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Setting

• Σ a closed Riemann surface of genus ≥ 2 with canonical bundle K .

Definition

An -Higgs bundle over Σ is a pair (E , φ), where

E→Σ is a rank holomorphic vector bundle with

φ ∈ H0(Σ,End(E)⊗ K ) with (The Higgs field)

φ : E→E ⊗ K

Moduli space of polystable SL(n,C)-Higgs bundles MHiggs(SL(n,C)).

U(1) �MHiggs(SL(n,C)),

λ · [E , φ] = [E , λφ]

[E , φ] is a fixed point ⇔ ∀ λ ∈ U(1) ∃ gλ : E→E with

gλφg−1
λ = λφ.
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Example

This is a blank frame
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Theorem (Hitchin, Simpson)

Let (E , φ) be a stable SL(n,C)-Higgs bundle,

then there exists a unique
metric H on E solving the Higgs bundle equations (HBE){

FH + [φ, φ∗H ] = 0

∇01

Hφ = 0

Conversely, if (AH , φ) solves the (HBE) then the Higgs bundle (∇01
AH
, φ) is

polystable.

Given (AH , φ), we get new connection AH + φ+ φ∗H

(AH , φ) solves HBE =⇒ AH + φ+ φ∗H is a flat SL(n,C)-connection.

MHiggs(SL(n,C))

∼=

−→ Hom+(π1(Σ),SL(n,C))/SL(n,C)

Corlette’s Theorem for Harmonic metrics on flat bundles

Σ̃→SL(n,C)/SU(n)
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Hitchin Representations and SL(n,R) Higgs bundles

Fuch(Σ) = {ρ : π1(Σ)→ PSL(2,R)| ρ is discrete and faithful}
Fuch(Σ)←→ Teich(Σ) ∼= C3(g−1)

Fuch(Σ) ⊂ Hom(π1(Σ),PSL(2,R))/PSL(2,R) is 2 connected components.

Using the the unique irreducible representation PSL(2,R) ↪→ PSL(n,R),
we obtain a distinguished component of

Hom(π1(Σ),PSL(n,R))/PSL(n,R).

π1(Σ)

Fuchsian %%

ρ // PSL(n,R)

PSL(2,R)
?�

OO

Can do the same thing for PSP(2n,R).
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Higgs bundles for some G ’s as vector bundles

A SL(n,C)-Higgs bundle is a pair (E , φ) where

E→Σ rank n holomorphic vector bundle with det(E) = O
φ ∈ H0(Σ,End(E )⊗ K ) with Tr(φ) = 0.

Definition

A SL(n,R)-Higgs bundle is a triple (E ,Q, φ) where

E→Σ is a rank n-holomorphic vector bundle with det(E) = O

Q : E
∼=−→E ∗ is an orthogonal structure

φ ∈ H0(Σ,End(E )⊗ K ) with Tr(φ) = 0 and φTQ = Qφ.

A SP(2n,R)-Higgs bundle is a triple (V , β, γ) where

V→Σ is a holomorphic rank n bundle

β : V ∗→V ⊗ K and γ : V→V ∗ ⊗ K with βT = β and γT = γ.

As a SL(2n,C) bundle (V ⊕ V ∗,

(
0 β
γ 0

)
).
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Hitchin’s parameterization of Hitchin Component

This is a blank frame
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The splitting

K
n−1

2 ⊕ K
n−3

2 ⊕ · · · ⊕ K−
n−3

2 ⊕ K−
n−1

2

Is a holomorphic splitting.

The metric solving (HBE) is not necessarily a metric on these line bundles.

Compatiblity Question

Let (E , φ) be a stable SL(n,C)-Higgs bundle with holomorphic splitting

E = E1 ⊕ E2 ⊕ · · · ⊕ E`

With respect to this splitting φij : Ej→Ei ⊗ K .
Question: When is the harmonic metric solving the Higgs bundle equations
compatible with the holomorphic splitting?

SL(n,C)/S(U(a1)× · · · × U(a`))

��
Σ̃

H
//

44

SL(n,C)/SU(n)
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A Necessary Condition:

If H = H1 ⊕ · · · ⊕ H`, and FH + [φ, φ∗H ] = 0

then [φ, φ∗H ] must be
diagonal.

Sufficient condition: Fixed points of U(1) action

(E , φ) ∼= (E , λφ) for all λ ∈ U(1), (K -Twisted) Holomorphic chain:

(E , φ) = E1
φ1

// E2
φ2

// · · ·
φ`−2

// E`−1
φ`−1

// E`

as a matrix

φ =


0
φ1 0

φ2 0
. . .

. . .

φ`−1 0



Lemma

If λ ∈ U(1) and gλ acts by (E , φ) 7→ (E , λφ) then gλ is unitary.
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Theorem (C.)

