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This talk is dedicated with great affection to

Moment Problems
which have enriched my understanding of mathematics
tremendously over the years.

And thanks also to the

Organizers
and the supporting organizations for allowing me an opportunity to
travel 38% of the way around the world to express this gratitude.
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The story begins with Math 143, Functional Analysis, taught by
Prof. W.A.J. Luxemburg at Caltech in 1972-1973, during my
senior year of college. We learned about the Jordan-von Neumann
Theorem in this class, and I was immediately smitten:

Theorem (Jordan-von Neumann)

Suppose X is a Banach space, and the parallelogram law holds for
all x , y ∈ X :

||x + y ||2 + ||x − y ||2 = 2(||x ||2 + ||y ||2).

Then X is a Hilbert space.

Sticking to the real case, one proof is to define a prospective inner
product by (x , y) = 1

2(||x + y ||2 − ||x ||2 − ||y ||2) and then establish
that it has all the properties you want from an inner product. This
is done by manipulating instances of the parallelogram law.
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Another approach is to rewrite the parallelogram law as a second
difference equation:

||x + y ||2 − 2||x ||2 + ||x − y ||2 = 2||y ||2

=⇒ ||x + 3y ||2 − 3||x + 2y ||2 + 3||x + y ||2 − ||x ||2 = 0

It is not hard to show that if this holds for all elements x , y ∈ X ,
then for all x , y , ||x + ty ||2 = A(x , y) + 2B(x , y)t + C (x , y)t2; it is
immediate that A(x , y) = ||x ||2,C (x , y) = ||y ||2 and the task is to
verify that B(x , y) is an inner product. Again this can be done by
formal manipulations.

Attempts to generalize this result became my PhD thesis in Banach
spaces. To be honest, there wasn’t much functional analysis in it.
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Theorem (Thesis 76; Pac.J.Math. 78,79)

Suppose X is a Banach space, and there exist constants
ak , ck(j) ∈ C so that for all xj ∈ X :

n∑
k=1

ak ||ck(0)x0 + · · ·+ ck(n)xn||p = 0.

Then p = 2m is an even integer and for all x , y ∈ X and real t,
||x + ty ||2m is a polynomial in t of degree p.
Conversely, if ||x + ty ||2m is a polynomial in t for all x , y ∈ X , then
the identity holds iff it holds over C; i.e, for uj ∈ C:

n∑
k=1

ak |ck(0)u0 + · · ·+ ck(n)un|2m = 0.

The proof relies on repeatedly substituting into the identity and
transforming it into an n-th difference equation (Willson, 1918).
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Various other generalizations of the Jordan-von Neumann Theorem
already existed, usually with p = 2. The next task was to come up
with examples. I’ll skip the identities themselves, which can be
found in the indicated papers. What about spaces?

Let P2m denote the set of Banach spaces for which ||x + ty ||2m is
a polynomial in t. Suppose p = 2m is even; consider L2m(X , µ).
Then

||f +tg ||2m =

∫
X
|f +tg |2mdµ =

∫
X

(|f |2+t(f ḡ+f̄ g)+t2||g ||2)mdµ.

Thus, Lp(X , µ) ∈ P2m. Are these the only ones (up to isometry)?
In order to answer this question, we need to talk about the possible
polynomials p(t) = ||f + tg ||2m. Every complex L2m(X , µ) can be
embedded in m + 1 copies of a real L2m(X , µ), so it will suffice to
restrict our attention to the real case.
The following is not hard, and generalizations to more variables.

Bruce Reznick University of Illinois at Urbana-Champaign From Banach spaces to moments to positive polynomials



Various other generalizations of the Jordan-von Neumann Theorem
already existed, usually with p = 2. The next task was to come up
with examples. I’ll skip the identities themselves, which can be
found in the indicated papers. What about spaces?
Let P2m denote the set of Banach spaces for which ||x + ty ||2m is
a polynomial in t. Suppose p = 2m is even; consider L2m(X , µ).
Then

||f +tg ||2m =

∫
X
|f +tg |2mdµ =

∫
X
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Theorem

Suppose p ∈ R[t] is given and a proposed norm is defined on a
vector space X = span(x , y) by ||x + ty ||2m = p(t). Then X is a

Banach space if and only if p(t) ≥ 0 and p
1
2m is a convex function

of t.

