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Instantons vs. framed sheaves

Fix the topological type n ∈ H4(S4, π3(SU(r)) = Z of P
SU(r)−−−→ S4

Framed instantons: pairs (∇,Φ)

∇ a connection on P such that ∗F∇ = −F∇

Φ ∈ Px0

One builds a moduli space of such pairs by considering only gauge
transformations that fix the framing

Gauge equiv. classes of framed SU(r)-instantons on S4 are in a
one-to-one correspondence with isom. classes of rank r
holomorphic bundles on P2, framed on a “line at infinity” `∞
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P2

framing
lineP1

��

� � // P3

π
��

x
framing
point

� � // S4

twistor
fibration

Instantons on S4 correspond to holomor-
phic bundles on P3 that are holomorphi-
cally trivial on the fibers of π (“twistor
lines”)

Choose a P2 ⊂ P3 going thru the twistor
line over x0 ∈ S4 (which becomes the
framing line `∞)

⇒ get a holomorphic bundle on P2 framed on `∞.

R4

{
conformal cpt. S4 → framed instantons

projective cpt. P2 → framed hol. bundles

This may be extended to a correspondence between ideal framed
instantons on S4 and framed torsion-free coherent sheaves on P2.
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Ideal instantons

For any choice of m points x1, . . . , xm in S4, (0 ≤ m ≤ n) allow for
the degenerations

‖F∇‖2(xi ) = 8π2δ(xi )

⇒ (Singular) moduli space M0(r , n) of ideal framed instantons

Mloc.fr.
0 (r , n)

(Donaldson)

� � //M(r , n)

π

��

 Moduli space of torsion-
free framed sheaves on P2

M
reg
0 (r , n) �

� //M0(r , n)
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ALE spaces

Finite group Γ acting on C2 as a subgroup of SU(2)

XΓ = Ĉ2/Γ

with a hyperkähler metric which is approx. Euclidean at infinity

Γk =


e2πin/k 0

0 e−2πin/k

 , n = 0, . . . , k − 1

 ' Zk

Xk = Ĉ2/Γk

(ALE space of type Ak−1)
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Stacky compactifications

Xk is a toric variety

X̄k = Xk qD∞ normal projective toric compactification of Xk . It is
smooth only for k = 1, 2, in which cases it coincides with P2 or F2.

Want to have this situation

D∞
� � //

rk
��

Xk

πk
��

D∞
� � // X̄k

where Xk is a smooth proj. DM stack

X̄k is a coarse moduli space for Xk

D∞
rk−→ D∞ is essentially a µk -gerbe

πk is an isomorphism away from D∞
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Encoding the behavior at infinity

Behavior at
infinity of the

instantons
on Xk

Representations
of

π1(S3/Γ) ' Γ

Suitable choice
of the framing

sheaf on
D∞ ⊂ Xk

According to a theorem of Bando,
if X̄k is a smooth compactification
of Xk obtained by adding a divisor
D (with positive normal bundle),

bundles on X̄k framed on D
correspond to instantons on Xk

with trivial holonomy at infinity

We construct a moduli space of
framed sheaves on Xk containing

an open dense subvariety which is a
moduli space for instantons on the
ALE space with prescribed Chern
classes and holonomy at infinity

(after work of Eyssidieux and Sala

arXiv:1404.3504)

Ugo Bruzzo Stacky compactifications and gauge theory



Stacks

Stack [X/G ]: functor Sch→ Grpds

S 7→
{

Principal G -bundles P on S

with a G -equivariant morphism P → X

Morphisms in this grupoid are the isomorphisms of G -bundles
compatible with the morphisms P → X

This generalizes the fact that every scheme defines a functor
Sch→ Sets

Examples

[∗/G ](S) = principal G -bundles on S

[A1/Gm](S) = pairs (line bundle L on S , section of L)
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Framed sheaves on stacks

X smooth projective stack with a coarse moduli space
π : X → X (normal projective variety)
D ⊂ X smooth irreducible divisor, D ⊂X the reduced closed
substack with support π−1(D) (an effective Cartier divisor)

Fix a locally free sheaf F on D

Definition

A (D ,F)-framed sheaf on X is a pair E = (E, φ), where E is a
torsion-free sheaf on X and φ : E|D

∼−→ F is an isomorphism.

