Triviality within and beyond Hyperarithmetic

Takayuki Kihara

Japan Advanced Institute of Science and Technology (JAIST)

CCR 2014, National University of Singapore June 11, 2014

If a real computes a function which is not dominated by any computable function, it also computes a weakly **1**-generic real. In other words,

every unbounded real contains an information of a Cohen real

in the computability-theoretic setting.

If a real computes a function which is not dominated by any computable function, it also computes a weakly **1**-generic real. In other words,

every unbounded real contains an information of a Cohen real

in the computability-theoretic setting.

However, the negation of the above property is consistent in set theory in the sense that

if **G** is a Laver or Miller generic over $M \models ZFC$, then M[G] has a function not dominated by any *M*-function, whereas M[G] contains no real Cohen over *M*. Indeed, the so-called Laver property implies the failure of a much weaker property that

every unbounded real contains an information of a nontrivial real

in the sense that

if **G** is a Laver or Miller generic over $M \models ZFC$, then M[G] has a function not dominated by any *M*-function, whereas M[G] contains only *M*-trivial reals.

Here, a real $x \in 2^{\omega}$ is *M*-trivial if for every partial prefix-free function $\varphi :\subseteq 2^{<\omega} \to 2^{<\omega}$ in *M* there exists a partial prefix-free function $\psi :\subseteq 2^{<\omega} \to 2^{<\omega}$ in *M* such that $K_{\psi}(x \upharpoonright n) \leq K_{\varphi}(n) + O(1)$. The Laver property is a key notion in the proof of Richard Laver's theorem (1976):

"the Borel conjecture is independent of ZFC"

where the Borel conjecture (Emile Borel 1919) states that

"every strong measure zero set $X \subseteq \mathbb{R}$ is countable".

The Laver property is a key notion in the proof of Richard Laver's theorem (1976):

"the Borel conjecture is independent of ZFC"

where the Borel conjecture (Emile Borel 1919) states that

"every strong measure zero set $X \subseteq \mathbb{R}$ is countable".

A notion \mathbb{P} of forcing satisfies *the Laver property* if for every \mathbb{P} -name \dot{g} and for every function $f \in \omega^{\omega}$ in the ground model, if

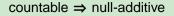
$$\Vdash_{\mathbb{P}} \dot{g} \in \omega^{\omega} \& (\forall n \in \omega) \dot{g}(n) < f(n),$$

then there exists a sequence $\{T_n\}_{n\in\omega} \in ([\omega]^{<\omega})^{\omega}$ with $|T_n| \leq 2^n$ in the ground model such that

 $\Vdash_{\mathbb{P}} (\forall n \in \omega) \ \dot{g}(n) \in T_n.$

countable \Rightarrow null-additive

- \Rightarrow \mathcal{E} -additive \Leftrightarrow meager-additive
- ⇒ strong measure zero



- \Rightarrow \mathcal{E} -additive \Leftrightarrow meager-additive
- ⇒ strong measure zero

Theorem (K. and Miyabe)

• effectively null-additive = uni-Low(SR) = Schnorr trivial.

countable ⇒ null-additive

- \Rightarrow \mathcal{E} -additive \Leftrightarrow meager-additive
- ⇒ strong measure zero

Theorem (K. and Miyabe)

- effectively null-additive = uni-Low(SR) = Schnorr trivial.
- **2** effectively \mathcal{E} -additive = uni-Low(WR)
 - = effectively meager-additive = uni-Low(W1G).

countable ⇒ null-additive

 \Rightarrow \mathcal{E} -additive \Leftrightarrow meager-additive

⇒ strong measure zero

Theorem (K. and Miyabe)

- effectively null-additive = uni-Low(SR) = Schnorr trivial.
- effectively & additive = uni-Low(WR)
 - = effectively meager-additive = uni-Low(W1G).
- effectively strong measure zero = uni-Low(WR, SR).

countable ⇒ null-additive

- \Rightarrow *E*-additive \Leftrightarrow meager-additive
- ⇒ strong measure zero

Theorem (K. and Miyabe)

- Δ_1^1 -null-additive = uni-Low($\Delta_1^1 R$) = Δ_1^1 -trivial.
- **2** Δ_1^1 - \mathcal{E} -additive = uni-Low(Δ_1^1 WR)
 - $= \Delta_1^1$ -meager-additive = uni-Low(Δ_1^1 G).
- Δ_1^1 -strong measure zero = uni-Low(Δ_1^1 WR, Δ_1^1 R).