The first theorem is that any two dimensional space in P4 is an L4

space. I will explain the attribution later.

Theorem (& Dmitriev)

If deg p = 4, p(t) ≥ 0 and p1/4 is convex, then there exist real
constants so that

p(t) = (b1 + c1t)4 + (b2 + c2t)4 + b4
3.

If X is a space with three atoms of weight 1, and the pair (f , g)
takes the values (b1, c1), (b2, c2), (b3, 0) at these atoms, then
||f + tg ||4 = p(t). A 2-dimensional X ∈ P4 is embeddable in L4.
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If 2m ≥ 6, then (t2m + t2 + 1)1/2m is convex, but

t2m + t2 + 1 = ||f + tg ||2m =

∫
X

(f + tg)2mdµ =⇒

0 =

∫
X

f 2m−4g4dµ, 1 =

(
2m

2

)∫
X

f 2m−2g2dµ

Since 2m− 4 > 0, the 1st equation implies that fg = 0 µ-ae, which
contradicts the 2nd: the space is not embeddable in any L2m.

Also, ||x + ty + uz ||4 = 1 + 6(t2 + u2) + (t2 + u2)2 defines a
perfectly fine Banach space X , but

1 + 6(t2 + u2) + (t2 + u2)2 =

∫
X

(f + tg + uh)4dµ =⇒∫
f 4 =

∫
g4 =

∫
h4 =

∫
f 2g2 =

∫
f 2h2 = 1,

∫
g2h2 =

1

3
.

Cauchy-Schwartz and the first five identities imply that f 2 = g2 =
h2 µ-ae, which contradicts the last. Alternatively, we observe that∫

(f 2 − g2 − h2)2dµ = 1 + 1 + 1− 2(1)− 2(1) + 2(13) = −1
3 . So X

is not embeddable in L4 but every proper subspace of X is.
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These examples appeared in my thesis, without reference to the
moment problem, but while writing the work up for publication,
my ignorance became clear. J. H. B. Kemperman was a very
helpful correspondent. Later, I inhaled the relevant chapters of
Akhieser and Krein and “borrowed” their ideas wherever possible.

We have (leaving aside the set where f = 0 and using Hölder to
justify the convergence of the integrals),

p(t) =
2m∑
k=0

(
2m

k

)
aktk =

∫
X

(f + tg)2mdµ ⇐⇒

ak =

∫
X

f 2m−kgkdµ =

∫
X

hkdν,

where h = g/f and dν = f 2mdµ. Let Φ(r) = ν({−∞, r)), then

ak =

∫ ∞
−∞

skdΦ, a2m ≥
∫ ∞
−∞

s2mdΦ,

which is precisely the classical form of the truncated Hamburger
moment problem.
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We see that p comes from an L2m space precisely if the Hankel
matrix of its coefficients is psd. It is not hard to use Riemann
approximation, Carathéodory’s Theorem and Bolzano-Weierstrass
to show that any solution can be realized as a finite set of point
masses, so the generating functions of moment sequences are
precisely the sums of powers of linear forms.

It is also a natural question to now look at the polynomials p of

degree 2m for which p
1
2m is convex. They are in a category of

cones I called “blenders” and wrote about in a collection which
Mihai co-edited in memory of Julius Borcea.
One of the weirdest results in my thesis was that for degree 6, the

extremal sextics for which p
1
6 is convex are the sixth powers and

polynomials derived from

φλ(t) = 1 + 6λt + 15λ2t2 + 20λ3t3 + 15λ2t4 + 6λt5 + t6,

for 0 < |λ| ≤ 1
2 . (That is, φλ behaves like (1 + λt)6 near 0 and

(t + λ)6 near infinity.)
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In going through MathSciNet to write the blenders paper, I was
astonished to find that this result (and the one on quartics) had
been published a few years before my work, though fortunately for
me, it wasn’t reviewed in MathSciNet until after my thesis was
safely deposited (and then in [52] which made it hard to find.)