A morphism of framed sheaves f : E→ H is a morphism of the
underlying coherent sheaves f : E→ H for which there is an
element λ ∈ k such that φH ◦ f = λφE.
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Definition

A flat family E = (E, LE, φE) of framed sheaves on X
parameterized by a scheme S consists of a coherent sheaf E on
X × S , flat over S , a line bundle LE on S , and a morphism
φE : LE → pS∗Hom(E, p∗X (F)) which on D× {s ∈ S} gives an
isomorphism.

Define the functor of framed sheaves MX ,D,F

Assume dim X = 2 and that the framing sheaf F is semistable.

Theorem

There is a (fine, quasi-projective) scheme MX ,D,F which
represents the functor MX ,D,F
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Smoothness of the moduli scheme

Theorem

The Zariski tangent space to MX ,D,F at a point [E], with

E = (E, φ), is naturally isomorphic to Ext1(E,E
φ−→ F)

the obstruction to the smoothness of MX ,D,F at [E] lies in
the space

ker
[
Ext2(E,E

φ−→ F)
tr−→ H2(X , (OX (−D)))

]
If F = O⊕rD

the tangent space is Ext1(E,E(−D))

the obstruction lies in the space

ker
[
Ext2(E,E(−D))

tr−→ H2(X , (OX (−D)))
]
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The stack Xk

Xk will be constructed as a root stack over X̄k

What is a root stack?

X a (separated) Deligne-Mumford stack
L a line bundle on X
s ∈ Γ(X ,L) and k a positive integer.

The pair (L, s) defines a morphism φL,s : X → [A1/Gm]

Definition

The k-th root stack k
√

(L, s)/X is the DM stack defined by the
fiber product

k
√

(L, s)/X

π

��

// [A1/Gm]

θk
��

X
φL,s // [A1/Gm]
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Definition

X smooth separated DM stack
D ⊂X effective Cartier divisor in X , k a positive integer.
k
√

D/X is the root stack k
√

(OX (D), sD)/X

If s has no zeroes then k
√

(L, s)/X ' X . So in our case the “stacky”

structure of k
√

(L, s)/X is concentrated on the pre-image of the framing

divisor.

O k
√

D/X
(D̃)⊗k ' π∗(OX (D))

D̃ → D is a µk -gerbe

Line bundles on k
√

D/X have the form L̃ = π∗L⊗ OX (iD̃),
i = 0, . . . , k − 1, for L a line bundle on X
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Back to Xk

Xk is a toric variety

X̄k = Xk q D∞ normal projective toric compactification of Xk

D∞
� � //

← µk -gerbe

��

Xk

��
πk

��

D can
∞

��

� � //X can

��
D∞

� � // X̄k

0→ Cl(X̄k)
π∗k−→ Pic(Xk)→ Zk → 0
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Picard group

D1, . . . ,Dk−1 toric divisors in Xk

Di · Dj =


−2 1 0 . . . 0
1 −2 1 . . . 0
0 1 −2 . . . 0
...

...
...

. . .
...

0 0 0 . . . −2

 = −Cij

(
C−1

)ij
= min(i , j)− ij

k
.

Define the class ωi := −
∑k−1

j=1 (C−1)ijDj for i = 1, . . . , k − 1.

Proposition

The Picard group Pic(Xk) of Xk is freely generated over Z by ωi

for i = 1, . . . , k − 1 and D∞.
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Nekrasov partition function
(the mother of all partition functions)

The Nekrasov partition function is the generating function of the
integrals of the equivariant fundamental classes of the moduli
spaces of framed sheaves on P2

It is evaluated by using localization with respect to the toric action

Z inst
C2 (ε1, ε2,~a; q) =

∞∑
n=0

qn

∫
M(r ,n)

1,

εi : parameters in the Lie algebra of C∗ × C∗

~a = (a1, . . . , ar ): parameters in the Lie algebra of (C∗)r

1 equivariant fundamental class of M(r , n)
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Partition functions for ALE spaces

Tµ = C∗, H∗Tµ(pt;Q) = Q[µ]

G a T -equivariant locally free sheaf of rank n on Mr ,~u,∆(Xk ,D∞,F0,~w
∞ )

Eµ(G) := µn + c1(G)T µ
n−1 + · · ·+ cn(G)T

∈ H∗T×Tµ
(
Mr ,~u,∆(Xk ,D∞,F

0,~w
∞ ) ; Q

)
.