Main Theorem

There is a real $x \in 2^{\omega}$ such that

- x has a minimal hyperdegree,
- there is a function $f ≤_h x$ not dominated by any Δ¹₁ function (hence, x is neither Low(Δ¹₁WR) nor Low(Δ¹₁R)),
- every real $y \leq_h x$ is Δ_1^1 -trivial (hence, x is uni-Low($\Delta_1^1 R$)),
- and x is $Low(\Delta_1^1 R, \Delta_1^1 WR)$.

Our main theorem will be proved by using rational perfect forcing over the ω_1^{CK} -th rank of Gödel's constructible universe.

Indeed, for any $M \models KP$, we can show an "almost" same property by using rational perfect forcing over M; where

if Γ is a Spector pointclass ($M_{\Gamma} \models KP$ is the companion of Γ), then we may naturally introduce a reducibility notion \leq_{Δ} , and the least non- Δ -computable ordinal λ_{Γ} since Γ is normed.

However, the main difficulty is that:

- This forcing is not a set forcing over M_{Γ} .
- It is not clear whether a generic real preserves the ordinal λ_{Γ} .

At least, we can overcome this difficulty for:

• $\Gamma = \Pi_1^1$, • $\Gamma = {}^{\text{"E}_n\text{-computably enumerable", or}}$ • $\Gamma = \Sigma_{2n}^1, \Pi_{2n+1}^1$ (under projective determinacy)

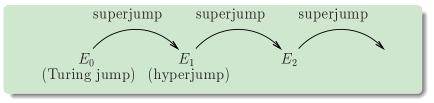
by some known "ad-hoc" arguments by G. Sacks, J. Shinoda, and A. Kechris.

A normal type **3** functional $sJ : [\mathbb{N}^{\mathbb{N}} \to \mathbb{N}] \to (\mathbb{N} \times \mathbb{N}^{\mathbb{N}}) \to 2$ (*superjump operator*, 1959) is defined as follows: for any type **2** functional *F*,

$$sJ(F)(e, x) = \begin{cases} 1 & \text{if } \Phi_e^F(x) \downarrow, \\ 0 & \text{if } \Phi_e^F(x) \uparrow \end{cases}$$

Here, Φ_e^F is the *e*-th computation relative to the functional *F* in the sense of Kleene's finite type computability (S1-S9).

Define $E_0 := {}^2\!E$, and $E_{n+1} := sJ(E_n)$.



$$\omega < \omega_1^{\mathsf{CK}} < \omega_1^{\mathsf{E}_1} < \omega_1^{\mathsf{E}_2} < \dots < \omega_1^{\mathsf{E}_\omega} < \dots < \omega_1^{\mathsf{sJ}} < \lambda < \zeta < \Sigma < \delta_2^1 < \aleph_1$$

Suppose that

- $\Gamma = \Pi_1^1$,
- $\Gamma = E_n$ -computably enumerable", or
- Γ = ∂Γ' is a ∂-generated reflecting Specter pointclass satisfying Det(Borel(Γ')),

(in particular, Γ can be Σ_{2n}^1 or Π_{2n+1}^1 under projective determinacy)

Main Theorem

There is a real $x \in 2^{\omega}$ such that

- **1** \boldsymbol{x} has a minimal $\boldsymbol{\Delta}$ -degree,
- 2 there is a function f ≤_Δ x not dominated by any Δ function (hence, x is neither Low(Δ-coded WR) nor Low(Δ-coded R)),
- **3** every real $y ≤_{\Delta} x$ is Δ-trivial (hence, x is uni-Low(Δ-coded R)),
- and x is Low(Δ -coded R, Δ -coded WR).