MR0467523 (57 #7379) Dmitriev, V. I., The structure of a cone in
a five-dimensional space. (Russian) Voronez. Gos. Univ. Trudy
Naucn.-Issled. Inst. Mat. VGU Vyp. 7 (1973). (Reviewer: Ju.
Saskin (RZMat 1974 #8 B618)

V. I. Dmitriev, a student of Selim Krein (Mark Krein’s brother) at
Kharkov University, published articles on this topic in 1973 and
1991 (which our librarians found for me in Russian). There are two
V. I. Dmitirievs in MathSciNet and this one seems to be at Kursk
State Technical University. In the 1991 paper, he wrote “I am not
aware of any other articles on this topic, except” his earlier one. I
made unsuccessful efforts to contact him, both by postal mail and
email, the latter via Peter Kuchment, another student of S. Krein.
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Moment theory leads to some nice inequalities, especially if we
think mainly of point masses. For example, the non-negativity of
the determinant of the 2× 2 Hankel matrix gives ...

Theorem (Cauchy-Schwarz)

0 ≤
∣∣∣∣ ∑ a2k

∑
akbk∑

akbk
∑

b2
k

∣∣∣∣ =
∑
i<j

(aibj − ajbi )
2

This continues in higher degree, but the results don’t seem to be
as well-known.

Theorem

0 ≤

∣∣∣∣∣∣
∑

a4k
∑

a3kbk
∑

a2kb2
k∑

a3kbk
∑

a2kb2
k

∑
akb3

k∑
a2kb2

k

∑
akb3

k

∑
b4
k

∣∣∣∣∣∣
=
∑

i<j<k

(aibj − ajbi )
2(aibk − akbi )

2(ajbk − akbj)
2.
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The moment characterization is also useful in proving inequalities
for products of power sums. Many classical inequalities follow from
convexity and don’t seem to be effective in finding lower bounds of
products. Power sums of real numbers represent moments with
measures containing a large number of unit point masses.

Theorem (Pac.J.Math.83)

For real xi ,
(
∑n

j=1 xj)(
∑n

j=1 x3
j )

n(
∑n

j=1 x4
j )

> −1

8

where the constant −1
8 is best-possible and never achieved.

Sketch of proof: Normalize to a0 = a4 = 1. It is a calculus exercise
(optimization!) to show that∣∣∣∣∣∣

1 a1 a2
a1 a2 a3
a2 a3 1

∣∣∣∣∣∣ ≥ 0 =⇒ a1a3 ≥ −
1

8
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Up to scaling, equality holds uniquely if a0 = a4 = 1, a1 = 1√
8

,

a3 = − 1√
8

and a2 = 1
2 . An extremal example occurs only if µ is a

measure with two atoms of measure in ratio (2 +
√

3)2 /∈ Q. Thus,
it can only be approximated by unit point masses but never
achieved.

Different methods in the same paper show that

max

(
(
∑n

j=1 xj)(
∑n

j=1 x3
j )

(
∑n

j=1 x2
j )2

)
=

3
√

3

16
n1/2 +

5

8
+O(n−1/2)

min

(
(
∑n

j=1 xj)(
∑n

j=1 x3
j )

(
∑n

j=1 x2
j )2

)
= −3

√
3

16
n1/2 +

5

8
+O(n−1/2)

Moment methods are not useful here, because a1a3
a22

is unbounded.
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After taking a job, and beginning to write my thesis up for
publication, I read somewhere that the reason the multidimensional
moment problem was hard was that there were non-negative
polynomials in several variables which were not sums of squares,
citing Robinson’s example. But where did I see it? Any ideas?
There wasn’t much literature. Motzkin’s article was available in a
conference proceedings. I wrote R. M. Robinson, and he sent me a
reprint of his hard-to-find article. He also told me I should write
his colleague T. Y. Lam. I did, and that week changed my life in
several wonderful ways.

