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Abstract

We study solvability of convolution equations for functions
with discrete support in Rn, a special case being functions with
support in the integer points. The more general case is of
interest for several grids in Euclidean space, like the
body-centered and face-centered tesselations of three-space.

The theorem of existence of fundamental solutions by Boor,
Höllig & Riemenschneider is generalized to general discrete
supports using only elementary methods. We also study the
asymptotic growth of sequences and arrays using the Fourier
and Fenchel transformations.
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Introduction

Many sequences and arrays are defined recursively, like

f (x) = a1f (x−1) + a2f (x−2) + · · ·+ amf (x−m),

x ∈ N, x > x0;

f (x ,y) = a1,0f (x−1,y) + a0,1f (x ,y−1) + a1,1f (x−1,y−1) + · · ·
+ am,mf (x−m,y−m),

(x ,y) ∈ N2, x > x0, y > y0,

typically with some initial conditions. These sequences and
arrays can conveniently be described as solutions to convolution
equations on Z and Z2, respectively.
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The purpose here is to study convolution equations of the
general form ν∗w = ρ, where w is the unknown function, and
where ν and ρ are given functions defined on Rn and of finite
support—sometimes we shall relax the latter condition. We thus
go from functions on Zn (the most studied discretization) to
more general functions.

This allows, for instance, discretizations corresponding to other
tessellations of Rn, like the body-centered cubic (bcc) grid and
the face-centered cubic (fcc) grid in R3 studied by Strand
(2008) and others. These are periodic, but coming to
quasicrystals, we must allow for non-periodic functions.

In fact, there is a scale of regularity, starting with Zn as the most
regular set and ending with arbitrary discrete sets. Somewhere
between these are the quasicrystals. How can we measure this
regularity?
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We shall study the solutions with the help of the Fourier and
Fenchel transformations. Infimal convolution and the Fenchel
transformation can be viewed as tropicalizations of usual
convolution and the Fourier (or Laplace) transformation,
respectively—tropicalization is in itself a most interesting
transformation.

In particular we shall prove that convolution equations have
fundamental solutions, a result proved by de Boor, Höllig &
Riemenschneider (1989). Our method of proof is elementary,
while theirs relies on a modification to the discrete case of
Hörmander’s proof (1958) of the division theorem for
distributions, which in turn builds on the Tarski–Seidenberg
theorem. See also Łojasiewicz (1958, 1959).
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Our result is more general, since we allow finite supports
consisting of arbitrary points in Rn, not necessarily integer
points, and also some infinite discrete supports.

We get a fundamental solution with support in a strict convex
cone and in general with exponential growth there, while the
solution of de Boor et al. is of polynomial growth but with
support spread out. There is often a trade-off between growth
and information on the support; in this way our solutions are
more like the solutions to hyperbolic equations and more suited
to initial-value problems.
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Notation

We shall use R+ to denote the set of all positive real numbers
and R! = [−∞,+∞] = R∪{−∞,+∞} to denote the set of
extended real numbers, adding two infinities.

Addition R2 3 (x ,y) 7→ x + y ∈ R can be extended in two
different ways to operations (R!)

2→ R!: the upper sum x +· y
is defined as +∞ if one of the terms is equal to +∞, and the
lower sum x +· y is defined as −∞ if one of the terms is equal to
−∞. We use x ∧ y for the minimum of x and y ; x ∨ y for the
maximum. Under these operations Z and R are lattices, and Z!

and R! complete lattices.
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The indicator function indA =− logχA, where χA is the
characteristic function, will be used.

We shall use the lp-norm ‖x‖p = (∑j |xj |p)1/p, 1 6 p < +∞, and
the l∞-norm ‖x‖∞ = supj |xj | for x ∈ Rn. We shall use these
norms also for functions, e.g., ‖f‖1 = ∑x |f (x)|. When any norm
can serve, we write only ‖x‖. The inner product is written
ξ · x = ξ1x1 + · · ·+ ξnxn, (ξ,x) ∈ Rn×Rn.
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In a metric space X with metric d we shall denote by B<(c, r)
and B6(c, r) the open ball and the closed ball with center at
c ∈ X and radius r ∈ R, respectively, thus

B<(c, r) = {x ∈X ; d(x ,c)< r} and B6(c, r) = {x ∈X ; d(x ,c)6 r}.

The closure and interior of a subset A of a topological space
will be denoted by A and A◦, respectively. Thus in Rn,
B<(c, r) = B6(c, r) if r is positive, and B6(c, r)◦ = B<(c, r) for
all real r .
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Classes of discrete sets

Discrete sets and uniformly discrete sets

Following Bourbaki (1961:16) we shall say that a subset A of a
metric space X with metric d is discrete if for each point a ∈ A,
a is the only point in B<(a, r) for some positive r . It is called
uniformly discrete if r can be chosen independently of a.

For any subset A of X we define a function

distA(x) = infa(d(a,x); a ∈ A, a 6= x), x ∈ X .

Thus A is discrete iff distA is positive everywhere, and A is
uniformly discrete iff its restriction (distA)|A to A is bounded
from below by a positive constant.
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Given a measurable set C ⊂ Rn with 0 < vol(C) < +∞, we
define the mean density in C of a subset A of Rn as the quotient

card(A∩C)

vol(C)
.

