A desingularization of the moduli space of Higgs bundles over a curve

SANG-BUM YOO

POSTECH

IMS, NUS, July 21, 2014

SANG-BUM YOO (POSTECH) A desingularization of the moduli spaIMS, NUS, July 21, 2014 1 / 29

History and Problem

- C = smooth projective curve over \mathbb{C} .
- $\mathcal{M}(r, d) =$ moduli space of semistable rank r Higgs bundles of degree d over C.
- $\mathbf{M}(r, \Lambda) =$ moduli space of semistable rank r Higgs bundles with fixed determinant Λ over C.
- $\mathbf{N}(r, \Lambda) =$ moduli space of semistable rank r vector bundles with fixed determinant Λ over C.
- History
 - (T.Hausel('98)) For a fixed line bundle Λ of degree 1 on C and a compactification $\overline{\mathbf{M}(2,\Lambda)}$ of $\mathbf{M}(2,\Lambda)$ as a symplectic quotient of $\mathbf{M}(2,\Lambda) \times \mathbb{C}$ by S^1 ,

$$\overline{\mathbf{M}(2,\Lambda)} \leftarrow \xrightarrow{\mathrm{bir.}} \mathbb{P}(T^*\mathbf{N}(2,\Lambda) \oplus \mathcal{O}_C)$$

by a sequence of blow-ups and blow-downs.

• History

- (S.B.Bradlow, O.G-Prada, P.B.Gothen('04)) Birational descriptions of moduli spaces of α -stable holomorphic triples (when $g(C) \geq 2$) for a certain range of α .
- (M.Mehta('05)) For the projective bundle \mathcal{E} over $\mathcal{M}(r-1,d)$ with $\mathcal{E}|_{(E,\theta)} = \mathbb{P}\text{Ext}^1((E,\theta), (\mathcal{O}_C, \text{const.})),$

 $\mathcal{E} \leftarrow \stackrel{\text{bir.}}{\longrightarrow} a$ fiber space over $\mathcal{M}_0(r, d)$

by a Morse theory on the space of τ -stable Higgs triples. Here,

$$\mathcal{M}_0(r,d) = \{ (V,\phi) \in \mathcal{M}(r,d) | \det \phi = 0 \}.$$

- Problem : Can we find a nonsingular moduli space birational to $\mathbf{M}(2, \mathcal{O}_C)$?
- Answer : Our work provides another way to construct a nonsingular variety birational to $\mathbf{M}(2, \mathcal{O}_C)$ with a moduli theoretic meaning.
- Y.-H. Kiem and J. Li successfully constructed a nonsingular variety birational to $\mathbf{N}(2, \mathcal{O}_C)$ in this way ('04).

Moduli space of semistable Higgs bundles

- C = smooth projective curve of genus $g \ge 3$ over \mathbb{C} .
- <u>Higgs bundle</u> is a pair (V, ϕ) of a rank 2 vector bundle $V \to C$ with det $V = \mathcal{O}_C$ and $\phi \in H^0(\operatorname{End}_0 V \otimes K_C)$ where $\operatorname{End}_0 V$ is the bundle of trace-free endomorphisms of V.
- Higgs bundle (V, ϕ) is <u>stable</u> (resp. <u>semistable</u>) $\Leftrightarrow \forall$ subbundle $0 \neq W \leq V$ satisfying $\phi(W) \subset W \otimes K_C$, $\deg W < 0$ (resp. $\deg W \leq 0$).
- Higgs bundle (V, ϕ) is polystable $\Leftrightarrow (V, \phi)$ is stable or $(\overline{L}, \psi) \oplus (\overline{L}^{-1}, -\psi)$ for $L \in \operatorname{Pic}^{0}(C)$ and $\psi \in H^{0}(K_{C}).$

