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Orthonormal polynomials (P,) associated to an indeterminate
moment problem lead to an entire function

D(z) =2z Pa(2)P4(0)
n=0

of minimal exponential type.
The polynomials are determined by a three-term recurrence relation

xPp(x) = bpPni1(x) + anPn(x) + bp—1Pn—1(x), n>0,

for certain sequences a, € R, b, > 0,n > 0.

The main question to be discussed is recent joint work with
Ryszard Szwarc:

Determine the growth properties of D and similar functions in
terms of properties of the sequences (a,,), (by)
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My mathematical hero: N.I. Akhiezer (1901-1980)
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1. Introduction and background

e Introduction to indeterminate moment problems

e Growth properties of functions: order and type; logarithmic
order and type; double logarithmic order and type

e The order, logarithmic order, double logarithmic order of
moment problems

e How can these numbers be determined from the three term
recurrence or the moments?

2. Results about Livsic's function

3. Order functions and their duals
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Moment problems

We consider non-degenerate probability measures i on R such that
C[x] C L*(x). Non-degenerate means that supp() is an infinite
set.

The corresponding moment sequence is

s,,:/x”dp(x), n=0,1,....

By a famous result of Hamburger, the sequences arising in this way
are characterized by all the Hankel matrices
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being positive definite (and sp = 1).



Determinacy/indeterminacy

A Hamburger moment sequence (s,) can be
© determinate: Precisely one measure with these moments
@ indeterminate: More than one and hence infinitely many
measures with these moments.
An important tool: The orthonormal polynomials
Pn(x),n=0,1,...

/ Po(x)Prm(x) d1i(X) = b

They can be calculated from the moments s, via the formula
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Characterization of indeterminacy

The following conditions are equivalent:

(i) Indeterminacy

(i) 3207 1Pa(i)? <
(i) P?(2) =35 |P,,( )|> < oo forall ze C.

In (iii) the series converges uniformly on compact subsets of C.
The moment problems corresponding to the classical orthogonal
polynomial systems: Hermite, Laguerre, Jacobi, Legendre,
Chebyshev are determinate.

Stieltjes (1894) gave the first examples of indeterminate measures,
e.g. the lognormal distribution in statistics. The polynomials are
called Stieltjes-Wigert polynomials.
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The log-normal moments

0 < g < 1: log-normal moments are s, = g~ "("*2)/2 given by

o va Oox”ex —7(|ng)2 Ix
\/W/o > (~zlegiir)

Definin
& hix) — s 2T |
(X) = Sln(m OgX)

then the non-negative densities (—1 < r <1)

Va (log x)?
V27 log(1/9q) =P <_2 |0g(1/q)> SR

and the discrete measures (a > 0)
1 O Lk k(k12)2
— J
L(a) k_z:oo adq aqk

all have the log-normal moments.
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Correspondence between Stieltjes and Hermite

Stieltjes to Hermite: January 30, 1892

“L’existence de ces fonctions ¢(x) qui, sans &tre nulles, sont telles
que

/ x"p(x)dx =0, n=0,1,...,
0

me parait trés remarquable”

o o (log x)?
o(x) = sm(m log x) exp <_2|og(1/q)>

is one of these functions.
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The Stieltjes-Wigert polynomials

The orthonormal polynomials are

q

V (q; q)n k—0 k

Here we have used the Gaussian g-binomial coefficients

H _ (9:9)n
ko (@ a)k(q:q)n—k
involving the g-shifted factorial

n

(z:g)n = H(l —qu_l), zeC,n=0,1,...,00.
k=1
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Three-term recurrence relation

The orthonormal polynomials satisfy a second order difference
equation

xPp(x) = bpPnt1(x) + anPn(x) 4+ bp—1Pn-1(x), n>0, (Diff)

for certain sequences a, € R, b, > 0,n > 0.

Conversely—Favard’s Theorem—given two sequences

a, € R, b, > 0,n >0, the initial conditions P_; =0, Py =1 and
the difference equation uniquely determine polynomials P, of
degree n which are orthonormal with respect to some probability
measure 4 as discussed before.