The upper and lower density of a subset A of Rn is defined as
the upper and lower limit, respectively, of the mean density in
C = B6(0, r) as r tends to +∞. The upper density of a
uniformly discrete set in Rn is clearly finite.
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Uniformly spanning sets

Another property is

∃r ∈ R ∀x ∈ X ∃a ∈ A d(a,x) 6 r .

We shall say that A is uniformly spanning in this case.
Equivalently, distA is bounded. In Rn, this means that
A + B6(0, r) = Rn for some r .

Clearly the lower density of a uniformly spanning set in Rn is
positive.
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Delone sets

A set A is said to be a Delone set (named for Boris
Nikolaeviq Delone, 1890–1980) if is uniformly discrete and
uniformly spanning. This means that there exist positive
numbers r0 and r1 such that

card(B6(c, r0)∩A) 6 1 6 card(B6(c, r1)∩A), c ∈ X .

Quasicrystals are, or rather define by their locations, Delone
sets.
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Temperate discreteness

Maybe it is of interest to define in Rn temperate versions of the
properties just defined: we shall say that A⊂ Rn is temperately
discrete if distA is positive and ((distA)|A)−1 is bounded from
above by a polynomial. It follows that the mean density in
B6(0, r) is bounded from above by a polynomial in r .

We shall also consider the larger class of sets such that
1/distA(a), a ∈ A, grows slower than any exponential function
eε‖a‖ , for instance like e‖a‖

α

for some α, 0 < α < 1.
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Asymptotic density

Also for uniformly spanning sets we have a weaker version in
Rn: ⋃

a∈A

B6(a,ϕ(a)) = Rn,

for some function ϕ such that ϕ(x)/‖x‖ tends to zero as
‖x‖ →+∞. We shall say that A is asymptotically dense if this
is the case.

Equivalently, distA is bounded from above by such a function ϕ.
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Combining the two, we obtain a more general kind of Delone
sets, the temperate Delone sets, defined by the requirement that

card(B6(c, r0(c))∩A)6 16 card(B6(c, r1(c))∩A), c ∈Rn,

where r−1
0 is bounded by a polynomial and r1(c)/‖c‖ tends to

zero as ‖c‖ →+∞.
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Convolution

Let G be an abelian group—most of the time we shall take
G = Zn or G = Rn. We define the convolution product h = f ∗g
of two functions f ,g : G→ C by

h(x) = ∑
y+z =x

f (y)g(z), x ∈ G,

provided the sum is finite for all x . We can define three kinds of
algebras satisfying this provision.

The Kronecker delta δa, defined by δa(a) = 1 and δa(x) = 0 for
x 6= a, satisfies δa ∗δb = δa+b. We shall write just δ for δ0,
which is a neutral element for convolution: f ∗δ = f for all
functions f .
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Case α′. First we have the algebra C[G] of all functions G→ C
with finite support. (The support of a function is here just the
set where it is nonzero.)

We always have

supp(f ∗g)⊂ supp f + suppg, f ,g ∈ C[G],

in general with a strict inclusion. However, if f ,g are
nonnegative, or more generally if the set {f (y)g(z); y ,z ∈ G}
of all products of values of f and g is contained in a strict
convex cone in the complex plane, then we have equality:

supp(f ∗g) = supp f + suppg, f ,g ∈ C[G].
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When G = Rn or Zn, we have

cvxh(supp(f ∗g)) = cvxh(supp f )+cvxh(suppg), f ,g ∈C[Rn],

where cvxh(A) denotes the convex hull of a set A. This is easily
proved using induction over the dimension. It is a precise
quantitative form of the fact that the algebra does not have zero
divisors in this case. For some groups, like the cyclic groups
G = Zm = Z/mZ, the algebra C[G] does have zero divisors.
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The equation for the convex hulls of the supports corresponds to
the Titchmarsh support theorem for compactly supported
continuous functions or distributions on Rn, which, however,
does not have an easy proof.

The algebra C[Zn] is isomorphic to the algebra of Laurent
polynomials:

Pf (z) = ∑
x∈Zn

f (x)zx = ∑
x∈Zn

f (x)zx1
1 · · ·z

xn
n , z ∈ Cn,

and also to the algebra of trigonometric polynomials, putting
zj = eiζj :

f̂ (ζ) = ∑
x∈Zn

f (x)eiζ·x , ζ ∈ Cn.
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Case β′. For G = Rn, given a nonzero vector θ ∈ Rn, we
consider the algebra Aθ of all functions with discrete support
contained in {x ∈ Rn; θ · x > 0} and such that, for any r > 0,
there are only finitely many points in the support of f in the half
space {x ∈ Rn; θ · x 6 r}.

To make this tractable, we introduce the set Φ of all functions
ϕ : [0,+∞[→ [0,+∞[ which are superadditive:
ϕ(s) + ϕ(t) 6 ϕ(s + t), s, t > 0. We can for example take
ϕ(t) = tα, α > 1, or ϕ(t) = tψ(t), where ψ is a convex and
increasing function, e.g., ψ(t) = etα

, α > 1. We then take f with
support contained in the set

V ϕ

θ
= {x ∈ Rn; θ · x > 0, ‖x‖ 6 ϕ(θ · x)}, θ ∈ Rn, ϕ ∈ Φ.

