Degrees containing no members of thin classes

Wu Guohua

School of Physical and Mathematical Sciences

Nanyang Technological University

CCR 2014

(ロ)、(型)、(E)、(E)、 E) の(の)

- Sacks Density Theorem
 - Sacks Coding Strategy
 - Sacks Preservation Strategy

- Sacks Density Theorem
 - Sacks Coding Strategy
 - Sacks Preservation Strategy
- Fejer's Density Theorem (nonbranching degrees)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Sacks Density Theorem
 - Sacks Coding Strategy
 - Sacks Preservation Strategy
- Fejer's Density Theorem (nonbranching degrees)
- Slaman's Density Theorem (branching degrees)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Sacks Density Theorem
 - Sacks Coding Strategy
 - Sacks Preservation Strategy
- Fejer's Density Theorem (nonbranching degrees)
- Slaman's Density Theorem (branching degrees)
- Ladner-Sasso's Splitting Theorem (c.e. wtt-degrees)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Sacks Density Theorem
 - Sacks Coding Strategy
 - Sacks Preservation Strategy
- Fejer's Density Theorem (nonbranching degrees)
- Slaman's Density Theorem (branching degrees)
- Ladner-Sasso's Splitting Theorem (c.e. wtt-degrees)
- Harrington's Splitting Theorem (low₂ c.e. degrees)

Intervals of Nonhemimaximal Degrees - a nondensity theorem

Hemimaximal sets (jump inversion) and Nonhemimaximal degrees

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Intervals of Nonhemimaximal Degrees - a nondensity theorem

Hemimaximal sets (jump inversion) and Nonhemimaximal degrees

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Intervals of nonhemimaximal degrees

- We are talking about Π_1^0 -classes of the Cantor space.
- Jockusch-Soare: Low basis theorem
- ► Grozek-Slaman:

There exists a nonempty $\Pi^0_1\text{-}class$ with all members bounding minimal degrees.

Minimal Π_1^0 -Classes and Thin Π_1^0 -Classes

► A Π_1^0 -class *P* is *minimal* if for every Π_1^0 -subclass *Q*, either *Q* is finite or $P \setminus Q$ is finite.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• A Π_1^0 -class P is *thin* if every Π_1^0 -subclass Q of P is clopen in P.

Minimal Π_1^0 -Classes and Thin Π_1^0 -Classes

- ► A Π_1^0 -class *P* is *minimal* if for every Π_1^0 -subclass *Q*, either *Q* is finite or $P \setminus Q$ is finite.
- A Π_1^0 -class P is *thin* if every Π_1^0 -subclass Q of P is clopen in P.

Theorem [CDJS] Let *P* be a Π_1^0 -class. Then

- ▶ If *P* is minimal and has an incomputable member, then *P* is thin.
- If P is thin and the Cantor-Bendixson derivative D(P) is a singleton, then P is minimal.

Degrees of members of thin Π_1^0 -classes

Theorem [CDJS] Let P be a thin Π_1^0 -class and $A \in P$. Then $A' \leq_T A \oplus \varphi''$.

Thus no thin Π_1^0 -class can have a member $A \ge_T \varphi''$.

Degrees of members of thin Π_1^0 -classes

Theorem [CDJS] Let P be a thin Π_1^0 -class and $A \in P$. Then $A' \leq_T A \oplus \varphi''$.

Thus no thin Π_1^0 -class can have a member $A \ge_T \varphi''$.

Theorem [CDJS] ${\bf 0}'$ contains a Π^0_1 set as a member of a thin $\Pi^0_1\text{-class.}$

Degrees of members of thin Π_1^0 -classes

Theorem [CDJS] Let P be a thin Π_1^0 -class and $A \in P$. Then $A' \leq_T A \oplus \varphi''$.

Thus no thin Π_1^0 -class can have a member $A \ge_T \varphi''$.

Theorem [CDJS] $\mathbf{0}'$ contains a Π_1^0 set as a member of a thin Π_1^0 -class.

Theorem [CDJS] - a weak density

For any c.e. sets $A \leq_T C$, there is a set B with $A \leq_T B \leq_T C$ and B is a member of a minimal (and hence thin) Π_1^0 -class.