There is a linearly independent solution (Qs(x)) to (Diff) given by

Pn(X) B Pn()/)
= [ = "7 .
Qn(x) / pa p(y)
Qn(x) is a polynomial of degree n —1. Q_1 = —1,Qy = 0.



Jacobi matrices

Matrix representation of the operator of multiplication
p(x) — xp(x) in the basis (Pp):

ag bo 0
bo di b1
J = 0 b1 an

This 3-diagonal matrix is called the Jacobi matrix of the moment
problem. It acts as a densely defined symmetric operator in the
Hilbert space /2.

The following are equivalent:

@ Determinacy <= defect indices of J equal to (0,0)
@ Indeterminacy <= defect indices of J equal to (1,1)
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Nevanlinna matrix

The following polynomials will be needed

An(z) =234 Qk(O)Qk(Z)
By(z) = —1+ZZ Q(0)Pr(2),
Co(z) =142 4 Pk(O)Qk( ),

Dn(z) =z 37— %JPk(O)’Dk( )-

In the indeterminate case we can let n — oo to get real entire
functions A, B, C, D satisfying

A B\
det<c D):l

The above matrix is called the Nevanlinna matrix, because
Nevanlinna (1922) used it to give the Nevanlinna parametrization
of the solutions to the indeterminate moment problem.
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Nevanlinna parametrization of solutions v to

sp= [ x"dv(x),n=0,1,...

The formula

/du¢(u)_ AZ)olz) = Cz) o\ g

u-z  Blz)p(z)- D)’

expresses the Stieltjes transform of any solution v = v, in terms of
a parameter ¢ running through P U {oc}, where P denotes the set
of Pick functions, i.e., the holomorphic functions in the upper
half-plane H with values in H.
To any indeterminate moment problem, there are always “many”
solution of the following types:

@ measures with a C*°-density

o discrete

@ continuous singular
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Order of entire functions

For and unbounded continuous function f : C — C, the maximum
modulus My is
Me¢(r) = max|f(z)|, r > 0.

|z|<r
The order ps is
pr = inf{a > 0| Ms(r) <.. e },

where <,, means that it holds for r sufficiently large. (pr = oo if
no such « exists.) Clearly

: log log M¢(r

or = limsup 28108 Mr(r).
r—o0 log r

sin, exp are entire functions of order 1.

exp(P(z)) is of order n, if P(z) = apz" +ap_1z" 1+ - isa
polynomial of degree n.

exp(exp z) is of order occ.
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Type of functions

For functions of order 0 < p < oo the type 77 is
7 = inf{c > 0| M¢(r) <,. e},

so the type of sin,exp is 1, 1/ (z) is of type oo, while exp(P(z))
above has type |ap|. Clearly

log M
TF = Iimsupiog f(r).
r—o0 re

A function f is of minimal exponential type if
Ve > 0: Me(r) <., exp(er).

This is equivalent to: Either psf < 1 or pf =1 and 7+ = 0.
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Work about Nevanlinna matrices

All the functions A, B, C, D are of minimal exponential type
(Marcel Riesz (1923)).

The beautiful work of Akhiezer: The classical moment problem
(Russian edition 1961, English 1965) contains no examples of
indeterminate moment problems with explicit Nevanlinna matrix.
The first complete Nevanlinna matrices were published in
1993-1994:

@ Ismail-Masson: The functions are of order 0 related to
theta-functions

@ Berg-Valent: The functions are of order 1/4. The simplest one
is

D(z) = %ﬁsin(kz”“) sinh(kz}/4),

where k > 0 is some constant.
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Further results about Nevanlinna matrices

o Berg-Pedersen (1994) The functions A, B, C, D, P have the
same order and type.
The order p and type 7 of these functions are called the order
and type of the moment problem.