- (N.Hitchin, N.Nitsure, C.Simpson)
 - $\mathbf{M} := \mathbf{M}(2, \mathcal{O}_C) = \{ \text{polystable Higgs bundles } (V, \phi) \text{ over } C/\cong \} \\ = \mathbf{R}//SL(2)$
 - = moduli space of semistable Higgs bundles over C
 - is a quasi-projective irreducible normal variety of dimension 6g 6. ($\mathbf{R} =$ quasi-projective irreducible normal variety of dimension

6g - 3 parametrizing $(V, \phi, \ \alpha : V|_x \xrightarrow{\cong} \mathbb{C}^2 \))$

• (N.Hitchin)

Stable Locus \mathbf{M}^s in \mathbf{M} is a smooth open dense subvariety of \mathbf{M} , equipped with a (holomorphic) symplectic form, i.e. \mathbf{M}^s is hyperkähler.

Moduli space of stable parabolic Higgs bundles

- Fix a point $x_0 \in C$.
- Parabolic Higgs bundle is a triple (E, ϕ, s) of a rank 4 vector bundle $E \to C$ with deg E = 0, $\phi \in H^0(\text{End}E \otimes K_C)$ and $s \in \mathbb{P}(E|_{x_0}^{\vee})$ where ϕ is parabolic, that is, $\phi|_{x_0}(V(s)) \subset V(s)$.
- For real numbers $0 \le a_1 < a_2 < 1$, a parabolic Higgs bundle (E, ϕ, s) is <u>stable</u> (resp. <u>semistable</u>) with respect to the weights (a_1, a_2)

 $\Leftrightarrow \forall \text{ parabolic subbundle } 0 \neq (F, s_F) \lneq (E, s) \text{ satisfying } \phi((F, s_F)) \subset (F \otimes K_C, s_F),$

par
$$\mu((F, s_F)) < \frac{a_1 + 3a_2}{4}$$
 (resp. par $\mu((F, s_F)) \le \frac{a_1 + 3a_2}{4}$),

where par
$$\mu((F, s_F)) = \begin{cases} \mu(F) + \frac{a_1 + (\operatorname{rk}(F) - 1)a_2}{\operatorname{rk}(F)} & \text{if } F|_{x_0} \not\subset V(s) \\ \mu(F) + a_2 & \text{if } F|_{x_0} \subset V(s) \end{cases}$$
.

• Parabolic Higgs bundle (E, ϕ, s) is <u>polystable</u> with respect to the weights (a_1, a_2)

 $\Leftrightarrow (E, \phi, s)$ is stable or a direct sum of stable sub-triples with respect to the weights (a_1, a_2) .

- (K. Yokogawa) $\mathbf{M}_{4,(a_1,a_2)}^{\text{par}} := \{\text{polystable parabolic Higgs bundles } (E, \phi, s) \text{ with}$ respect to the weights $(a_1, a_2) \text{ over } C/\cong \}$
 - $= \underbrace{\text{moduli space of semistable parabolic Higgs bundles}}_{\text{with respect to the weights } (a_1, a_2) \text{ over } C$

is a quasi-projective irreducible normal variety. For some small choice of (a_1, a_2) , the stable locus $\mathbf{M}_{4,(a_1,a_2)}^{\mathrm{par},s}$ in $\mathbf{M}_{4,(a_1,a_2)}^{\mathrm{par}}$ coincides with $\mathbf{M}_{4,(a_1,a_2)}^{\mathrm{par}}$.

Main Result

Main Result

Main Result

Main Result

Theorem(-)

1. **S** is nonsingular (main result). Further, there is a canonical morphism $\pi_{\mathbf{S}} : \mathbf{S} \to \mathbf{M}$ which is an isomorphism on \mathbf{M}^s . 2. ρ' is extended to a birational morphism $\rho : \mathbf{K} \to \mathbf{S}$. 3. ρ factors through \mathbf{K}_{ϵ} . Furthermore, $\mathbf{K}_{\epsilon} \cong \mathbf{S}$.