Degrees containing no members of thin Π_1^0 -classes

Theorem [CDJS]

There is a c.e. set C such that no set $A \equiv_T C$ belongs to any thin Π_1^0 -class.

Degrees containing no members of thin Π_1^0 -classes

Theorem [CDJS]

There is a c.e. set C such that no set $A \equiv_T C$ belongs to any thin Π_1^0 -class.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Observation [DWY]

Degrees containing members of thin classes are not closed under join.

Construct a single set C such that the degree of C does not contain any member of thin class.

Construct a single set C such that the degree of C does not contain any member of thin class.

(ロ)、(型)、(E)、(E)、 E) の(の)

C is constructed to meet the following requirements:

 \mathcal{R}_e : if $\Phi_e(C)$ and $\Psi_e(\Phi_e(C))$ are both total, then

Construct a single set C such that the degree of C does not contain any member of thin class.

C is constructed to meet the following requirements:

 \mathcal{R}_e : if $\Phi_e(C)$ and $\Psi_e(\Phi_e(C))$ are both total, then

- either $C \neq \Psi_e(\Phi_e(C))$, or
- $\Phi_e(C)$ is not in $[T_e]$, or
- [T_e] is not thin.

Construct a single set C such that the degree of C does not contain any member of thin class.

C is constructed to meet the following requirements:

 \mathcal{R}_e : if $\Phi_e(C)$ and $\Psi_e(\Phi_e(C))$ are both total, then

- either $C \neq \Psi_e(\Phi_e(C))$, or
- $\Phi_e(C)$ is not in $[T_e]$, or
- [*T_e*] is not thin.

We will construct a subtree S_e of T_e such that if $\Phi_e(C)$ and $\Psi_e(\Phi_e(C))$ are both total, with $C = \Psi_e(\Phi_e(C))$, and $\Phi_e(C)$ a branch in $[T_e]$, then $[S_e]$ witnesses that $[T_e]$ is not thin.

Construct a single set C such that the degree of C does not contain any member of thin class.

C is constructed to meet the following requirements:

 \mathcal{R}_e : if $\Phi_e(C)$ and $\Psi_e(\Phi_e(C))$ are both total, then

- either $C \neq \Psi_e(\Phi_e(C))$, or
- $\Phi_e(C)$ is not in $[T_e]$, or
- $[T_e]$ is not thin.

We will construct a subtree S_e of T_e such that if $\Phi_e(C)$ and $\Psi_e(\Phi_e(C))$ are both total, with $C = \Psi_e(\Phi_e(C))$, and $\Phi_e(C)$ a branch in $[T_e]$, then $[S_e]$ witnesses that $[T_e]$ is not thin.

Compare it with the construction of nonhemimaximal degrees.

Subrequirements

- $\mathcal{R}_{e,i}$: There exist an interval $(x_{e,i}, z_{e,i})$ such that $[\mathcal{T}_e]$ contains a branch extending $\Phi_e(C) \upharpoonright x_{e,i}$, but not $\Phi_e(C) \upharpoonright z_{e,i}$.
 - ▶ If *i* is even, then all nodes in T_e extending $\Phi_e(C) \upharpoonright x_{e,i}$, but not $\Phi_e(C) \upharpoonright z_{e,i}$, will be *put* on S_e .
 - ▶ If *i* is odd, then all nodes in T_e extending $\Phi_e(C) \upharpoonright x_{e,i}$, but not $\Phi_e(C) \upharpoonright z_{e,i}$, will be *terminated* on S_e .

So, if all the $\mathcal{R}_{e,i}$ -subrequirements are satisfied, then $[S_e]$ is a subclass of $[T_e]$, containing, and also missing, infinitely many branches of $[T_e]$.

Subrequirements

- $\mathcal{R}_{e,i}$: There exist an interval $(x_{e,i}, z_{e,i})$ such that $[\mathcal{T}_e]$ contains a branch extending $\Phi_e(C) \upharpoonright x_{e,i}$, but not $\Phi_e(C) \upharpoonright z_{e,i}$.
 - ▶ If *i* is even, then all nodes in T_e extending $\Phi_e(C) \upharpoonright x_{e,i}$, but not $\Phi_e(C) \upharpoonright z_{e,i}$, will be *put* on S_e .
 - ▶ If *i* is odd, then all nodes in T_e extending $\Phi_e(C) \upharpoonright x_{e,i}$, but not $\Phi_e(C) \upharpoonright z_{e,i}$, will be *terminated* on S_e .