~v ∈ 1
k Z

k−1 be such that k vk−1 =
∑k−1

i=0 i wi mod k for fixed rank r and
holonomy at infinity ~w .

Z∗~v
(
ε1, ε2,~a, µ; q, ~τ ,~t (1), . . . ,~t (k−1)

)
=∑

∆∈ 1
2r k Z

q∆+ 1
2r ~v ·C~v

∫
Mr,~u,∆(Xk ,D∞,F

0,~w
∞ )

Eµ
(
TMr ,~u,∆(Xk ,D∞,F

0,~w
∞ )

)

· exp

( ∞∑
s=0

( k−1∑
i=1

t(i)
s

[
ch(E)T/[Di ]

]
s

+ τs
[

ch(E)T/[Xk ]
]
s−1

))
.

(fixed rank, hololonomy at infinity and c1, sum over ∆)

Ugo Bruzzo Stacky compactifications and gauge theory



~t (1), . . . ,~t (k−1) = 0  p = 0 ; ~τ = 0  p = 2

chT (Ẽ)/[Xk ] :=
k∑

i=1

1

Euler(Tpi Xk)
ı∗
{pi}×Mr,~u,∆(Xk ,D∞,F

0,~w
∞ )

chT (Ẽ)

The generating function for correlators of p-observables of N = 2
gauge theory on Xk with an adjoint hypermultiplet of mass µ
(deformed partition function) is

Z∗Xk

(
ε1, ε2,~a, µ; q, ~ξ, ~τ ,~t (1), . . . ,~t (k−1)

)
:=

∑
~v∈ 1

k
Zk−1

k vk−1=
∑k−1

i=0 i wi mod k

~ξ ~v Z∗~v
(
ε1, ε2,~a, µ; q, ~τ ,~t (1), . . . ,~t (k−1)

)
.

(fixed rank and holonomy at infinity, sum over c1 and ∆
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Factorization of the instanton partition function

Full instanton partition function

Z
∗,inst
Xk

(
ε1, ε2,~a, µ; q, ~ξ

)
:=

∑
~v∈ 1

k
Zk−1

k vk−1=
∑k−1

i=0 i wi mod k

~ξ ~v Z∗,inst~v (ε1, ε2,~a, µ; q) ,

(instanton partition functions are obtained by setting ~τ = ~t = 0)

~ξ ~v :=
∏k−1

i=1 ξvii .
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Factorization formula

Z
∗,inst
Xk

(
ε1, ε2,~a, µ; q, ~ξ

)
=∑

~v∈ 1
k Zk−1

k vk−1=
∑k−1

i=0 i wi mod k

~ξ ~v
∑
~v

q
1
2

r∑
α=1

~vα·C~vα
r∏

α,β=1

k−1∏
n=1

`
(n)
~vβα

(
ε

(n)
1 , ε

(n)
2 , aβα + µ

)
`

(n)
~vβα

(
ε

(n)
1 , ε

(n)
2 , aβα

)

×
k∏

i=1

Z
∗,inst
C2

(
ε

(i)
1 , ε

(i)
2 ,~a(i), µ; q

)
,

where ~v = (~v1, . . . , ~vr ), ~vβα = ~vβ − ~vα and aβα = aβ − aα
Z
∗,inst
C2 is the Nekrasov partition function for the N = 2∗ gauge

theory on R4 with gauge group U(r).

`
(n)
~vβα

are the edge contributions
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Comparison with existing results

For k = 2 the relevant ALE space coincides with the “open”
part of the Hirzebruch surface F2. Our results reproduce those
of B., Poghossian and Tanzini, and Gasparim and Liu, op. cit.

So for k = 2 we also have agreement with Bonelli, Maruyoshi,
Tanzini, Yagi JHEP 1301 (2013) p. 014, (arXiv:1208.0790)

Explicit calculations to compare with BMTY have been done
for k = 3 and r = 2; this requires studying a number of cases
depending on the values of ~v and ~w . Compatibility is
obtained in (almost) all cases.
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Seiberg-Witten prepotential

The Seiberg-Witten prepotential can be recovered from the partition
function for the Ω-deformed N = 2∗ gauge theory on R4 in the limit
ε1, ε2 → 0 (Nekrasov, Nakajima-Yoshioka, Nekrasov-Okounkov).