We note that V ϕ

θ
+ V ϕ

θ
= V ϕ

θ
. When ϕ(t) = t we write

V id
θ = Vθ = {x ∈ Rn; ‖x‖ 6 θ · x}, θ ∈ Rn,

a strict convex cone.
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The product f (y)g(x− y) is nonzero only when both y and
x− y belong to V ϕ

θ
, which implies that y ∈ V ϕ

θ
∩ (x−V ϕ

θ
), a

bounded set for any given x , thus for only finitely many y .

The convolution product of two functions with support in V ϕ

θ

has its support in V ϕ

θ
: if x /∈ V ϕ

θ
, then, for every y , either y /∈ V ϕ

θ

or x− y /∈ V ϕ

θ
. Thus we get convolution algebras A

ϕ

θ
for every

ϕ and θ; the algebra Aθ is the union of all the A
ϕ

θ
when ϕ

varies.
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Case γ′. For G = Rn, the functions with discrete support in a
translate of a set V ϕ

θ
also form an algebra. When n = 1 it is even

a field. We can of course also take the union of V ϕ

θ
over all ϕ.

However, sometimes we need to define a convolution product in
other situations.

Case δ′. We can define a convolution product f1 ∗ · · · ∗ fk when
all factors except one have finite support.
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Case ε′. For G = Rn, we can define a convolution product
f1 ∗ · · · ∗ fk when all factors except one have their support,
assumed to be discrete, contained in translates of a set V ϕ

θ
and

the remaining one has its support, also discrete, contained in a
half space

{x ∈ Rn; θ · x > s}

for some real number s and with the same vector θ. Also here
we can take the union over all ϕ ∈ Φ.

In these four cases, the associative law holds. However,
associativity is a subtle property and can easily be lost:
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Example

Take f (x) = 1 for all x ∈ Z; g = δ−1−δ0 (a difference operator);
and h(x) = 1 for all x ∈ N, h(x) = 0 for x 6−1.

Then f ∗g = 0 (Case δ′) and (f ∗g)∗h = 0, while g ∗h = δ−1
(Case δ′) and f ∗ (g ∗h) = 1 6= 0.

Note that neither f ∗h nor f ∗g ∗h here can be defined in
accordance with any of the Cases α′–ε′.
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We shall study in particular convolution equations of the form
ν∗w = ρ, where ν and ρ have finite support (Case δ′), and also
when ν has its support in some V ϕ

θ
.

Case ζ′. We can also define a convolution product in some other
cases where the sum is infinite and has a good convergence.
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Solving convolution equations

Theorem

Let ν,ρ : Rn→ C be functions with finite support, ν 6= 0. Then
there is a function w : Rn→ C with discrete support which
solves the equation ν∗w = ρ.

Since ρ = ∑a ρ(a)δa, it is enough to solve ν∗wa = δa for
a ∈ suppρ and then form the finite linear combination
w = ∑a ρ(a)wa.

We first find a normal form for these equations.
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Lemma

Given ν,ρ of finite support and any point b ∈ suppν, define for
any function w,

u = (ν(b)w)∗δb−a and µ =−∑
x 6=b

ν(x)ν(b)−1
δx−b.

Then the equation
ν∗w = δa

has a solution w if and only if u solves the equation

(δ−µ)∗u = δ.

Moreover, if b is a vertex of cvxh(suppν), then 0 does not
belong to the convex hull of suppµ.
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Proof.

The equation ν∗w = δa can be written

δb ∗ (ν(b)w) + ∑
x 6=b

(ν(x)ν(b)−1
δx )∗ (ν(b)w) = δa,

equivalently

δ∗ (ν(b)w ∗δb−a) + ∑
x 6=b

(ν(x)ν(b)−1
δx−b)∗ (ν(b)w ∗δb−a) = δ.

We can now introduce u and µ as indicated.
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We note that the support of µ is contained in a strict convex
cone:

Lemma

Given any finite set A in Rn such that the origin does not belong
to the convex hull of A, there exists a vector θ ∈ Rn and a strict
convex cone K such that

A⊂ K ∩{x ∈ Rn; θ · x > 1}.

Proof.

In view of the Hahn–Banach theorem there exists a vector θ

such that every x ∈ A satisfies θ · x > 1. We can then take the
cone Vsθ, where s = supa∈A‖a‖(θ ·a)−1, provided A 6= Ø. (This
strict convex cone depends on the choice of norm and need not
be the smallest convex cone containing A.)
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We can generalize the existence theorem as follows.

Theorem

Let ρ : Rn→ C be a function with finite support and ν a function
with discrete support contained in a set b + V ϕ

θ
, where

b ∈ suppν, θ ∈ Rn, and ϕ ∈ Φ. Then there is a function
w : Rn→ C with discrete support which solves the equation

ν∗w = ρ.

