) ġ(n) < f (n),

then there exists a sequence {Tn}n∈ω ∈ ([ω]<ω)ω with |Tn | ≤ 2n in
the ground model such that

⊩P (∀n ∈ ω) ġ(n) ∈ Tn .

Takayuki Kihara Triviality within and beyond Hyperarithmetic



The Laver property is a key notion in the proof of Richard Laver’s
theorem (1976):
.
...... “the Borel conjecture is independent of ZFC”

where the Borel conjecture (Emile Borel 1919) states that
.
...... “every strong measure zero set X ⊆ R is countable”.

.

......

A notion P of forcing satisfies the Laver property if for every
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Takayuki Kihara Triviality within and beyond Hyperarithmetic



.

......

countable ⇒ null-additive

⇒ E-additive ⇔ meager-additive

⇒ strong measure zero

.
Theorem (K. and Miyabe)
..

......

...1 effectively null-additive = uni -Low (SR) = Schnorr trivial.

...2 effectively E-additive = uni -Low (WR)
= effectively meager-additive = uni -Low (W1G).

...3 effectively strong measure zero = uni -Low (WR, SR).
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.

......

countable ⇒ null-additive

⇒ E-additive ⇔ meager-additive

⇒ strong measure zero

.
Theorem (K. and Miyabe)
..

......

...1 ∆1
1
-null-additive = uni -Low (∆1

1
R) = ∆1

1
-trivial.

...2 ∆1
1
-E-additive = uni -Low (∆1

1
WR)

= ∆1
1
-meager-additive = uni -Low (∆1

1
G).

...3 ∆1
1
-strong measure zero = uni -Low (∆1

1
WR,∆1

1
R).
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.
Main Theorem
..

......

There is a real x ∈ 2ω such that
...1 x has a minimal hyperdegree,
...2 there is a function f ≤h x not dominated by any ∆1

1
function

(hence, x is neither Low (∆1
1
WR) nor Low (∆1

1
R)),

...3 every real y ≤h x is ∆1
1
-trivial (hence, x is uni -Low (∆1

1
R)),

...4 and x is Low (∆1
1
R,∆1

1
WR).

Our main theorem will be proved by using rational perfect forcing over the
ωCK

1
-th rank of Gödel’s constructible universe.
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Indeed, for any M |= KP, we can show an “almost” same property
by using rational perfect forcing over M; where
.

......

if Γ is a Spector pointclass (MΓ |= KP is the companion of Γ),
then we may naturally introduce a reducibility notion ≤∆,
and the least non-∆-computable ordinal λΓ since Γ is normed.

However, the main difficulty is that:
.

......

This forcing is not a set forcing over MΓ.

It is not clear whether a generic real preserves the ordinal λΓ.

At least, we can overcome this difficulty for:
.

......

Γ = Π1
1
,

Γ =“En-computably enumerable”, or

Γ = Σ1
2n
,Π1

2n+1
(under projective determinacy)

by some known “ad-hoc” arguments by G. Sacks, J. Shinoda, and
A. Kechris.
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A normal type 3 functional sJ : [NN → N] → (N × NN) → 2
(superjump operator, 1959) is defined as follows:
for any type 2 functional F ,

sJ(F)(e, x) =

1 if ΦF
e (x) ↓,

0 if ΦF
e (x) ↑

Here, ΦF
e is the e-th computation relative to the functional F

in the sense of Kleene’s finite type computability (S1-S9).

Define E0 := 2E, and En+1 := sJ(En).
.

......

E

0

(Turing jump)

superjump

E

1

(hyperjump)

superjump

E

2

superjump

ω < ωCK
1

< ωE1

1
< ωE2

1
< · · · < ωEω

1
< · · · < ωsJ

1
< λ < ζ < Σ < δ1

2
< ℵ1.
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.

......

Suppose that

Γ = Π1
1
,

Γ =“En-computably enumerable”, or

Γ = ⅁Γ′ is a ⅁-generated reflecting Specter pointclass
satisfying Det(Borel(Γ′)),
(in particular, Γ can be Σ1

2n
or Π1

2n+1
under projective determinacy)

.
Main Theorem
..

......

There is a real x ∈ 2ω such that
...1 x has a minimal ∆-degree,
...2 there is a function f ≤∆ x not dominated by any ∆ function

(hence, x is neither Low (∆-coded WR) nor Low (∆-coded R)),
...3 every real y ≤∆ x is ∆-trivial (hence, x is uni -Low (∆-coded R)),
...4 and x is Low (∆-coded R,∆-coded WR).
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What’s rational perfect forcing PT?
.

......

Each forcing condition is a superperfect ∆1
1
-subtree of ω<ω,

that is, T ⊆ ω<ω is ∆1
1
, and every σ ∈ T has an extension

τ ∈ T having infinitely many immediate successors.

ordered by inclusion.

.

......

PT adds an unbounded real.

PT has the fusion property (hence, it preserves ωCK
1

).

PT has the continuous reading of names
(an abstract analog of N. Luzin’s theorem for any forcing notion).

PT has the one-to-one or constant property
(hence, every generic real has a minimal hyperdegree).

PT has the Laver property
(hence, every generic real hyp-computes only trivial reals).
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R. Laver (1976) originally used the so-called Laver forcing:
.

......

Laver forcing adds a dominating real
without adding a Cohen real nor a random real.

Surprisingly, B. Monin recently announced that
.

......every ∆1
1
-dominant hyp-computes a ∆1

1
-generic/random real.

Consequently, Laver forcing LT does not work over LωCK
1

.

.
Question
..

......
Does Laver forcing LT at the En-level, the ∆1

2
-level, or the

ITTM-level work well?
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Our main result separates “uniform-lowness for ∆1
1
-randomness”

and “[partial continuous]-lowness for ∆1
1
-randomness”.

.
Question
..

......

Can we separate “[partial continuous]-lowness for
∆1

1
-randomness” and “lowness for ∆1

1
-randomness”?

Is there a proper hierarchy of “[Baire α]-lowness for
∆1

1
-randomness”?
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