@ Possible pairs (p, T) for indeterminate moment problems are
(1,0) and ]0, 1[x [0, o0].

e Many indeterminate moment problems occur within the
so-called g-Askey scheme of orthogonal polynomials. They
were all classified in the thesis of J.S. Christiansen (2004) and
they have all order 0.

o Berg-Pedersen (2005) showed using a refined growth scale
called logarithmic order and type: The functions A, B, C,D, P
from an indeterminate moment problem of order zero have the
same logarithmic order and type called the logarithmic order
and type of the moment problem.
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g-Askey scheme
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g-Askey scheme
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Figure : Christiansen's scheme of indeterminacy
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Logarithmic order and type

For an unbounded continuous function f we define the logarithmic
order pgfl]
[] = inf{fa > 0| M¢(r) <., r(lP8N" 1,

(1]

Of course p;" < oo is only possible for functions of order 0.
It is easy to obtain that

[ ]

log log M
— limsup (2818 Mr(1) )

00 log log r

When p[ I < 50 we define the logarithmic type 7'[ ]

g

TP] = inf{c > 0] M¢(r) <., relleen™ 1

and it is readily found that

[ ] log M¢(r)

= limsup —
r—o0 (Iog r)Pf +1
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The D-function for the Stieltjes-Wigert case

z > g
D(z) = (—2g*)"
(9: 9) ,ZO (9: 9)n
so it is closely related to the Rogers-Ramanujan function
o0 n2
O(z) = T_.n
—0 (g; q)n

It appears in Ramanujan’s lost notebook, and the zeros have been
studied by Andrews(2005), Bergweiler-Hayman(2003),
Hayman(2005), Ismail-Zhang(2007) and Huber(2010). They are
not explicitly known.

We have p[ 1= 1 and 7'[ - = (4log(1/q))71.
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Replacing ¢2 by (¢

Theorem (1.B.-Szwarc(2012))

For a moment problem and 0 < o < 1 the following conditions are equivalent:
(i) (P2(0)),(Q:(0)) € 2,
(i) (P2(2)),(Q3(z)) € ¢* for all z € C.

If the conditions are satisfied, the moment problem is indeterminate and the
two series indicated in (ii) converge uniformly on compact subsets of C.
Furthermore, (1/b,) € £* and

P(z) < Cexp(K|z|%),

where
%) 1/2 1 (%)
C= (Z(Pﬁ(o) 4 03(0))> , K=~ > (1Pa(0)** +1Qa(0)[**).

The moment problem has order p < «, and if the order is «, then the type
7 < K.
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Indeterminacy in terms of a,, b,

Indeterminacy implies that b, — oc.
More is known:

Carleman’s Criterion(1926): Indeterminacy = > 1/b, < oo
Warning: There exist determinate problems with Y 1/b, < oo, but
this is not possible if (b,) has a "regular" behaviour.

We start with an elementary Lemma:

Lemma

Let b, > 0 satisfy Y 1/b, < 0o and assume that b, is eventually
log-convex (i.e., b2 < b,_1bny1,n > ng) or eventually log-concave
(i.e., b2 > by_1byi1,n > ng), then b, is eventually strictly
increasing to infinity.
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Carleman plus “extra condition” implies indeterminacy

Theorem (2.B.-Szwarc(2012))

Assume that the coefficients a,, b, satisfy

> e <o
b bn 1
and that b, is either eventually log-convex or eventually
log-concave.

The for a constant ¢ independent of z

Vbo 1|Pa(2)] < c N(|2]), N(z) = H< b“) n>0,

k=0
The moment problem is indeterminate.