If w(x) = 0 when θ · x � 0, then suppw ⊂−b + V ϕ

θ
.
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Proof. In view of the normal form it suffices to study the
equation (δ−µ)∗u = δ. Define

v = δ + µ + µ∗µ + µ∗µ∗µ + · · ·=
∞

∑
j=0

µ∗j .

Since we have supp(ν−ν(b)δb)⊂ {x ∈ Rn; θ · x > θ ·b} and
the support of ν is discrete, we get suppµ⊂ {x ∈ Rn; θ · x > r}
for some positive r . Then

suppµ∗j ⊂ {x ∈ Rn; θ · x > jr}, j ∈ N,

which implies that, in each bounded set, the sum ∑µ∗j is finite.
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We have (δ−µ)∗ v = δ = (δ−µ)∗u. Here v(x) vanishes when
θ · x < 0. If also u(x) vanishes when θ · x � 0, then it follows
that v = u.

The support of µ∗j is included in V ϕ

θ
+ V ϕ

θ
+ · · ·+ V ϕ

θ
(j terms),

which is equal to V ϕ

θ
in view of our assumption that ϕ is

superadditive. Therefore also the support of v is contained in
V ϕ

θ
.
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Corollary

With ν, b, θ, and ϕ as in the theorem, let ρ now be any function
with discrete (possibly infinite) support. Then there is a solution
w to the equation ν∗ x = ρ which vanishes for θ · x � 0 in the
following cases.

1. If suppρ⊂ c + V ϕ

θ
for some c, then w has its support in

c−b + V ϕ

θ
.

2. If ρ∗δ−c ∈Aθ for some c, then w ∗δb−c ∈Aθ.

3. If the support of ρ is contained in a half space
{x ∈ Rn; θ · x > s}, then w has its support in the half space
{x ∈ Rn; θ · x > s−θ ·b}.
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In particular there is a fundamental solution, i.e., a function w
such that ν∗w = δ for certain choices of ν as indicated.

The formula ∑µ∗j lends itself to estimates of the solution.
However, it seems to be difficult to get estimates as good as
those to be presented later.
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The Fourier transformation

We define the Fourier transform f̂ of a function f : Rn→ C by

f̂ (ζ) = ∑
x∈Rn

f (x)eiζ·x

for those ζ ∈ Cn for which the sum has a good sense. We may
take f with support in Zn, but shall allow also functions defined
in Rn with more general support.

The Fourier transform of a convolution product is given by
(f ∗g)̂ = f̂ ĝ under suitable conditions on f and g. The
convolution formula (δ−µ)∗u = δ, where µ has finite support
yields

û(ζ) =
1

1− µ̂(ζ)
ζ ∈ Cn, Imζj large.
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We have adapted the signs here to the usual conventions
concerning Fourier series. For functions with support in Zn, the
Fourier inversion formula therefore becomes the formula for
retrieving the coefficients of the Fourier series, i.e., when
supp f ⊂ Zn,

f (x) = (2π)−n
∫ 2π

0
· · ·

∫ 2π

0
f̂ (ξ)e−iξ·x dξ1 · · ·dξn, x ∈ Rn.

Here ξ = (ξ1, . . . ,ξn) are n real variables.

However, if the series defining f̂ converges well, the formula is
valid for functions with arbitrary supports.
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Transforms of functions with support in Zn

For functions with support contained in Zn we can profit from
the arithmetic of integers to get easy estimates.

If f has its support in Nn and is of exponential growth, say
|f (x)|6 Ceσ·x , x ∈ Nn, for some real vector σ, then f̂ and |f |ˆ
are well defined and holomorphic in the domain defined by
Imζj > σj , j = 1, . . . ,n, and can be estimated by

|̂f (ζ)|6 ||f | (̂ζ)|6 C
n

∏
j=1

1

1−eσj−Imζj
, ζ ∈ Cn, Imζj > σj .

If all the σj are negative, the Fourier transform is defined in Rn,
but otherwise we have to go out into complex space.
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|f (x)|6 Ceσ·x , x ∈ Nn, for some real vector σ, then f̂ and |f |ˆ
are well defined and holomorphic in the domain defined by
Imζj > σj , j = 1, . . . ,n, and can be estimated by

|̂f (ζ)|6 ||f | (̂ζ)|6 C
n

∏
j=1

1

1−eσj−Imζj
, ζ ∈ Cn, Imζj > σj .

If all the σj are negative, the Fourier transform is defined in Rn,
but otherwise we have to go out into complex space.
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If f has its support in Nn and grows exponentially, we cannot
apply the inversion formula to f̂ , but to f̂θ, the Fourier transform
of fθ(x) = f (x)eθ·x , for a real vector θ satisfying θj + σj < 0,
where the σj are chosen so that |f (x)|6 Ceσ·x . We obtain

fθ(x) = f (x)eθ·x = (2π)−n
∫ 2π

0
· · ·

∫ 2π

0
f̂θ(ξ)e−iξ·x dξ1 · · ·dξn,

x ∈ Zn, where f̂θ(ζ) = f̂ (ζ− iθ), which means that for f̂ , the
integral goes over a cube in Rn translated in Cn by the
imaginary vector −iθ.
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We can generalize the estimate for f̂ to the following.