M. D. Choi and T. Y. Lam defined the cones Pn,2m and Σn,2m of
psd forms of degree 2m in n variables and sums of squares. They
proved that these were closed convex cones. Hilbert’s 1888 proof
that there exist forms in P3,6 \ Σ3,6 needs that Σ3,6 is closed. The
proof specifically used the argument that any finite sum of squares
of ternary cubics is a sum of 28 =

(6+3−1
6

)
squares of ternary

cubics. This is “Carathéodory’s Theorem”. Carathéodory, a future
PhD student at Göttingen, was 15 in 1888.
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It is natural when looking at cones to consider their duals, but one
needs an inner product. The moment problem provided an obvious
candidate. I defined the cone Qn,2m and “proved” that Pn,2m and
Qn,2m are dual under the Fischer inner product, but this fact had
been staring me in the face from my reading in Akhieser-Krein and
elsewhere, which needed only trivial modifications: replace the
given moments with their generating polynomial.

Let I(n, d) = {(i1, . . . , in) : 0 ≤ ik ∈ Z,
∑

ik = d} and for
i ∈ I(n, d) write the multinomial coefficient c(i) = d!

i1!...in!
. Write

x i = x i1
1 . . . x

in
n and for a real form p of degree d in n variables,

scale the coefficients by:

p =
∑

i∈I(n,d)

c(i)a(p; i)x i

Then the Fischer inner product is defined by

[p, q] =
∑

i∈I(n,d)

c(i)a(p; i)a(q; i).
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If q is the generating function of (X , µ), then [p, q] =
∫

pdµ.
This inner product has a huge number of algebraic properties as
well. If you think about point masses and for α ∈ Rn define
(α·)d = (α · x)d , then it is easy to see that

[p, (α·)d ] = p(α).

Define the d-th order differential operator q(D) in the obvious
multinomial way:

q(D) =
∑

i∈I(n,e)

c(i)a(q; i)
(

∂
∂x1

)i1
· · ·
(

∂
∂xn

)in
.

For i , j ∈ I(n, d), it is easy to see that D i (x j) = 0 if i 6= j and

D i (x i ) =
n∏

i=1

ik !.

It follows that q(D)p = d![p, q]. The advantage of this definition
is that it is meaningful when p and q have different degrees.
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Classically, p is apolar to q if q(D)p = 0. The inner product
satisfies these properties:

If f ∈ He(Cn) and g ∈ Hd−e(Cn), then

d![fg , p] = (fg)(D)p = f (D)g(D)p = e![f , g(D)p]

If e ≤ d and g ∈ Hd−e(Cn), then

g(D)(α·)d =
d!

e!
g(α)(α·)e .

p is apolar to (α·)d iff p(α) = 0.
p is apolar to g(x)(α·)d−e for every g ∈ He(Cn) iff all e-th
order derivatives of p vanish at α iff p vanishes to e-th order
at α.
If deg q ≤ deg p and q(D)p = 0, then all multiples of q in
Hd(Cn) are apolar to p.
If q is irreducible and deg p = d , then q(D)p = 0 iff
p =

∑
(αk ·)d , where αk ∈ {q = 0}. (The “Fundamental

Theorem of Apolarity”; known pre-Hilbert, but needs
Nullstellensatz for a rigorous proof.)
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We have that Σn,m ( Pn,m unless n = 2,m = 2 or (n,m) = (3, 4).
It follows that Qn,2m = P∗n,m ( Σ∗n,2m in those cases. But what is

Σ∗n,2m. Again, this is almost trivial: p ∈ Σ∗n,2m iff [p, h2] ≥ 0 for all
squares of forms h of degree m.

h(x) =
∑

`∈I(n,m)

t(`)x` =⇒ [p, h2] =
∑
`,`′

a(p; `+ `′)t(`)t(`′),

Holy Hankel! Sylvester had already defined this quadratic form for
ternary quartics and called it the catalecticant.
An even symmetric sextic can be written as

p(x1, . . . , xn) = a
(∑

x2
i

)3
+ b

(∑
x2
i

)(∑
x4
i

)
+ c

(∑
x6
i

)
Let p̂(t) = at3 + bt2 + ct; if xk has k 1’s and n − k 0’s, then
p(xk) = p̂(k).
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Theorem (CLR,87)

p ∈ Pn,6 ⇐⇒ p̂(t) ≥ 0 for t ∈ {1, 2, . . . , n}
p ∈ Σn,6 ⇐⇒ p̂(t) ≥ 0 for t ∈ {1} ∪ [2, n]

For example, the Robinson form R ∈ P3,6 \ Σ3,6 has
R̂(t) = 1

2(t − 2)(t − 3). With a bit more work, we can use this
result to calculate the even symmetric sextics in the dual cone.