So, if all the $\mathcal{R}_{e,i}$ -subrequirements are satisfied, then $[S_e]$ is a subclass of $[T_e]$, containing, and also missing, infinitely many branches of $[T_e]$.

• The crucial point is after one region is terminated, $\Phi_e(C)$ will never come back to this region again, in the remainder of the construction.

Subrequirements

- $\mathcal{R}_{e,i}$: There exist an interval $(x_{e,i}, z_{e,i})$ such that $[\mathcal{T}_e]$ contains a branch extending $\Phi_e(C) \upharpoonright x_{e,i}$, but not $\Phi_e(C) \upharpoonright z_{e,i}$.
 - ▶ If *i* is even, then all nodes in T_e extending $\Phi_e(C) \upharpoonright x_{e,i}$, but not $\Phi_e(C) \upharpoonright z_{e,i}$, will be *put* on S_e .
 - ▶ If *i* is odd, then all nodes in T_e extending $\Phi_e(C) \upharpoonright x_{e,i}$, but not $\Phi_e(C) \upharpoonright z_{e,i}$, will be *terminated* on S_e .

So, if all the $\mathcal{R}_{e,i}$ -subrequirements are satisfied, then $[S_e]$ is a subclass of $[T_e]$, containing, and also missing, infinitely many branches of $[T_e]$.

- The crucial point is after one region is terminated, $\Phi_e(C)$ will never come back to this region again, in the remainder of the construction.
- ► Threading strategy, for the consistency between *R*-strategies.

Upwards Density of NONTHIN degrees

A joint work with Downey and Yang.

Upwards Density of NONTHIN degrees

A joint work with Downey and Yang.

▶ Fix *B* as an incomplete c.e. set.

Construct a c.e. set C such that the degree of $B \oplus C$ does not contain any member of thin classes.

Upwards Density of NONTHIN degrees

A joint work with Downey and Yang.

▶ Fix *B* as an incomplete c.e. set.

Construct a c.e. set C such that the degree of $B \oplus C$ does not contain any member of thin classes.

If $B \oplus C$ has NONTHIN degree, then it is incomplete, as CDJS already proved that $\mathbf{0}'$ contains elements of thin classes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Requirements

C is constructed to meet the following requirements:

 \mathcal{R}_e : if $\Phi_e(B \oplus C)$, $\Psi_e(\Phi_e(B \oplus C))$ and $\Theta_e(\Phi_e(B \oplus C))$ are all total, then

- either $C \neq \Psi_e(\Phi_e(B \oplus C))$, or
- $B \neq \Theta_e(\Phi_e(B \oplus C))$, or
- $\Phi_e(B \oplus C)$ is not in $[T_e]$, or
- ▶ [*T_e*] is not thin.

Requirements

C is constructed to meet the following requirements:

 \mathcal{R}_e : if $\Phi_e(B \oplus C)$, $\Psi_e(\Phi_e(B \oplus C))$ and $\Theta_e(\Phi_e(B \oplus C))$ are all total, then

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- either $C \neq \Psi_e(\Phi_e(B \oplus C))$, or
- $B \neq \Theta_e(\Phi_e(B \oplus C))$, or
- $\Phi_e(B \oplus C)$ is not in $[T_e]$, or
- $[T_e]$ is not thin.

Concerns:

Requirements

C is constructed to meet the following requirements:

 \mathcal{R}_e : if $\Phi_e(B \oplus C)$, $\Psi_e(\Phi_e(B \oplus C))$ and $\Theta_e(\Phi_e(B \oplus C))$ are all total, then

- either $C \neq \Psi_e(\Phi_e(B \oplus C))$, or
- $B \neq \Theta_e(\Phi_e(B \oplus C))$, or
- $\Phi_e(B \oplus C)$ is not in $[T_e]$, or
- ▶ [*T_e*] is not thin.

Concerns:

- Divergence
- Threading strategy
- ► B's change can bring $\Phi_e(B \oplus C)$ into a terminated region. What shall we do?

Full density: True.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Full density: True.

Thanks!