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Intersection index on an irreducible variety X, dimX = n
Let K(X) be the semigroup of spaces L of rational functions on
X such that: a) dimL <∞, and b) L 6= 0.

For L1, L2 ∈ K(X), the product is the space L1L2 ∈ K(X)
generated by elements fg, where f ∈ L1, g ∈ L2.

For L1, . . . , Ln ∈ K(X), the intersection index [L1, . . . , Ln] is
#x ∈ X : (f1(x) = · · · = fn(x) = 0), where f1 ∈ L1, . . . , fn ∈
Ln is a generic n-tuple of functions. We neglect roots x ∈ X such
that ∃i : (f ∈ Li ⇒ f (x) = 0), and such that ∃f ∈ Lj for
1 ≤ j ≤ n having a pole at x.

The intersection index is multi-linear with respect to the product
in K(X).
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Let X = (C∗)n, let A ⊂ (Z)n be a finite set; let LA ∈ K(X) be
the space generated xm, where m ∈ A; ∆(A) be the convex hull
of A and V (∆(A)) be its volume.
Kushnirenko’s theorem (1975)
[LA, . . . , LA] = n!V (∆(A)).
Why?
Why convex hull?
Why volume?
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Mixed volume
(∃ !) V (∆1, . . . ,∆n), on n-tuples of convex bodies in Rn, such

that:

1. V (∆, . . . ,∆) is the volume of ∆;

2. V is symmetric;

3. V is multi-linear; for example,

V (∆′1 + ∆′′1 ,∆2, . . . ) = V (∆′1,∆2, . . . ) + V (∆′′1 ,∆2, . . . );

4. ∆′1 ⊆ ∆1, . . . ,∆
′
n ⊆ ∆n⇒ V (∆′1, . . . ,∆

′
n) ≤ V (∆1, . . . ,∆n);

5. 0 ≤ V (∆1, . . . ,∆n).

Bernstein’s theorem (1975)
[LA1

, . . . , LAn] = n!V (∆(A1), . . . ,∆(An)).
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Grothendieck semigroup Gr(S)
For a commutative semigroup S let a ∼ b⇔ (∃c ∈ S)|(a + c =
b + c).

Then Gr(S) is S/∼. Let ρ : S → Gr(S) be the natural map.
The Grothendieck group of S is the group of formal differences

of Gr(S).

Theorem 1. Let K be the semigroup of finite subsets Zn ⊂
Rn with respect to addition. Then Gr(K) consists of convex
polyhedra and ρ(A) is the convex hull ∆(A) of A.

The index [L1, . . . , Ln] can be extended to the Grothendieck
group Gr(K(X)) of K(X) and considered as a birationally invari-
ant generalization of the intersection index of divisors, which is
applicable to non-complete varieties.
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The group G(K(X)) of K(X)
One can describe the relation ∼ in K(X) as follows: f ∈ C(X)

is called integral over L if it satisfies an equation

fm + a1f
m−1 + · · · + am = 0

with m > 0 and ai ∈ Li. The collection of all integral functions
over L is a finite-dimensional subspace L called the completion of
L. In K(X):

1. L1 ∼ L2⇔ L1 = L2;

2. L ∼ L;

3. L ∼M ⇒M ⊂ L.
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Semigroup of integral points, its Newton–Okounkov
body

Let S ⊂ Zn be a semigroup,
G(S) ⊂ Zn the group generated by S;
L(S) ⊂ Rn the subspace spanned by S;
C(S) = (convex hullof S ∪ {0}).
The regularization S̃ of S is the semigroup C(S) ∩G(S).

Theorem 2. Let C ′ ⊂ C(S) be a strongly convex cone which
intersects the boundary (in the topology of the linear space
L(S)) of the cone C(S) only at the origin. Then there exists
a constant N > 0 (depending on C ′) such that any point in
the group G(S) which lies in C ′ and whose distance from the
origin is bigger than N belongs to S.
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Let M0 ⊂ L(S) be a space; dimM0 = dimL(S) − 1 = q;
C(S) ∩M0 = 0;

Let Mk be the affine space parallel to M0 and intersection G
which has distance k from the origin (the distance is normalized
in such a way that as values it takes all the non-negative integers
k).

The Hilbert function HS of S is define by HS(k) = #Mk ∩ S.
The Newton–Okounkov body ∆(S) of S is define by ∆(S) =
C(S) ∩M1.

Theorem 3. The function HS(k) grows like aqk
q where q is

the dimension of the convex body ∆(S), and the q-th growth
coefficient aq is equal to the (normalized in the appropriate
way) q-dimensional volume of ∆(S).
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Algebra of almost finite type, its Newton–Okounkov
body

Let F be a field of transcendence degree n over k. Let F [t] be the
algebra of polynomials over F . We deal with graded subalgebras
in F [t]:

1.AL =
⊕

k≥0L
ktk, where L ⊂ F is a subspace, dimkL < ∞;

L0 = k and Lk is the span of all the products f1 · · · fk with
f1, . . . , fk ∈ L.

2. An algebra of almost integral type is a subalgebra in some alge-
bra AL.

We construct a Zn+1-valued valuation vt on F [t] by extending a
Zn-valuation v on F which takes all the values in Zn.