Theorem (Memoir,92)

(x2 + y2 + z2)3 − λ(x6 + y6 + z6) ∈ P∗3,6 = Q3,6 ⇐⇒ λ ≤ 2
3 .

(x2 + y2 + z2)3 − λ(x6 + y6 + z6) ∈ Σ∗3,6 ⇐⇒ λ ≤ 7
10 .
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Here are a few auto-plagiarized slides on Sylvester’s theorem about
the expression of binary forms as sums of powers of linear forms.
This is the one dimensional moment problem with complex weights
and measures were allowed. Nevertheless, if the Sylvester method
is used carefully, one can solve moment problems in one variable on
the real line, but with negative weights not ruled out, a priori.

In one very special family of case, we are able to get quite detailed
information about the solutions of moment problems with discrete
weights over C. This ties in with a beautiful subject in
combinatorics called “spherical designs”.
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Theorem (Sylvester, 1851)

Suppose p(x , y) =
∑d

j=0

(d
j

)
ajx

d−jy j ∈ F [x , y ] ⊂ C[x , y ] and

h(x , y) =
∑r

t=0 ctx
r−ty t =

∏r
j=1(βjx − αjy) is a product of

pairwise distinct linear factors, αj , βj ∈ F . Then there exist λk ∈ F
so that

p(x , y) =
r∑

k=1

λk(αkx + βky)d

if and only if
a0 a1 · · · ar
a1 a2 · · · ar+1
...

...
. . .

...
ad−r ad−r+1 · · · ad

 ·


c0
c1
...

cr

 =


0
0
...
0

 .
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Some notes on the proof:

This is an algorithm! Given p, for increasing r , write the
coefficients of p in the Hankel matrix, and look for null
vectors c corresponding to polynomials with distinct roots in
F . (Hankel was 12 years old in 1851.)

Since (β ∂
∂x − αj

∂
∂y ) kills (αx + βy)d , if h(D) is defined to be∏r

j=1(βj
∂
∂x − αj

∂
∂y ), then

h(D)p =
d−r∑
m=0

d!

(d − r −m)!m!

(
d−r∑
i=0

ai+mci

)
xd−r−mym

The coefficients of h(D)p are, up to multiple, the rows in the
matrix product, so the matrix condition is h(D)p = 0. Each
linear factor in h(D) kills a different summand, and dimension
counting takes care of the rest.

If h has repeated factors, see Gundelfinger’s Theorem (1886).
A factor (βx − αy)` gives a summand (αx + βy)d−(`−1)q,
where q is an arbitrary form of degree `− 1.
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Some notes on the proof:

This is an algorithm! Given p, for increasing r , write the
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Here is an example of Sylvester’s Theorem in action. Let

p(x , y) = x3 + 12x2y − 6xy2 + 10y3 =(
3

0

)
· 1 x3 +

(
3

1

)
· 4 x2y +

(
3

2

)
· (−2)xy2 +

(
3

3

)
· 10 y3

We have (
1 4 −2
4 −2 10

)

·

 2
−1
−1

 =

(
0
0

)
and 2x2 − xy − y2 = (2x + y)(x − y), so that

p(x , y) = λ1(x − 2y)3 + λ2(x + y)3.

In fact, p(x , y) = −(x − 2y)3 + 2(x + y)3.
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The next simple example is p(x , y) = 3x2y . Note that

(
0 1 0
1 0 0

)
·

c0
c1
c2

 =

(
0
0

)
=⇒ c0 = c1 = 0

so that h would have to have repeated factors, and p is not a sum
of two cubes. Similarly, xd−1y requires d d-th powers.