(Simpson)

Let (E , φ) be a stable SL(n,C)-Higgs bundle and ζ
k

= e
2πi
k then

(E , φ) ∼= (E , ζ
k
φ) if and only if

(E , φ) is fixed by all of U(1) or,

E ∼= E1 ⊕ E2 ⊕ · · · ⊕ Ek and

φ =


0 φk
φ1 0

φ2 0
. . .

. . .

φk−1 0


φj : Ej→Ej+1 ⊗ K is nonzero for all j .
Furthermore, the harmonic metric splits as H = H1 ⊕ · · · ⊕ Hk .

As a twisted quiver bundle,

E1

φ1

55 E2

φ2

55 E3

φ3

44 · · ·
φk−2

22 Ek−1
φk−1

44 Ek

φk

ss
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Remarks

k=2

When k = 2

the action is (E , φ) 7−→ (E ,−φ). (Involution)
The theorem says fixed points should be of the following form

E1

φ1

;; E2

φ2

zz

These are SU(p, q)-Higgs bundles.

k=n

When k = n then the metric splits on line bundles.
Baraglia studied certain families of Higgs bundles in the Hitchin
component in his thesis. Cyclic Higgs bundles.
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Theorem (C.)

(Simpson)
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Proof

This is a blank slide
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Examples of Fixed points

As a twisted quiver bundle

φ =

K
n−1

2 K
n−3

2 K
n−5

2 · · · K−
n−5

2 K−
n−3

2 K−
n−1

2

If we only have a qn then fixed by 〈ζn〉. This was proven by Baraglia in his
thesis.

MH(SL(n,C)) //
n⊕

j=2
H0(Σ,K j)

[E , λφ] � //

(λ2p2(φ), λ3p3(φ), . . . , λnpn(φ))

Lemma

In the Hitchin component, (E ,Q, φ) is a fixed point of 〈ζ
k
〉 if and only if

(E ,Q, φ) = sh(q2, . . . , qn)

with qj = 0 for j 6= 0 mod k.
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Theorem (C.)

Let (V , β, γ) be a SP(2n,R)-Higgs bundle that is stable and simple then
(V , ζkβ, ζkγ) ∼= (V , β, γ) if and only if (V , β, γ) is fixed by all of U(1) or

k is even and

V = V1 ⊕ V2 ⊕ V3 ⊕ · · · ⊕ V k
2
−1 ⊕ V k

2

β =


β1

β2

. .
.

βT2
βT1

 γ =



γ1

γ2

γ3

. .
.

γT3
γT2


Furthermore the metric solving the Higgs bundle equations splits as

H = H1 ⊕ · · · ⊕ H k
2
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Let [E ,Q, φ] be a stable simple SL(n,R)-Higgs bundle

then
[E ,Q, φ] = [E ,Q, ζ

k
φ] if and only if [E ,Q, φ] fixed by all of U(1) or

1. E ∼= E1 ⊕ E2 ⊕ · · · ⊕ Ek−1 ⊕ Ek

Q =


Q1

Q2

. .
.

QT
2

 φ =


0 φk
φ1 0
0 φ2 0

. . .
. . .

φk−1 0


with φTQ = Qφ.

2. n-even, E ∼= E1 ⊕ · · · ⊕ Ek

Q =


Q1

Q2

. .
.

QT
1

 φ =


0 φk
φ1 0
0 φ2 0

. . .
. . .

φk−1 0


with φTQ = Qφ.

Furthermore, the metric splits as H1 ⊕ · · · ⊕ Hk and satisfies

det(H) = 1 and HTQH = Q.
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〈ζ
n−1
〉 Fixed points in the Hitchin component

This is a blank slide
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An application or two

Brian Collier (UIUC) Higgs bundles and fixed points July 14, 2014 19 / 26



Simplification of Equations and Asymptotics

Lemma

Let (E ,Q, φ) in the Hitchin component be a fixed point of 〈ζn〉 or 〈ζn−1〉
then

the metric solving the Higgs bundle equations splits as a direct sum

h1 ⊕ h2 ⊕ · · · ⊕ h−1
2
⊕ h−1

1

on the line bundles

K
n−1

2 ⊕ K
n−3

2 ⊕ · · · ⊕ K−
n−3

2 ⊕ K−
n−1

2

The adjoint of φ is given by φ∗ = H−1φ̄TH.
Since the metric splits as h1 ⊕ h2 ⊕ · · · ⊕ h−1

2
⊕ h−1

1
,

φ∗ =


0 h−1

1
h2

h−1
2

h3

. . .

h1h2 q̄n−1 0 h−1
1

h2

0 h1h2 q̄n−1 0

 φ∗ =


0 h−1

1
h2

h−1
2

h3

. . .