Let ∆(A) be the Newton–Okounkov body of the semigroup S(A) =
vt(A \ {0}) projected to Rn (via the projection on the first factor
Rn × R→ Rn).
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Theorem 4. 1. The Hilbert function HA(k) of A grows like
aqk

q, where q is an integer between 0 and n.

2. q = dimR ∆(A), and aq is the (normalized in the appropriate
way) q-dimensional volume of ∆(A).

One defines a componentwise product of graded subalgebras.
Consider the class of graded algebras of almost integral type such
that, for k � 0, all their k-th homogeneous components are non-
zero. Let A1, A2 be algebras of such kind and put A3 = A1A2. It
is easy to verify the inclusion ∆(A1) + ∆(A2) ⊂ ∆(A3).
Brunn–Minkowsky inequality in convex geometry

V 1/n(∆1) + V 1/n(∆2) ≤ V 1/n(∆1 + ∆2).

Theorem 5. a
1/n
n (A1) + a

1/n
n (A2) ≤ a

1/n
n (A3).
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Newton–Okounkov bodies and Intersection theory
With a space L ∈ K(X), we associate the algebra AL and its

integral closure AL in the field C(X)[t] and two corresponding
bodies ∆(AL) ⊆ ∆(AL).

For a big space L we have ∆(AL) = ∆(AL).

Theorem 6. For L ∈ K(X) we have:

1. [L, . . . , L] = n!Vol(∆(AL)).

2. ∆(AL1L2
) ⊇ ∆(AL1

) + ∆(AL2
)

Proof. Follows from the theorem 4.

The Kušnirenko theorem is a special case of the theorem 6. The
Newton polyhedron of the product of two Laurent polynomials is
equal to the sum of the corresponding Newton polyhedra. This
property gives the Bernstein theorem as a corollary of the theo-
rem 6.
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Theorem 7. Let L1, L2 ∈ K(X) and L3 = L1L2. We have:

[L1, . . . , L1]1/n + [L2, . . . , L2]1/n ≤ [L3, . . . , L3]1/n.

Hodge type inequality. For n = 2 we have [L1, L1][L2, L2] ≤
[L1, L2]2.
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Alexandrov–Fenchel type inequality in algebra and
geometry

Alexandrov–Fenchel inequality in convex geometry

V 2(∆1,∆2, . . . ,∆n) ≥ V (∆1,∆1, . . . ,∆n)V (∆2,∆2, . . . ,∆n).

Theorem 8. Let X, dimX = n, be an irreducible variety, let
L1, . . . , Ln ∈ K(X) and let L3, . . . , Ln be big subspaces. Then
[L1, L2, L3, . . . , Ln]2 ≥

[L1, L1, L3, . . . , Ln][L2, L2, L3, . . . , Ln].

The Alexandrov–Fenchel inequality in convex geometry follow
easily from the theorem 8 via the Bernstein–Kušnirenko theorem.
This trick has been known. Our contribution is an elementary
proof of the key analogue of the Hodge index inequality which
makes all the chain of arguments involved elementary and more
natural.

13



Other results

1. local intersection theory. Let Ra be the ring of germs of
regular functions at a point a ∈ X, dimX = n.

Let Ka be the set of ideals L ⊂ Ra of finite co-dimension,
dimCRa/L < ∞. For L1, . . . , Ln ∈ Ka the local intersection
index [L1, . . . , Ln]a is defined: it is equal to the multiplicity at
the origin of a system f1 = · · · = fn = 0, where fi is a generic
function from Li.

Theorem 9. (local algebraic Alexandrov–Fenchel type
inequality) Let L1, . . . , Ln ∈ Ka. Then [L1, L2, . . . , Ln]2a ≤
[L1, L1, . . . , Ln]a[L2, L2, . . . , Ln]a.

2. Local geometric version Let C ⊂ Rn be a strongly convex
cone. A compact set A ⊂ C is called co-convex body if C \ A
is convex. Put A⊕B = C \ [(C \ A) + C \B].

The set of co-convex bodies with the operation ⊕ is a comuta-
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tive semigroup. It’s Grothendieck group is a real vector space
BL(C).

Let VC be the homogeneous degree n polynomial on BL(C)
such that VC(A) is equal to the volume of a co-convex body A.

The mixed volume VC(Ai1 . . . , Ain) of co-convex setsAi1 . . . , Ain)
is the value of the polarization of VC on the n-tupleAi1, . . . , Ain.

Theorem 10. (Local Alexandrov–Fenchel inequali-
ty) VC(A1, A2, . . . , An)2 ≤ VC(A1, A1, . . . , An)VC(A2, A2, . . . , An).

3. For L ∈ K the Newton–Okounkov body ∆(AL) strongly de-
pends on a choice of Zn-valued valuation v on C(X). If X is
equipped with a reductive group action and if one is interested
only in the invariant subspaces L ∈ K, then one can use the
freedom to make all results more precise and explicit

4. Another result of the theory: one can prove analogues of Fujita
approximation theorem for semigroups of integral points and

15



graded algebras, which implies a generalization of this theorem
for arbitrary linear series.
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