Lemma

Let f : Zn→ C have support in a cone K and satisfy an estimate
|f (x)|6 Ceσ·x for x ∈ K . Then the Fourier transform f̂ (ζ) is
holomorphic for Imζ in the interior of σ + K dual, where K dual is
the dual of K , defined as

K dual = {η ∈ Rn; η · x > 0 for all x ∈ K}.

52



Proof. By considering f (x)e−σ·x/C we are reduced to the case
σ = 0, C = 1. We shall thus prove that, if ‖f‖∞ 6 1, then f̂ is
well defined and holomorphic in Rn× iΛ, where Λ is the interior
of K dual. We have

|̂f (ζ)|6 ∑
x∈K∩Zn

e−η·x , ζ ∈ Cn, η = Imζ.

Define cones

Λτ = {η ∈ Rn; η · x > τ‖η‖‖x‖1 for all x ∈ K}, τ > 0.
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The union of all the Λτ rB<(0,ρ), τ > 0, ρ > 0, is equal to Λ.
Fix τ and ρ. Then, for Imζ = η ∈ Λτ, we obtain

|̂f (ζ)|6 ∑
x∈K∩Zn

e−τ‖η‖‖x‖1 6 ∑
x∈Zn

e−τ‖η‖‖x‖1 = ∑
x∈Zn

n

∏
j=1

e−τ‖η‖|xj |.

When τ,ρ > 0 and ‖η‖ > ρ, the last expression is equal to

n

∏
j=1

1 + e−τ‖η‖

1−e−τ‖η‖ 6
n

∏
j=1

1 + e−τρ

1−e−τρ
< +∞.

Thus f̂ is bounded in Rn + i(Λτ rB<(0,ρ)) for every positive τ

and ρ, and holomorphic in the interior, hence also holomorphic
in the union Rn + iΛ as claimed.

54



Theorem

Given a strict closed convex cone K , assume that a function
f : Zn→ C with support in K satisfies a family of estimates

|f (x)|6 Ceσ·x , x ∈ K , σ ∈ Σ,

for some subset Σ of Rn. Then the Fourier transform of f is
holomorphic in the union of all the sets Rn + i(σ + (K dual)◦),
σ ∈ Σ.
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If f has finite support, or more generally bounded support and if
‖f‖1 is finite, its Fourier transform is an entire function. When
studying holomorphy of a transform, such functions do not
influence the domain. This fact we can use to prove that f̂ is
holomorphic in a larger domain:

Theorem

Let f : Zn→ C be given and define Kr as the smallest closed
convex cone containing {a ∈ supp f ; ‖a‖ > r}, r > 0, and K∞ as
the intersection of all the Kr , 0 6 r < +∞. Given a vector σ such
that, for some cone L such that L◦ ⊃ K∞ r{0}, |f (x)|6 Ceσ·x

for all x ∈ L, the Fourier transform f̂ of f is holomorphic in

Ω = Rn + i(σ + (K dual
∞ )◦).
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Theorem

Given a function f : Zn→ C, define Kr , 0 6 r 6 ∞, as before
and assume that f satisfies a family of estimates

|f (x)|6 Ceσ·x , x ∈ Lσ, σ ∈ Σ,

for some subset Σ of Rn, where, for each σ ∈ Σ, Lσ is a cone
such that L◦σ ⊃ K∞ r{0}. Then the Fourier transform of f is
holomorphic in the union of all the sets Rn + i(σ + (K dual

∞ )◦),
σ ∈ Σ.
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The Fourier transform of functions with more general
support

By moving points in the support of a function to an integer
point nearby with larger norm we can get a result for functions
with arbitrary (not necessarily discrete support):

Theorem

Given f : Rn→ C, define

fZ(x) = ∑
a∈C(x)

|f (a)|, x ∈ Zn,

where C(x), x ∈ Zn, is the set of all a ∈ Rn such that daje= xj
when xj > 0, bajc= xj when xj < 0, and C(x) is empty when
xj = 0. If fZ satisfies an estimate |fZ(x)|6 Ceσ·x for x ∈ L∩Zn,
where L is the smallest closed convex cone which contains all
points x ∈ Zn such that C(x) is nonempty, then the Fourier
transform f̂ (ζ) is holomorphic for Imζ in the interior of σ + Ldual.
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So C(x), when nonempty, is a cube with vertex at
x ∈ (Zr{0}p)n and such that ‖a‖ 6 ‖x‖ for all a ∈ C(x).

The cone L spanned by the cubes C(x) can be large, since when
‖x‖ is small, the cube subtends a big angle as viewed from the
origin. But by removing points near the origin we can again get
a larger domain of holomorphy:
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Theorem

Given a function f : Rn→ C such that

∑
a∈Rn

‖a‖<r

|f (a)|

is finite for every r , define

fZ,r (x) = ∑
a∈C(x)

|f (a)|, x ∈ Zn,

where for ‖x‖ > r , C(x) is defined before, while C(x) = Ø when
‖x‖ < r . If fZ,r satisfies an estimate |fZ,r (x)|6 Ceσ·x for
x ∈ L∩Zn, where L is a closed convex cone such that L◦

contains K∞ r{0}, then the Fourier transform f̂ (ζ) is
holomorphic for Imζ in the interior of σ + (K∞)dual.
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We can also use an estimate for f itself if its support is
sufficiently sparse, and we also here can remove points near the
origin.

