# Some applications of higher Demuth's theorem

Liang Yu Institute of mathematics Nanjing University

June 16, 2014

(日) (日) (日) (日) (日) (日) (日)

## Demuth's theorem

#### Theorem (Demuth (1988))

If  $r_0$  is Martin-Löf random and  $z \leq_{tt} r_0$  is nonrecursive, then  $z \equiv_T r_1$  for some Martin-Löf random real  $r_1$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

## The philosophy of Demuth's theorem

Demuth's theorem is a kind of formalization of the following thesis

"Any information computed by a random oracle is either trivial or useless."

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

## The philosophy of Demuth's theorem

Demuth's theorem is a kind of formalization of the following thesis

"Any information computed by a random oracle is either trivial or useless."

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

However, the appearance of the truth table reduction in the theorem makes the theorem a little imperfect.

## Higher Demuth's theorem

#### Theorem (Chong and Y.)

If  $r_0$  is  $\Pi_1^1$ -random and  $z \leq_h r_0$  is nonhyperarithmetic, then  $z \equiv_h r_1$  for some  $\Pi_1^1$  random real  $r_1$ .

The partial relativization of the theorem can be read as: If  $r_0$  is  $\Pi_1^1(x)$ -random and  $z \leq_h r_0$  is nonhyperarithmetic, then  $z \equiv_h r_1$  for some  $\Pi_1^1(x)$  random real  $r_1$ .

(日) (日) (日) (日) (日) (日) (日)

## Sacks's theorem

(日) (日) (日) (日) (日) (日) (日)

Given a set of real A, let  $\mathcal{U}_h(A) = \{y \mid \exists x \in A(y \ge_h x)\}.$ 

Theorem (Sacks (1969))

If x is no hyperarithmetic, then  $U_h(\{x\})$  is null.

## Kripke's theorem

Sacks's theorem was greatly strengthened by Kripke.

#### Theorem (Kripke (1969))

If A is null, closed under hyperarithmetic equivalence relation and does not contain a hyperarithmetic real, then  $U_h(A)$  is null.

#### Proof.

Suppose not. Then fix a real *x* so that *A* does not contain any  $\Pi_1^1(x)$ -random real. But  $\mathcal{U}_h(A)$  must contain such a real. Relativizing the higher Demuth's theorem to *x*, *A* must contain a  $\Pi_1^1(x)$ -random real, a contradiction.

## Antichains of hyperdegrees

An antichain of hyperdegrees is a set of hyperdegrees so that it has at least two elements and any two of them are incomparable.

#### Theorem (Y.)

- If A has positive measure, then A contains two reals x ≤<sub>m</sub> y but x ≤<sub>h</sub> y.
- There exists a maximal nonmeasurable antichain of hyperdegrees.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

## A null maximal antichain of hyperdegrees.

#### Theorem (Chong and Y.)

There is a null maximal antichain A of hyperdegrees. Actually every  $\Pi_1^1$  random real is strictly hyperarithmetically below some real in A.

Note that any nontrivial upper cone of hyperdegrees does not contain a maximal antichain.

・ コット (雪) ( 小田) ( コット 日)

## The proof

- If g is sufficiently generic, then g form a minimal pair (in the hyperdegree sense) with any Π<sup>1</sup><sub>1</sub>-random reals;
- For any hypdegree *x*, there are 2<sup>ℵ0</sup> many generic reals {*g<sub>α</sub>*}<sub>α</sub> which mutually form an exact pair over the low cone of *x*.

(日) (日) (日) (日) (日) (日) (日)

**③** By induction and try to avoid  $\Pi_1^1$ -random reals.

## Some additional results.

#### Proposition

- Given a set A of antichain of hyperdegrees. If U<sub>h</sub>(A) is measurable, then it must be null.
- There is a nonmeasurable set A of hyperdegrees so that *U<sub>h</sub>(A)* is conull.

・ロト・日本・日本・日本・日本

## Measure theory of Turing degrees

Given a set of reals A, let  $U_T(A) = \{y \exists x \in A(y \ge_T x)\}.$ 

Theorem (Sacks (1963); de Leeuw, Moore, Shannon, and Shapiro (1956))

If x is not recursive, then  $U_T(\{x\})$  is null.

#### Theorem (Kurtz (1981) and Kautz (1991))

There is a null set A of Turing degrees which does not contain **0** so that  $U_T(A)$  is conull.

## Antichains of Turing degrees

There is nonmeasurable maximal antichain of Turing degrees.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 If A is antichain of Turing degrees so that U<sub>T</sub>(A) is measurable, then so is A.

## Jockusch's question

#### Question (Jockusch (2006))

- Is there a measurable maximal antichain of Turing degrees?
- Is there a maximal antichain A of Turing degrees so that *U*<sub>T</sub>(A) is null?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The first question can be easily answered under CH.

## Some classical genericity result (1)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Theorem (Kurtz and Kautz)

Every 2-random real is REA.

#### Theorem (Wang (2011))

If x is REA, then x is r.e. above some 1-generic real g.

## Some classical genericity result (2)

#### Lemma (Chong and Y.)

If x is REA, then for any  $n \ge 1$ , there are n-many Turing incomparable 1-generic reals  $\{g_i\}_{i\le n}$  so that for any  $i \ne j \le n$ ,  $g_i \oplus g_j \equiv_T x$ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

## The main theorem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Theorem (Chong and Y.)

There is a maximal antichain A of Turing degrees so that  $\mu(U_T(A)) = 1$ .

## The proof

- Fix a null maximal antichain B of hyperdegrees so that each Π<sup>1</sup><sub>1</sub>-random real is hyperarithmetically below some element in B;
- Putting all the previous genericity results together and by an induction locally working below some element in *B*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

## Additional results

#### Theorem (Chong and Y.)

- There is a null maximal antichain A of Turing degrees so that μ(U<sub>T</sub>(A)) = 0.
- There is a null maximal antichain A of Turing degrees so that  $U_T(A)$  is not measurable.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Demuth's theorem on *L*-degrees

#### Theorem (Forklore)

If  $r_0$  is random over L and  $z \in L[r_0] \setminus L$ , then  $z \equiv_L r_1$  for some L-random real  $r_1$ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

So random forcing only adds random reals.

## Kripke's results in L

#### Theorem

Suppose that for any real x,  $\omega_1^{L[x]}$  is countable. The for any null set A of constructible degrees not containing  $\mathbf{0}_L$ ,  $\mathcal{U}_L(A)$  is null.

# A question

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

#### Question

Is there a  $\Pi_1^0$  set of maximal antichain of Turing degrees?

Thank you