We prove analogous results for gauge theory on Xk .
Set k̃ = k/2 for even k and k̃ = k for odd k .

Theorem

F ∗,instXk
(ε1, ε2,~a, µ; q, ~ξ ) := −k̃ ε1 ε2 logZ∗,instXk

(ε1, ε2,~a, µ; q, ~ξ ) is
analytic in ε1, ε2 near ε1 = ε2 = 0 and

lim
ε1,ε2→0

F ∗,instXk

(
ε1, ε2,~a, µ; q, ~ξ

)
=

1

k
F
∗,inst
C2 (~a, µ; q) ,

where F
∗,inst
C2 (~a, µ; q) is the instanton part of the Seiberg-Witten

prepotential of N = 2∗ gauge theory on R4.
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Blowup formula for k = 2

Z
∗,•
X2

(ε1, ε2,~a, µ; q, ~ξ, t) deformed partition function

Z∗X2
(ε1, ε2,~a, µ; q, ~ξ, ~τ ,~t ) specialized at ~τ = ~0 and ~t = (0,−t, 0, . . .).

Θ
[
~µ
~ν

]
(~ζ | τ) Riemann theta-function with characteristic

[
~µ
~ν

]
on the

Seiberg-Witten curve Σ for N = 2∗ gauge theory on R4.

Theorem

Z
∗,•
X2

(ε1, ε2,~a, µ; q, ξ, t)/Z∗,instX2
(ε1, ε2,~a, µ; q, ξ) is analytic in ε1, ε2 near

ε1 = ε2 = 0, and

lim
ε1,ε2→0

Z
∗,•
X2

(ε1, ε2,~a, µ; q, ξ, t)

Z
∗,inst
X2

(ε1, ε2,~a, µ; q, ξ)

= exp

((
q
∂

∂q

)2

F
∗,inst
C2 (~a, µ; q) t2 + 2π i

r∑
α=w0+1

ζα

)
Θ
[

0
C ~ν

]
(C (~ζ + ~κ) |C τ)

Θ
[

0
C ~ν

]
(C ~κ |C τ)

,
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where

ζα := − t

2π i

(
aα + q

∂2F
∗,inst
C2

∂q ∂aα
(~a, µ; q)

)
,

while κα := 1
4π i log(ξ) for α = 1, . . . , r and

να :=



r∑
β=w0+1

log
(
(aβ − aα)2 − µ2

)
− 2π i w1

r
τ0

+
r∑

β=w0+1

∂2F
∗,inst
C2

∂aα ∂aβ
(~a, µ; q) for α = 1, . . . ,w0 ,

−
w0∑
β=1

log
(
(aβ − aα)2 − µ2

)
+

4π i w0

r
τ0 for α = w0 + 1, . . . , r .
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The blowup equation underlies the modularity properties of the
partition function and correlators of quadratic 2-observables on the
Seiberg-Witten curve for N = 2∗ gauge theory on X2 with period
matrix τ twisted by the A1 Cartan matrix C , and it generalizes the
representation of the Vafa-Witten partition function at µ = 0 in
terms of modular forms.

If the fixed holonomy at infinity is trivial, i.e.,
~w = (w0,w1) = (r , 0), the characteristic vector ~ν ∈ Cr vanishes
and our result is in the line of Nakajima-Yoshioka’s (2005).

In general, the nontrivial holonomy at infinity is encoded in ~ν.
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Comments and perspectives

First rigorous definition of partition functions for ALE spaces

We have obtained “blowup” formulas, unlike previous attempts
(e.g., by Fucito, Morales, Poghossian)

Are“our” moduli spaces quiver varieties à la Nakajima? (true for
r = 1 due to work by Kuznetsov)

For µ→ 0 we obtain the Vafa-Witten partition function for N = 4
SYM on ALE spaces; we get the same result as Fuji-Minabe (they
computed the Euler characteristic of the moduli space of
Zk -invariant framed sheaves on P2) ⇒ compute the Poincaré
polynomials of our moduli spaces — done for k = 1 (P2, Nakajima
— no stacky structure) and k = 2 (F2, Bruzzo-Poghossian-Tanzini)
— stacky structure already present)
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