Theorem

Assume that the support A of a function f : Rn→ C is sparse in
the sense that C(x), x ∈ Zn contains a number of points in A
which grows slower than every exponential function eε‖x‖ , ε > 0.
Define Kr , 0 6 r 6 ∞, as before. If f satisfies an estimate
|f (x)|6 Ceσ·x for x ∈ L, where the interior of L contains
K∞ r{0}, then the Fourier transform f̂ (ζ) is holomorphic for
Imζ in the interior of σ + K dual

∞ .
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Infimal convolution

Tropicalization means, roughly speaking, that we replace an
integral or a sum by a supremum.

A typical example is the tropicalization of the lp-norm:

‖x‖p =
(
∑ |xj |p

)1/p is replaced by (sup |xj |p)1/p = sup |xj |= ‖x‖∞.

In this case we have convergence:

‖x‖p =
(
∑ |xj |p

)1/p→ sup
j
|xj |= ‖x‖∞ as p→+∞, x ∈ Rn.

63



Let us study the convolution product of two functions of the
form e−f :

e−h1(x) = ∑
y∈Rn

e−f (x−y)e−g(y), x ∈ Rn,

assuming that f ,g are equal to +∞ outside some discrete set. If
for instance f , g have their support in Zn and
f (x),g(x) > ε‖x‖−C, we have good convergence: Case ζ′.
The tropicalization of this convolution product is

e−h∞(x) = sup
y∈Rn

e−f (x−y)e−g(y), x ∈ Rn,

which can be written

h∞(x) = inf
y∈Rn

(f (x− y) + g(y)), x ∈ Rn.

Also in this case we have a nice convergence: If we define hp by

e−php(x) = ∑
y∈Rn

e−pf (x−y)e−pg(y), x ∈ Rn, p > 0,

then hp converges to h∞ as p→+∞.
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The function h∞ is the infimal convolution of f and g, denoted
by f ug. Here we of course need not assume that f and g are
equal to +∞ outside a discrete set. More generally, we define it
when f and g take values in R! using upper addition:

(f ug)(x) = inf
y∈Rn

(f (x− y) +· g(y)), x ∈ Rn.

The function ind{0} is a neutral element for u: f u ind{0} = f
for all f .

Of course we have also the supremal convolution defined as

(f tg)(x) = sup
y∈Rn

(f (x− y) +· g(y)), x ∈ Rn.

The superadditive functions in the class Φ can for example be
described by the inequality ϕtϕ 6 ϕ, understanding that
ϕ(t) =−∞ for t < 0.
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The Fenchel transformation

The Fenchel transform of a function f : Rn→ R! is defined as

f̃ (ξ) = sup
x∈Rn

(ξ · x− f (x)), ξ ∈ Rn.

Clearly ξ · x− f (x) 6 f̃ (ξ), which can be written as

ξ · x 6 f (x) +· f̃ (ξ), (ξ,x) ∈ Rn×Rn,

called Fenchel’s inequality. It follows that the second
transform ˜̃f satisfies ˜̃f 6 f . We have equality here if and only if f
is convex, lower semicontinuous, and takes the value −∞ only
if it is −∞ everywhere.
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If f is only defined on the integer points, we extend it as +∞ on
Rn rZn.

The Fenchel transformation f 7→ f̃ , named for Werner Fenchel
(1905–1988), is a tropical counterpart of the Fourier
transformation. This is perhaps even more obvious if we look at
the Laplace transform of a function g:
(L g)(ξ) =

∫
∞

0 g(x)e−ξxdx . If we replace the integral by a
supremum and take the logarithm, we get

log(Ltrop g)(ξ) = sup
x

(logg(x)−ξx) = f̃ (−ξ), f (x) =− logg(x).
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We have
(f ug)̃ = f̃ +· g̃ 6 f̃ +· g̃.

If ϕ and ψ are convex, then ϕ +· ψ is convex, but not always
ϕ +· ψ. However, when ϕ = f̃ and ψ = g̃, this is true: f̃ +· g̃ is
always convex, and is often equal to f̃ +· g̃. In fact equality holds
except for a few special cases.

This formula should be compared with (f ∗g)̂ = f̂ ĝ.
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Transforms of indicator functions: supporting functions

We define the indicator function of a set A as the function indA
which takes the value 0 in A and +∞ in its complement; thus
indA =− logχA, where χA is the characteristic function of A.

If f is an indicator function, then f̃ is positively homogeneous of
degree 1 as the supremum of a family of linear functions:

f̃ (ξ) = sup
x∈Rn

f (x)=0

ξ · x , ξ ∈ Rn.