Main Result

• **S** is the Zariski closure of

 $\mathbf{S}' = \{ [(E,\phi,s)] \in \mathbf{M}_{4,(a_1,a_2)}^{\mathrm{par},s} | \mathrm{End}((E,\phi)) \cong M(2), \det E = \mathcal{O}_C \}$

where M(2) is the \mathbb{C} -algebra of 2×2 matrices with entries in \mathbb{C} .

- For each $[(E, \phi, s)] \in \mathbf{S}$, $\operatorname{End}((E, \phi))$ is a specialization of M(2), that is, a limit structure of \mathbb{C} -algebra structures of M(2).
- $\mathbf{M}^s \xrightarrow{\cong} \mathbf{S}'$ is given by $(V, \phi) \mapsto ((V, \phi) \oplus (V, \phi), s_{\operatorname{can}})$. $\pi_{\mathbf{S}|\mathbf{S}'}$ is the inverse of this isomorphism.
- $\pi_{\mathbf{S}} : \mathbf{S} \to \mathbf{M}$ is given by $(E, \phi, s) \mapsto (F, \psi)$, where (F, ψ) is determined by $Gr((E, \phi)) = (F, \psi) \oplus (F, \psi)$.
- **S** is a *desingularization* of **M**.

- 《圖》 《글》 《글》 - 글

Kirwan's algorithm

- $X(\subseteq \mathbb{P}^n)$: projective variety over \mathbb{C} .
- G = reductive complex algebraic group acting linearly on X, via a homomorphism

$$G \to GL(n+1).$$

• (Kirwan) Assume that $\exists x \in X^{ss} \setminus X^s$ such that dim Stab(x) is (connected) maximal among stabilizers of points in $X^{ss} \setminus X^s$. Let $\pi : \tilde{X} \to X$ be the blow-up along $GZ^{ss}_{\operatorname{Stab}(x)}$, where $Z_{\operatorname{Stab}(x)}$ is the locus of fixed points by $\operatorname{Stab}(x)$ in X. Then

• (Kirwan) If $\exists y \in \tilde{X}^{ss} \setminus \tilde{X}^s$ such that dim Stab(y) is (connected) maximal among stabilizers of points in $\tilde{X}^{ss} \setminus \tilde{X}^s$, then

 $\dim \operatorname{Stab}(y) < \dim \operatorname{Stab}(x).$

• When dim $\operatorname{Stab}(y) = 0$, Kirwan's algorithm terminates and $\tilde{X}^{ss} = \tilde{X}^s$. In this step, $\tilde{X}//_{\tilde{L}}G$ is called *Kirwan's partial desingularization* of $X//_{L}G$.

(日) (モ) (モ) (モ)

Kirwan's desingularization of M (along O'Grady's)

- Recall : $\mathbf{M} = \mathbf{R} / / SL(2)$ (**R** is possibly singular).
- Every point in **R** is semistable with respect to the action of SL(2). The closed orbits in **R** correspond to polystable Higgs bundles. The set **R**^s of stable points is exactly the locus of stable Higgs bundles.
- Kirwan's algorithm = a sequence of blow-ups of \mathbf{R} along $\mathbf{R} \setminus \mathbf{R}^s$ until strictly semistable points disappear.
- $\mathbf{R} \setminus \mathbf{R}^s$ consists of
 - (i) $(L,0) \oplus (L,0)$ for $L \cong L^{-1}$
 - (ii) nontrivial extension of (L,0) by (L,0) for $L \cong L^{-1}$
 - (iii) $(L,\psi) \oplus (L^{-1},-\psi)$ for $(L,\psi) \ncong (L^{-1},-\psi)$
 - (iv) nontrivial extension of $(L^{-1}, -\psi)$ by (L, ψ) for $(L, \psi) \ncong (L^{-1}, -\psi)$ where $L \in \operatorname{Pic}^0(X) =: J$ and $\psi \in H^0(K_X)$.
- Higgs bundles of type (ii) and (iv) are not polystable and their orbits do not appear in **M**.
- $\operatorname{Stab}((i)) = SL(2)$ and $\operatorname{Stab}((iii)) = \mathbb{C}^*$.