0 h−1
1

h2

h2
1
q̄n 0
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Proposition (C.-Li)

For (E ,Q, φ) = sh(0, . . . , qn−1, 0) the Higgs bundle equations
FAH

+ [φ, φ∗H ] are equivalent to



Fh1 + h1h2qn−1 ∧ q̄n−1 − h−1
1 h2 = 0

Fh2 + h1h2qn−1 ∧ q̄n−1 + h−1
1 h2 − h−1

2 h3 = 0

Fhj + h−1
j−1hj − h−1

j hj+1 = 0 2 < j <
n

2
Fh + h−1h − h− = 0

when n is

In both cases we will scale the differential by a real parameter t. We study

the asymptotics of the harmonic metric

the asymptotics of the corresponding flat connection.
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Proposition (C.-Li)

For (E ,Q, φ) = sh(0, . . . , tqn−1, 0) the Higgs bundle equations
FAH
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h n
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Metric Theorem

Theorem (C.-Li)

Let (E , φ) be a Higgs bundle in the SL(n,R)-Hitchin component with

φ = ẽ1 + tqn−1en−2 or φ = ẽ1 + tqnen−1,

for t ∈ R. Then, for all p ∈ Σ away from the zeros of qn−1 or qn, as
t →∞, the metric solving the Higgs bundle equations has the following
form:

1. For φ = ẽ1 + qn−1en−2, the metric on K
n+1−2j

2 is

hj(p) =

(t|qn−1(p)|)−
n+1−2j
n−1 (1 + O(t−

2
n−1 )) for j = 1 and j = n

(2t|qn−1(p)|)−
n+1−2j
n−1 (1 + O(t−

2
n−1 )) for 1 < j < n

2. For φ = ẽ1 + qnen−1, the metric on K
n+1−2j

2 is

hj(p) = t−
n+1−2j

2 |qn(p)|−
n+1−2j

n (1 + O(t−
2
n )) for all j
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2. For φ = ẽ1 + qnen−1, the metric on K
n+1−2j

2 is

hj(p) = t−
n+1−2j

2 |qn(p)|−
n+1−2j

n (1 + O(t−
2
n )) for all j

Brian Collier (UIUC) Higgs bundles and fixed points July 14, 2014 22 / 26



Metric Theorem

Theorem (C.-Li)

Let (E , φ) be a Higgs bundle in the SL(n,R)-Hitchin component with
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Toledo invariant for SP(2n,R)

For SP(2n,R)-Higgs bundles, the deg(V ) provides a topological invariant.

If deg(V ) 6= deg(V ′) then all Higgs bundles (V , β, γ) and (V ′, β′, γ′) are
in different connected components.

Facts

Let (V , β, γ) be a SP(2n,R) Higgs bundles

|deg(V )| ≤ 2g − 2

For |deg(V )| 6= 2g − 2 the space of SP(2n,R)-Higgs bundles is
connected.

If |deg(V )| = 2g − 2 the corresponding representations are
Geometrically interesting (discrete and faithful, Anasov,..)

For deg(V ) = 2g − 2 the γ : V→V ∗ ⊗ K is an isomorphism.

Get new invariants from K 2-twisted Higgs pairs (Cayley partners)
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Examples in maximal SP(4,R) components

Bradlow, Garćıa-Prada, Gothen

For SP(4,R) with deg(V ) = 2g − 2 (γ is an iso) has many connected
components, and

2g − 2 of the components are given by the following
data:

Let N→Σ be a holomorphic line bundle with
g − 1 ≤ deg(N) ≤ 3g − 3

(V , β, γ) =

(
N ⊕ N−1K ,

(
β1 q2

q2 β2

)
,

(
0 1
1 0

))

When q2 = 0,

(
N ⊕ N−1K ,

(
β1 0
0 β2

)
,

(
0 1
1 0

))
is a fixed point of 〈ζ4〉.

So the metric solving the Higgs bundle equations splits as h1 ⊕ h2 on

N ⊕ N−1K .
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Since the metric splits, the Higgs bundle equations simplify to:

Fh1 + h2
1β1 ∧ β̄1 − h−1

1 h2 = 0

Fh2 + h−1
1 h2 − h−2

2 β2 ∧ β̄2 = 0

Similar to Hitchin component, scale by real parameter t.
Study asymptotics of metric and corresponding flat connection...

Theorem (Labourie)

Let ρ : π1(Σ)→SP(4,R) be a maximal representation, then there exists a
conformal structure on Σ so that the q2 = 0.

Baraglia used this in his thesis to give description of SP(4,R)-Hitchin
component in terms of 4-cyclic Higgs bundles.
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Thank you
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