Thus the Fenchel transform of an indicator function indA is
positively homogeneous of degree 1, and actually equal to the
supporting function HA of A, which is defined as

HA(ξ) = (indA) (̃ξ) = sup
x∈A

ξ · x , ξ ∈ Rn.
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Transforms of positively homogeneous functions

Conversely, if ϕ is positively homogeneous of degree one, then
ϕ̃ can take only the values 0, +∞, −∞. Indeed, if ϕ(tx) = tϕ(x)
for all t > 0, then tϕ̃ = ϕ̃ for all t > 0, and this is only true for
the three values 0, +∞, −∞. The value −∞ will not occur for
the functions we are studying, so then ϕ̃ is an indicator
function, ϕ̃ = indM for some set M.

If A is a set such that HA = (indA)˜= ϕ, then ϕ̃ is the second
Fenchel transform of indA, equal to the indicator function of the
closure cvxh(A) of the convex hull cvxh(A) of A.
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Transforms of indicator functions that are positively
homogeneous

Let f = indC be an indicator function which is also positively
homogeneous. Then C is a cone, and the Fenchel transform of f
is also both positively homogeneous and an indicator function,
say f̃ = indΓ, where Γ is a cone, necessarily closed and convex
since f̃ is lower semicontinuous and convex.

The dual of a cone C is a closed convex cone: Cdual =−Γ,
where indΓ = (indC) .̃
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Measuring the growth: The radial indicators

Definition

Given any subset A of Rn we define A∞ as the union of {0} and
the set of all x ∈ Rn r{0} such that there exists a sequence
(a(j))j of points in A with ‖a(j)‖ tending to +∞ and
a(j)/‖a(j)‖ → x/‖x‖.

If A = Zn, then A∞ = Rn. The same holds for all asymptotically
dense sets A.
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Definition

Given a function f : A→ C we define its upper radial indicator
as

pf (x) = limsup
a

‖x‖
‖a‖

log |f (a)|, x ∈ A∞ r{0},

where the limit superior is taken over all a ∈ A such that
‖a‖ →+∞ and a/‖a‖ → x/‖x‖. We define its lower radial
indicator as

qf (x) = lim inf
a

‖x‖
‖a‖

log |f (a)|, x ∈ A∞ r{0}.

Finally, we define pf (0) = qf (0) = 0.
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Proposition

Let f : A→ C be any function and let σ = (σ1, . . . ,σn) ∈ Rn.
Then the following four properties are equivalent.

(A). For every positive ε there exists a constant Cε such that

|f (x)|6 Cεeσ·x+ε‖x‖, x ∈ A.

(A′). The upper radial indicator of f satisfies

pf (x) 6 σ · x x ∈ A∞.

(A′′). The Fenchel transform of −pf satisfies (−pf ) (̃−σ) 6 0.

(A′′′). −σ ∈Mf , where Mf is the set such that (−pf )˜= indMf .
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Proposition

If µ : Rn→ C has finite support, then

pµ̂(ζ) = qµ̂(ζ) = Hsuppµ(−Imζ), ζ ∈ Cn,

the supporting function of the support of µ evaluated at −Imζ.
In particular

pµ̂(−iη) = Hsuppµ(η), η ∈ Rn.

Thus both radial indicators are equal and depend only on the
convex hull of the support of the function.
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Estimates for solutions to convolution equations

Theorem

Let µ : Rn→ C be a nonzero function with finite support and
θ 6= 0 a given vector in Rn. Define

r = inf
y

(θ · y ; y ∈ suppµ), R = sup
y

(θ · y ; y ∈ suppµ).

Assume that r is positive. Let a real vector σ = (σ1, . . . ,σn) be
given and define a real number γ by

|µ| (̂iσ) = ∑
y
|µ(y)|e−σ·y = eγ.

Then the unique function u : Rn→ R which solves
(δ−µ)∗u = δ and is zero where θ · x � 0, can be estimated as

|u(x)|6 e(σ+γθ/r)·x , x ∈ Rn, if γ > 0; and

|u(x)|6 e(σ+γθ/R)·x , x ∈ Rn, if γ 6 0.
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Proof. If u = δ + u ∗µ, we have u(0) = 1 and, for x 6= 0,

|u(x)|6 |(u ∗µ)(x)|6 ∑
y
|µ(y)| |u(x− y)|.

If µ is nonnegative and u satisfies the inequality u 6 δ + u ∗µ,
we have u(0) 6 1 and the same inequality holds.
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Let us try to prove that |u(x)|6 e(σ+tθ)·x , where t is a real
number to be determined later. Now the values of y for which
µ(y) 6= 0 must satisfy θ · y > r , so that θ · (x− y) 6 θ · x− r . By
induction on θ ·x we may therefore assume that all the values of
u(x− y) that occur satisfy the estimate. We get

|u(x)| 6 ∑
y
|µ(y)|e(σ+tθ)·(x−y) 6 e(σ+tθ)·x

∑
y
|µ(y)|e−(σ+tθ)·y

6 ∑
y
|µ(y)|e−σ·y sup

y
e(σ+tθ)·xe−tθ·y 6 e(σ+tθ)·xeγ sup

y
e−tθ·y .