(日) (四) (川) (日) (日) (日)

- $\mathbf{M} = \mathbf{M}^s \sqcup (T^*J/\mathbb{Z}_2 \mathbb{Z}_2^{2g}) \sqcup \mathbb{Z}_2^{2g}$
 - \mathbf{M}^s =open subset of stable pairs
 - $T^*J/\mathbb{Z}_2 = \{(L,\psi) \oplus (L^{-1},-\psi) | L \in \operatorname{Pic}^0(X), \psi \in H^0(K_X)\}/\mathbb{Z}_2$ • $\mathbb{Z}_2^{2g} = \{(L,0) \oplus (L,0) | L \in \operatorname{Pic}^0(X), L \cong L^{-1}\}$
- (C.Simpson) Singularity along \mathbb{Z}_2^{2g} : $\mathbb{H}^g \otimes sl(2)///SL(2)$ where SL(2) acts on sl(2) by the adjoint action
- (C.Simpson) Singularity along T^{*}J/ℤ₂ ℤ₂^{2g} : ℍ^{g-1} ⊗ ℂ²///ℂ^{*} where ℂ^{*} acts on ℂ² with weights 1, -1
- Kirwan's algorithm terminates in two steps as following :

(비) (종) (종) (종) (종)

- **M** can be desingularized by three blow-ups along i) \mathbb{Z}_2^{2g}
 - ii) proper transform of T^*J/\mathbb{Z}_2
 - iii) nonsingular subvariety lying in the proper transform of the exceptional divisor of the first blow-up
 - \Rightarrow Kirwan's desingularization $\mathbf{K} \rightarrow \mathbf{M}$ with exceptional divisors
 - D_1 , D_2 and D_3 .

(日) (四) (王) (王) (王)

Elemantary modification of Higgs bundles

(ε, φ) = a family of Higgs bundles parametrized by a scheme T.
ι : D → T : Cartier divisor.
(𝔅, φ_𝔅) ⊂ (ε, φ)|_{C×D} : a family of sub-Higgs bundles on D.
(𝔅, φ_𝔅) : a family of quotients.
Elementary modification (ε', φ') of (ε, φ) is given by the following commutative diagram:

where horizontal maps are short exact sequences.

◆ロト ◆課 ▶ ◆注 ▶ ◆注 ▶ ○注 ○ のへの

Construction of ρ (over D_2)

• For
$$l = [(L, \psi) \oplus (L^{-1}, -\psi)] \in T^*J/\mathbb{Z}_2 - \mathbb{Z}_2^{2g},$$

$$\mathcal{N}_l := H^1(\mathcal{O}_C) \oplus H^0(K_C) \oplus Q$$

where Q is a smooth quadratic hypersurface in \mathbb{C}^{4g-4} , which is the fiber of the normal cone of the locus of type (iii) in **R**.

• By Luna's slice theorem, \exists family $(\mathcal{F}, \varphi_{\mathcal{F}})$ of semistable Higgs bundles parametrized by a neighborhood U_l of 0 in \mathcal{N}_l (From the universal object over $C \times \mathbf{R}$) such that

$$(\mathfrak{F},\varphi_{\mathfrak{F}})|_{C\times(U_l\cap(H^1(\mathfrak{O}_C)\oplus H^0(K_C)))}=(\mathcal{L},\psi_{\mathcal{L}})\oplus(\mathcal{L}^{-1},-\psi_{\mathcal{L}}),$$

where $(\mathcal{L}, \psi_{\mathcal{L}})$ is a family of Higgs bundles of rank 1 and degree 0.