This extends a result of Berezanskii (1956).
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Some comments

Under the conditions of the theorem we can further obtain

P2(0) = O(1/bs-1);1/by = o(1/n)
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Some comments

Under the conditions of the theorem we can further obtain

P2(0) = O(1/bs-1);1/by = o(1/n)

K L
< [Pa(2)? + [Pria(2)]? <
bn+]_ bn—l

for suitable constants K,L depending on z (but not on n). Similar
results are true for Q.
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Some comments

Under the conditions of the theorem we can further obtain

P2(0) = O(1/bs-1);1/by = o(1/n)

K L

< |Pa(2)? + |Prsa(2)]* < ¢
n—1

for suitable constants K,L depending on z (but not on n). Similar

results are true for Q.

bn+1

In the symmetric case a, = 0 the sum condition

f: 1+ ]a,,]
1V b bn 1
is equivalent to > 1/b, < cc.
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A partial converse of Theorem 2

Theorem (3.B.-Szwarc(2012))
Assume that a,, b, satisfy

b bn 1
and that logconvexity/logconcavity holds. Assume in addition that

P satisfies
P(z) < Cexp(K|z|%)

for some a such that 0 < o < 1 and suitable constants C, K > 0.
Then
1/bn, P3(0), @(0) = O(n~*/),

so in particular (1/b,), (P2(0)), (Q2(0)) € ¢*¢ for any ¢ > 0.
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Assume 0 < v < 1.
Then
(P3(0)),(Q3(0)) € £* = P(z) < Cexp(K|2|%)

Under logconvexity/logconcavity and the sumcondition
P(z) < Cexp(K|z|*) = (P7(0)). (Q7(0)) € £°7*

for any € > 0.

Indeterminate moment problems/entire functions



Exponent of convergence for a sequence

For a sequence (z,) of complex numbers for which |z,| — oo, we
introduce the exponent of convergence

— 1
5(2,,):inf{04>0| Z =z ’a<oo},

where n* € N is such that |z,| > 0 for n > n*.
The counting function of (z,) is defined as

n(r) = #{n | |zs| <r}.

The following result is well-known

Lemma

|
E(zp) = limsup og—n(r).
r—00 |0gr
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Theorem (4.B.-Szwarc(2012))

Assume that a,, b, satisfy

i 1+ ]a,,|
1V b bn 1
and that logconvexity/logconcavity holds.

Then the order p of the moment problem is given by p = E(bp).
If p =0, then the logarithmic order p!Y is given by pl] = E(logb,).
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Some examples

1. Fora > 1let by = (n+1)* a, =0,n > 0. The three-term
recurrence relation with these coefficients determine the
orthonormal polynomials of a symmetric indeterminate moment
problem satisfying the logconcavity condition and Y (1/b,) < cc.
By Theorem 4 the order of the moment problem is 1/a.

2. b,=(n+1)log*(n+2),a, =0 lead for « > 1 to a symmetric
indeterminate moment problem of order 1 and type 0.

3. Fora>1,a>0let

1/« 1/
b,,:a"/ , \a,,]ﬁac”/ where 0 < ¢ < 1.
= o= 1
b,2, < bn—lbn+1 <~ a<l
> a>1

We find £(bp) = 0 and E(log bp) = v, so the moment problem has
order 0 and logarithmic order pl!l = a.
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Double logarithmic order and type

4. For a,b>1 let
b, = a*", lan| < 2" with bec < 1.

(bn) is logconvex, and the coefficients lead to an indeterminate
moment problem with order as well as logarithmic order equal to 0.
This motivates a refined growth scale: For an unbounded
continuous function f we define the double logarithmic order ,05(2] as

[ I =inf{a > 0| Ms(r) <, , rlloglogr)® }.

2 - s only possible if p[ I—o.

Of course p;
In case 0 < pl?l = p[ } < 50 we define the double logarithmic type
as

[2]
7}2] =inf{c > 0| M¢(r) <.. re(loglogr)? }.
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Double logarithmic order and type of moment problems

Theorem (5.B.-Szwarc(2012))

For an indeterminate moment problem of logarithmic order zero the
functions A, B, C, D, P, @ have the same double logarithmic order
ol and type 721 called the double logarithmic order and type of
the moment problem.

Under the sum condition and logconvexity/logconcavity

pl?l = E(log log by).
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An example

Example 5. b, = exp(e”l/a) is eventually log-convex because
exp(x1/®) is convex for x > (o — 1)® when a > 1 and convex for
x > 0 when 0 < a < 1. The indeterminate moment problem with
recurrence coefficients a, = 0 and b, as above has double
logarithmic order equal to £(loglog by) = .