- Each forcing condition is a superperfect Δ₁¹-subtree of ω^{<ω}, that is, *T* ⊆ ω^{<ω} is Δ₁¹, and every σ ∈ *T* has an extension τ ∈ *T* having infinitely many immediate successors.
- ordered by inclusion.

- Each forcing condition is a superperfect Δ¹₁-subtree of ω^{<ω}, that is, *T* ⊆ ω^{<ω} is Δ¹₁, and every σ ∈ *T* has an extension τ ∈ *T* having infinitely many immediate successors.
- ordered by inclusion.
- PT adds an unbounded real.

- Each forcing condition is a superperfect Δ₁¹-subtree of ω^{<ω}, that is, *T* ⊆ ω^{<ω} is Δ₁¹, and every σ ∈ *T* has an extension τ ∈ *T* having infinitely many immediate successors.
- ordered by inclusion.
- PT adds an unbounded real.
- **PT** has the fusion property (hence, it preserves ω_1^{CK}).

- Each forcing condition is a superperfect Δ¹₁-subtree of ω^{<ω}, that is, *T* ⊆ ω^{<ω} is Δ¹₁, and every σ ∈ *T* has an extension τ ∈ *T* having infinitely many immediate successors.
- ordered by inclusion.
- PT adds an unbounded real.
- **PT** has the fusion property (hence, it preserves ω_1^{CK}).
- PT has the continuous reading of names (an abstract analog of N. Luzin's theorem for any forcing notion).

- Each forcing condition is a superperfect Δ¹₁-subtree of ω^{<ω}, that is, *T* ⊆ ω^{<ω} is Δ¹₁, and every σ ∈ *T* has an extension τ ∈ *T* having infinitely many immediate successors.
- ordered by inclusion.
- PT adds an unbounded real.
- **PT** has the fusion property (hence, it preserves ω_1^{CK}).
- PT has the continuous reading of names (an abstract analog of N. Luzin's theorem for any forcing notion).
- PT has the one-to-one or constant property (hence, every generic real has a minimal hyperdegree).

- Each forcing condition is a superperfect Δ¹₁-subtree of ω^{<ω}, that is, *T* ⊆ ω^{<ω} is Δ¹₁, and every σ ∈ *T* has an extension τ ∈ *T* having infinitely many immediate successors.
- ordered by inclusion.
- PT adds an unbounded real.
- **PT** has the fusion property (hence, it preserves ω_1^{CK}).
- PT has the continuous reading of names (an abstract analog of N. Luzin's theorem for any forcing notion).
- PT has the one-to-one or constant property (hence, every generic real has a minimal hyperdegree).
- PT has the Laver property

(hence, every generic real hyp-computes only trivial reals).

R. Laver (1976) originally used the so-called Laver forcing:

Laver forcing adds a dominating real without adding a Cohen real nor a random real.

R. Laver (1976) originally used the so-called Laver forcing:

Laver forcing adds a dominating real without adding a Cohen real nor a random real.

Surprisingly, B. Monin recently announced that

every Δ_1^1 -dominant hyp-computes a Δ_1^1 -generic/random real.

Consequently, Laver forcing LT does not work over $L_{\omega_{\perp}^{CK}}$.

Question

Does Laver forcing LT at the ${\rm E}_n$ -level, the Δ^1_2 -level, or the ITTM-level work well?

Our main result separates "uniform-lowness for Δ_1^1 -randomness" and "[partial continuous]-lowness for Δ_1^1 -randomness".

Our main result separates "uniform-lowness for Δ_1^1 -randomness" and "[partial continuous]-lowness for Δ_1^1 -randomness".

Question

- Can we separate "[partial continuous]-lowness for Δ¹₁-randomness"?
- Is there a proper hierarchy of "[Baire α]-lowness for Δ¹₁-randomness"?