・ロト ・四ト ・ヨト ・ヨト 三日

- $\pi_l : U_l \to U_l$: blow-up of U_l along $U_l \cap (H^1(\mathcal{O}_C) \oplus H^0(K_C))$ with the exceptional divisor D_l .
- $(\tilde{\mathcal{F}}, \varphi_{\tilde{\mathcal{F}}}) := \pi_l^*(\mathcal{F}, \varphi_{\mathcal{F}}) \text{ and } (\tilde{\mathcal{L}}, \psi_{\tilde{\mathcal{L}}}) := \pi_l^*(\mathcal{L}, \psi_{\mathcal{L}})$ $\Rightarrow \exists \text{ surjective } (\tilde{\mathcal{F}}, \varphi_{\tilde{\mathcal{F}}})|_{D_l} \to (\tilde{\mathcal{L}}, \psi_{\tilde{\mathcal{L}}}) \text{ and } (\tilde{\mathcal{F}}, \varphi_{\tilde{\mathcal{F}}})|_{D_l} \to (\tilde{\mathcal{L}}^{-1}, -\psi_{\tilde{\mathcal{L}}}).$
- (Elementary modifications) $(\tilde{\mathcal{F}}', \varphi_{\tilde{\mathcal{F}}'}) := \ker((\tilde{\mathcal{F}}, \varphi_{\tilde{\mathcal{F}}}) \to (\tilde{\mathcal{F}}, \varphi_{\tilde{\mathcal{F}}})|_{D_l} \to (\tilde{\mathcal{L}}, \psi_{\tilde{\mathcal{L}}}))$ and $(\tilde{\mathcal{F}}'', \varphi_{\tilde{\mathcal{F}}''}) := \ker((\tilde{\mathcal{F}}, \varphi_{\tilde{\mathcal{F}}}) \to (\tilde{\mathcal{F}}, \varphi_{\tilde{\mathcal{F}}})|_{D_l} \to (\tilde{\mathcal{L}}^{-1}, -\psi_{\tilde{\mathcal{L}}}))$
- $(\mathcal{E}, \varphi_{\mathcal{E}}) := (\tilde{\mathcal{F}}', \varphi_{\tilde{\mathcal{F}}'}) \oplus (\tilde{\mathcal{F}}'', \varphi_{\tilde{\mathcal{F}}''})$ is a family parametrized by \tilde{U}_l such that $\operatorname{End}((\mathcal{E}, \varphi_{\mathcal{E}})|_{C \times \{t\}})$ is a specialization of M(2) on an open dense subset of \tilde{U}_l .
 - $\Rightarrow (\mathcal{E}, \varphi_{\mathcal{E}})$ gives us a continuous extension of ρ' to a neighborhood of the points in **K** over *l*.
 - \Rightarrow This extension is indeed a morphism.
 - (By GAGA and Riemann's extension theorem)

비가 귀엽가 귀절가 귀절가 드릴

 Note that the transitions and local Higgs fields of (ε, φ_ε) are of the form

$$\left(\begin{pmatrix} \lambda_{ij} & b_{ij} & 0 & 0 \\ 0 & \lambda_{ij}^{-1} & 0 & 0 \\ 0 & 0 & \lambda_{ij} & 0 \\ 0 & 0 & c_{ij} & \lambda_{ij}^{-1} \end{pmatrix}, \begin{pmatrix} p_i & q_i & 0 & 0 \\ 0 & -p_i & 0 & 0 \\ 0 & 0 & p_i & 0 \\ 0 & 0 & r_i & -p_i \end{pmatrix} \right)$$

3

イロト イヨト イヨト

Specialization of M(2)