The function

o

f(z):H<1+eXp(:nl/a)>,

n=1

where 0 < o < 00, has p;z] = q, 7;2] =1.
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Livsic's function

For an indeterminate moment sequence (s,) Livsic(1939)
considered the function

Lz)=>" \/25

n=0

It is entire of minimal exponential type.

Livsic proved that p; < pg. We know now that pg = p: the order
of the moment problem. It is interesting to know whether the
equality sign holds. In fact, we do not know any example with

pr < p. We will also consider the functions

o Zn oo z
=310 H2=Y;
n=0 n
Here by, , is the leading coefficient of P,(z).
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The good cases where all orders agree

Theorem (6.B.-Szwarc(2012))

Given an (indeterminate) moment problem where

Z 1+ |an|
1V bnbn 1

and where the logconvexity/logconcavity condition holds.

Then
(i) p=p6 = pr=pL=E(by).
If p =20 then
(i) PN = p! = pli) = pl!! = £(log bn).
If pl =0 then

(iii) pP1 = p2 = pil = p = E(log log bn).
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Order functions

Some of the previous results can be generalized using a concept of
an order function and its dual function. Some of our proofs also
depend on these notions.

Definition. An order function is a continuous, positive and
increasing function « : (rp,00) — R such that lim,_,» a(r) = 0o
and such that the function r/a(r) is also increasing with

lim, 00 r/a(r) = 0o. Here 0 < ry < o0.

If « is an order function, then so is r/a(r).

Definition. For an order function « the function

B(r) = — 0<r<r0_1

will be called the dual function.
Since lim,_,0 B(r) = 0, we define 3(0) = 0. Note that /3 as well as
r/B(r) are increasing.
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Examples of order functions and their dual

- alr)=r* Br)=r% 0<a<l, r=0.
2.
afr) =log“r, pB(r)= ¥, a>0, r=-exp(a).
(—log r)®
3. .
a(r) =log®logr, B(r)= g (—logr)’ 7 0,
where ry > e is the unique solution to (log r)loglogr = a.
4.

a(r) = (log® r)log’ log r, «, 8 > 0.

5. If a is an order function, then so are ca(r) and «(cr) for ¢ > 0.
6. If oy and ap are order functions, then ay(ao(r)) is an order
function for r sufficiently large.
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Let o be an order function with dual function 3. If u, is a sequence
of non-negative numbers tending to zero, then 5(u,) is only defined
for n sufficiently large, but statements like

ZB(Un) < o0, B(Un) = 0(1/")

make sense.
Definition. We say that a continuous unbounded function
f : C — C has order bounded by a(r) if

Mf(r) Sas rKa(r)?

for some constant K > 0.

Note. To have order bounded by a(r) = log™(r) for some o > 0,
is the same as to have finite logarithmic order.
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Theorem (7.B.-Szwarc(2012))

For an order function o with dual function 3 the following
conditions are equivalent for a given indeterminate moment
problem:

(i) B(PF(0)),8(Q3(0)) € ¢,
(i) B(|Pa(2)I2), B(|@n(2)|?) € £* for all z € C.
If the conditions are satisfied, then the two series indicated in (ii)

converge uniformly on compact subsets of C.
Furthermore, 3(1/b,) € £* and P has order bounded by a.
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Theorem (8.B.-Szwarc(2012))

Assume that a,, b, satisfy the sum-condition and the
logconvexity /logconcavity condition. Assume in addition that the
function P(z) has order bounded by some given order function a.

(i) I there is 0 < a < 1 so that r* <,, a(r), then

B1/b2) S(PR(0). 5(Q3(@) = O (57 .
(i) If a(r?) = O(a(r)), then
5(1/5r). B(P2(0)). B(QE(0)) = O(1/n).
In both cases
8(1/57). B(P2(0)). B(QZ(0)) € £+
for any € > 0.
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Thank you for your attention
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