For t > 0 we have eγ supy e−tθ·y = eγ−tr ; for t 6 0 we have
eγ supy e−tθ·y = eγ−tR . We now choose t = γ/r if γ > 0 and
t = γ/R if γ 6 0. This proves the estimate.
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When σ = sθ, there is an inverse relation between s and γ: the
larger s is, the smaller is γ. It is therefore natural to ask which is
the best estimate that can be obtained by this method. The
answer is an easy one:

Corollary

Let µ, θ, r and R be as in the theorem, take σ = sθ, and define
s0 as the unique real number such that |µ| (̂is0θ) = 1. Then the
best estimate is obtained when γ = 0, viz.

|u(x)|6 es0θ·x , x ∈ Rn.
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Example

For the array b of binomial coefficients define as

b(x) =
(x1 + x2)!

x1!x2!
, x ∈ N2,

as well as for the array bn of multinomial coefficients

b(x) =
(x1 + x2 + · · ·+ xn)!

x1!x2! · · ·xn!
, x ∈ Nn,

we choose a θ with all components θj positive, and obtain
r = minj θj , R = maxj θj . If θ = (1,1, . . . ,1), then R = r = 1, and
in general we get R = r if the support of µ is contained in a
hyperplane {x ; θ · x = r}, r > 0. We have eγ = ∑j e−σj . If
σ = s(1,1, . . . ,1), we get s0 = logn, so that bn(x) 6 nx1+···+xn ,
which is the best possible estimate of the form
bn(x) 6 cx1+···+xn .
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Example

For the array of Delannoy numbers (d(x ,y))(x ,y)∈Z2 , defined as
zero when x 6−1 or y 6−1, as 1 when (x ,y) = (0,0), and for
(x ,y) ∈ N2 r{(0,0)} by the recursion formula

d(x ,y) = d(x−1,y) + d(x−1,y−1) + d(x ,y−1),

we have ‖µ‖1 = 3; µ̂(iσ) = e−σ1 + e−σ2 + e−σ1−σ2 = eγ. For a
vector θ with positive components, we have r = min(θ1,θ2),
R = θ1 + θ2, thus R > 2r . We may take θ = (1,1), so that r = 1
and R = 2. Then µ̂(isθ) = 2e−s + e−2s. Thus for σ = sθ, we
have γ > 0 if and only if 2e−s + e−2s > 1, and γ 6 0 if and only if
2e−s + e−2s 6 1. The number s0 is equal to s = log(

√
2 + 1);

thus d(x) 6 (
√

2 + 1)x1+x2 , which is the best possible estimate
of the form d(x) 6 cx1+x2 for the Delannoy numbers.
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Conversely we have, under the extra assumption that µ is
nonnegative:

Theorem

Let µ : Rn→ [0,+∞[ have finite support contained in a half
plane {x ∈ Rn; θ · x > r}, r > 0, and let K be the smallest
convex cone which contains suppµ. If for any positive ε an
estimate

u(x) 6 Cεe(σ+εθ)·x , x ∈ K ,

holds for some constant Cε, then µ̂(iσ) 6 1.
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Proof. We note that u > 0 here since µ is nonnegative.

It is enough to consider the case σ = 0. Assume that ‖µ‖1 > 1:

‖µ‖1 = µ̂(0) = ∑
y

µ(y) > 1.

Then µ̂(itθ) = ∑y µ(y)e−tθ·y , t > 0, takes a value larger than 1
for t = 0 and tends to zero when t tends to +∞ since
θ · y > r > 0 in the support of µ. We first determine a positive
number s such that ∑y µ(y)e−sθ·y = 1. Hence µ̂(itθ) is smaller
than 1 for t > s and equal to 1 when t = s. This implies that

û(itθ) =
1

1− µ̂(itθ)
, t > s,

is finite for t > s and tends to +∞ as t ↘ s.
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For small enough τ, θ belongs to the cone Λτ. Fix such a τ.
According to an earlier proof, û(ζ) is bounded for every
positive ε when τ‖Imζ‖ > ε; in particular, û(itθ) is bounded
when tτ‖θ‖ > ε. We can choose ε = sτ‖θ‖, so that û(itθ) is
bounded for all t > s, contradicting the formula above which
shows that û(itθ) tends to +∞ when t tends to s. Hence we
cannot have µ̂(0) > 1.
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Theorem

Given a function µ : Rn→ [0,+∞[ which is nonzero only at
finitely many points in a half plane {x ∈ Rn; θ · x > r}, r > 0, let
u be the unique function u : Rn→ C which is zero where
θ · x � 0 and solves the equation (δ−µ)∗u = δ. Then, given
an arbitrary vector σ ∈ Rn, the following five conditions are
equivalent.
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(A). For every positive ε there exists a constant Cε such that

u(x) 6 Cεeσ·x+ε‖x‖, x ∈ Rn.

(A′). The upper radial indicator of u satisfies

pu(x) 6 σ · x x ∈ Rn.

(A′′). The Fenchel transform of −pu satisfies (−pu) (̃−σ) 6 0.

(B). u(x) 6 eσ·x for all x ∈ Rn.

(C). µ̂(iσ) 6 1.

However, I would like to weaken the hypothesis that µ > 0 . . .
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We note in particular the implication (A)⇒ (B), which is a kind
of Liouville theorem:

Corollary

Let u be as in the theorem. Then logu(x)− ε‖x‖ is bounded
from above for every positive ε if and only if u is bounded.
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Thank you!
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