- C_n =unitary associative algebra generated by a 3-dimensional complex vector space V with a quadratic form q of rank $n \leq 3$ subject to uv + vu = q(u + v) - q(u) - q(v) for all $u, v \in V$.
- C_n is \mathbb{Z}_2 -graded. Indeed, $V \to V(v \mapsto -v)$ extends to an involution $\alpha : C_n \to C_n$. Thus, we have the eigenspace decomposition $C_n = C_n^+ \oplus C_n^-$.
- $C_3^+ \cong M(2).$
- (Along V.Balaji's arguments) $\mathbf{S}_3 \subset \mathbf{S}_2 \subset \mathbf{S}_1 \subset \mathbf{S}$
 - $\mathbf{S} \mathbf{S}_1 = \{ [(E, \phi, s)] \in \mathbf{S} | \text{End}((E, \phi)) \cong C_3^+ \cong M(2) \} = \pi_{\mathbf{S}}^{-1}(\mathbf{M}^s)$
 - $\mathbf{S}_1 \mathbf{S}_2 = \{ [(E, \phi, s)] \in \mathbf{S} | \operatorname{End}((E, \phi)) \cong C_2^+ \} = \pi_{\mathbf{S}}^{-1}(T^*J/\mathbb{Z}_2 \mathbb{Z}_2^{2g})$ is a smooth divisor of $\mathbf{S} - \mathbf{S}_2 = \mathbf{S} - \pi_{\mathbf{S}}^{-1}(\mathbb{Z}_2^{2g}).$
 - $\mathbf{S}_2 \mathbf{S}_3 = \{ [(E, \phi, s)] \in \mathbf{S} | \text{End}((E, \phi)) \cong C_1^+ \}$
 - $\mathbf{S}_3 = \{ [(E, \phi, s)] \in \mathbf{S} | \text{End}((E, \phi)) \cong C_0^+ \}$

• C_2^+ has generators x, w, u, v with the following defining relations

$$u^{2} = u, v^{2} = v, uv = 0, u + v = 1,$$

 $w^{2} = x^{2} = wx = xw = 0, uw = w, wu = 0,$
 $ux = 0, xu = x, vw = 0, wv = w,$
 $vx = x, xv = 0.$

• C_1^+ has generators $1, y_1, y_2, y_3$ with the following defining relations $y_1^2 = y_2^2 = y_3^2 = y_1y_3 = y_2y_3 = 0, \quad y_1y_2 = -y_2y_1 = y_3.$

• C_0^+ has generators y_1, y_2, y_3 with the following defining relations

$$y_1^2 = y_2^2 = y_3^2 = y_1y_2 = y_1y_3 = y_2y_3 = 0.$$

• Fix $e_0 \in \mathbb{C}^4$. Let $\mathcal{A}(2)$ be the set of elements in $\operatorname{Hom}(\mathbb{C}^4 \otimes \mathbb{C}^4, \mathbb{C}^4)$ which gives us an algebra structure on \mathbb{C}^4 with the identity element e_0 . There is a subset of $\mathcal{A}(2)$ which consists of algebra structures on \mathbb{C}^4 , isomorphic to M(2). Let \mathcal{A}_2 be the closure of this subset. An element in \mathcal{A}_2 is called a *specialization of* M(2). The proof of Theorem

Nonsingularity of \mathbf{S} , The proof of Theorem-1

• The morphism of functors $\Phi: Mor(-, \mathbf{S}) \to Mor(-, \mathcal{A}_2)$ is formally smooth, that is, \forall small surjection $p: A' \to A$ of local artinian commutative \mathbb{C} -algebras with residue field \mathbb{C} and

• To determine γ , we should classify transitions and local Higgs fields of underlying Higgs bundles of all objects in **S**₁. For this, we should use the defining relations of C_2^+ , C_1^+ and C_0^+ .