As a side-note, Sylvester’s Theorem allows one to compute the
rank of a form over different fields: for example, the quintic
3x5 − 20x3y2 + 10xy4 = x5 + (x + iy)5 + (x − iy)5 is a sum of
three 5-th powers over Q[i ], four 5-th powers over Q[

√
−2] and

five 5-th powers over any real field. This last fact follows from a
different theorem of Sylvester related to Descartes’ Rule of Signs,
which can be found in Pólya-Szegö.
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There is a complete parameterization of (x2 + y2)m as a sum of
m + 1 2m-th powers; m + 1 is the minimal number.

Theorem (“Length”,13)

The representations of (x2 + y2)m as a sum of m + 1 2m-th
powers over C are given by(

2m

m

)
(x2 + y2)m

=
1

m + 1

m∑
j=0

(
cos( jπ

m+1 + θ)x + sin( jπ
m+1 + θ)y

)2m
,

θ ∈ C.

The earliest version I have found of this identity is for real θ only,
by Avner Friedman, from the 1950s.
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This allows for the complete solution of certain moment problems
over R. For example, if m = 2 and

a0 = 1, a1 = 0, a2 =
1

3
, a3 = 0, a4 = 1,

then ak = c1rk1 + c2rk2 + c3rk3 for 0 ≤ k ≤ 4 precisely when (up to
permutation):

c1 =
16

18(1 + T 2)2
, c2 =

(1−
√

3T )4

18(1 + T 2)2
, c3 =

(1 +
√

3T )4

18(1 + T 2)2

and

r1 = T , r2 =

√
3 + T

1−
√

3T
, r3 =

−
√

3 + T

1 +
√

3T

The identities are formally true whether T is real or complex.
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In higher variables, there is a generally non-constructive theorem of
Hilbert, which is essential to his analysis of Waring’s Problem:

Theorem (Hilbert,1909)

For all n, r , let N =
(n+2r−1

n−1
)
. Then there exist 0 < λk ∈ Q and

αkj ∈ Z, 1 ≤ k ≤ N, 1 ≤ j ≤ n, such that

N∑
k=1

λk(αk1x1 + · · ·+ αknxn)2r = (x2
1 + · · ·+ x2

n )r

There are “constructive” versions, by Hausdorff and Stridsberg,
which require knowing the roots of Hermite polynomials. The
fundamental reason this is true is that the “average” value of
(α · x)2r (as α is integrated over the unit sphere in the natural
measure) turns out to be a multiple of (x2

1 + · · ·+ x2
n )r .
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It can be shown that the smallest possible N for which there exists
a (real) identity:

N∑
k=1

(αk1x1 + · · ·+ αknxn)2r = (x2
1 + · · ·+ x2

n )r

is
(n+r−1

n−1
)

and that, in the case this bound is met, a rescaled copy

of {αk} lives on Sn−1. In the theory of spherical designs, as
developed by Delsarte, Goethals and Seidel in the 1970s, these are
called “tight spherical (n, 2r + 1)-designs”. Tight spherical designs
are known to exist when n = 2, 2r + 1 ≤ 3 and
(n, 2r + 1) = (3, 5), (7, 5), (23, 5), (8, 7), (23, 7), (24, 11), and
probably, but not yet provably, no others. When they exist, they
are unique up to rotation. These are always deeply interesting
combinatorial sets; the (11, 24) tight spherical design consists of
the 196,560 minimal vectors of the Leech Lattice in R24.
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The unique tight spherical (3, 5)-design is the icosahedron.

Theorem (Memoir,92)

The equation

(x2 + y2 + z2)2 =
6∑

k=1

(akx + bky + ckz)4 (1)

holds if and only if the 12 points ±(ak , bk , ck) are the vertices of a
regular icosahedron inscribed in a sphere with center 0 and radius
(5/6)1/4.

As an explicit implementation of this (up to scaling) using the

Schönemann coordinates for the icosahedron, we write Φ = 1+
√
5

2 ,
and note that Φ4 + 1 = 3Φ2. Then

(x + Φy)4 + (x − Φy)4 + (y + Φz)4 + (y − Φz)4

+(z + Φx)4 + (z − Φx)4 = 6Φ2(x2 + y2 + z2)2
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Thank you for your attention
and your patience.
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