ロト (個) (注) (注) (注)

Proposition(-)

Let $(E, \phi, s) \in \mathbf{S}_1$. Then the underlying Higgs bundle (E, ϕ) is given by one of the following type of pairs of transitions and local Higgs fields :

イロト イヨト イヨト

• (The key of the proof of (I)) The left regular representation of C_2^+ is given as follows : For $a = \lambda_0 u + \lambda_1 x + \lambda_2 w + \lambda_3 v$,

$$a \cdot u = \lambda_0 \cdot u + \lambda_1 \cdot x + 0 \cdot w + 0 \cdot v$$
$$a \cdot x = 0 \cdot u + \lambda_3 \cdot x + 0 \cdot w + 0 \cdot v$$
$$a \cdot w = 0 \cdot u + 0 \cdot x + \lambda_0 \cdot w + 0 \cdot v$$
$$a \cdot v = 0 \cdot u + 0 \cdot x + \lambda_2 \cdot w + \lambda_3 \cdot v.$$

Then the left regular representation of A is given by

$$\lambda_0 u + \lambda_1 x + \lambda_2 w + \lambda_3 v \mapsto \begin{pmatrix} \lambda_0 & \lambda_1 & 0 & 0 \\ 0 & \lambda_3 & 0 & 0 \\ 0 & 0 & \lambda_0 & 0 \\ 0 & 0 & \lambda_2 & \lambda_3 \end{pmatrix}$$

イロト イヨト イヨト イヨト

• (The key of the proof of (II)) The left regular representation of C_1^+ is given by

$$(\lambda_0 + \lambda_1 y_1 + \lambda_2 y_2 + \lambda_3 y_3) \mapsto \begin{pmatrix} \lambda_3 & 0 & 0 & 0\\ \lambda_2 & \lambda_3 & 0 & 0\\ -\lambda_1 & 0 & \lambda_3 & 0\\ \lambda_0 & \lambda_1 & \lambda_2 & \lambda_3 \end{pmatrix}$$

• (The key of the proof of (III)) The left regular representation of C_0^+ is given by

$$(\lambda_0 y_1 + \lambda_1 y_2 + \lambda_2 y_3 + \lambda_3) \mapsto \begin{pmatrix} \lambda_3 & 0 & 0 & 0 \\ 0 & \lambda_3 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ \lambda_0 & \lambda_1 & \lambda_2 & \lambda_3 \end{pmatrix}$$

(本間) (本臣) (王)

• \mathcal{A}_2 is nonsingular, that is, $Mor(-, \mathcal{A}_2)(p)$ is surjective. $\Rightarrow Mor(-, \mathbf{S})(p)$ is surjective, that is, **S** is nonsingular.

・ロト ・回ト ・ヨト ・ヨト 三日

The proof of Theorem-2 and Theorem-3

- Theorem-2 : Construct a nice family of parabolic Higgs bundles of rank 4 by successive applications of elementary modifications of Higgs bundles, beginning with a family of rank 2 Higgs bundles from the universal object over **R**.
- Theorem-3 :
 - (O'Grady) $f : \mathbf{K} \to \mathbf{K}_{\epsilon}$ is the composition of contractions of $K_{\mathbf{K}}$ -negative extremal rays in D_3 and D_1 , and \mathbf{K}_{ϵ} is nonsingular.

ρ_ε : K_ε → S is an isomorphism in codimension one since S₁ − S₂ is a smooth divisor of S − S₂..

• $\rho_{\epsilon}: \mathbf{K}_{\epsilon} \to \mathbf{S}$ is an isomorphism from the Zariski's main theorem. SANG-BUM YOO (POSTECH) A desingularization of the moduli spa

Further question

- Consider the first contraction $\mathbf{K} \to \mathbf{K}_{\sigma}$ of $K_{\mathbf{K}}$ -negative extremal ray in D_3 .
- Question : Find the closest nonsingular moduli space to \mathbf{K}_{σ} .
- Known : In the case of $\mathbf{N}(2, \mathcal{O}_C)$, $\mathbf{K}_{\sigma}(\mathbf{N}(2, \mathcal{O}_C))$ is isomorphic to the *moduli space of Hecke cycles* associated to stable vector bundles. (Choe, Choy and Kiem, '05).
- Revised question : Construct a moduli space of Hecke cycles associated to stable Higgs bundles and compare it with \mathbf{K}_{σ} .

- 《圖》 《문》 《문》 - 문

Thank you

- 2

・ロト ・四ト ・ヨト ・ヨト