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Main questions

Orthonormal polynomials (Pn) associated to an indeterminate
moment problem lead to an entire function

D(z) = z
∞∑
n=0

Pn(z)Pn(0)

of minimal exponential type.
The polynomials are determined by a three-term recurrence relation

xPn(x) = bnPn+1(x) + anPn(x) + bn−1Pn−1(x), n ≥ 0,

for certain sequences an ∈ R, bn > 0, n ≥ 0.
The main question to be discussed is recent joint work with
Ryszard Szwarc:
Determine the growth properties of D and similar functions in
terms of properties of the sequences (an), (bn)
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My mathematical hero: N.I. Akhiezer (1901-1980)
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Overview

1. Introduction and background
• Introduction to indeterminate moment problems
• Growth properties of functions: order and type; logarithmic

order and type; double logarithmic order and type
• The order, logarithmic order, double logarithmic order of

moment problems
• How can these numbers be determined from the three term

recurrence or the moments?

2. Results about Liv²ic's function

3. Order functions and their duals

Christian Berg Indeterminate moment problems/entire functions



Moment problems

We consider non-degenerate probability measures µ on R such that
C[x ] ⊂ L1(µ). Non-degenerate means that supp(µ) is an in�nite
set.
The corresponding moment sequence is

sn =

∫
xn dµ(x), n = 0, 1, . . . .

By a famous result of Hamburger, the sequences arising in this way
are characterized by all the Hankel matrices

Hn =


s0 s1 · · · sn
s1 s2 · · · sn+1
...

...
. . .

...
sn sn+1 · · · s2n

 , n = 0, 1, . . .

being positive de�nite (and s0 = 1).
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Determinacy/indeterminacy

A Hamburger moment sequence (sn) can be
1 determinate: Precisely one measure with these moments
2 indeterminate: More than one and hence in�nitely many

measures with these moments.

An important tool: The orthonormal polynomials
Pn(x), n = 0, 1, . . . ∫

Pn(x)Pm(x) dµ(x) = δnm

They can be calculated from the moments sn via the formula

Pn(x) =
1√

Dn−1Dn

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 · · · sn
s1 s2 · · · sn+1
...

...
. . .

...
sn−1 sn · · · s2n−1
1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
, Dn = detHn.
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Characterization of indeterminacy

The following conditions are equivalent:

(i) Indeterminacy

(ii)
∑∞

0 |Pn(i)|2 <∞
(iii) P2(z) :=

∑∞
0 |Pn(z)|2 <∞ for all z ∈ C.

In (iii) the series converges uniformly on compact subsets of C.
The moment problems corresponding to the classical orthogonal
polynomial systems: Hermite, Laguerre, Jacobi, Legendre,
Chebyshev are determinate.
Stieltjes (1894) gave the �rst examples of indeterminate measures,
e.g. the lognormal distribution in statistics. The polynomials are
called Stieltjes-Wigert polynomials.
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The log-normal moments

0 < q < 1: log-normal moments are sn = q−n(n+2)/2 given by
√
q√

2π log(1/q)

∫ ∞
0

xn exp

(
− (log x)2

2 log(1/q)

)
dx .

De�ning

h(x) = sin(
2π

log(1/q)
log x)

then the non-negative densities (−1 ≤ r ≤ 1)
√
q√

2π log(1/q)
exp

(
− (log x)2

2 log(1/q)

)
[1 + rh(x)]

and the discrete measures (a > 0)

1

L(a)

∞∑
k=−∞

akqk(k+2)/2δaqk

all have the log-normal moments.
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Correspondence between Stieltjes and Hermite

Stieltjes to Hermite: January 30, 1892

�L'existence de ces fonctions ϕ(x) qui, sans être nulles, sont telles
que ∫ ∞

0

xnϕ(x) dx = 0, n = 0, 1, . . . ,

me paraît très remarquable�

ϕ(x) = sin(
2π

log(1/q)
log x) exp

(
− (log x)2

2 log(1/q)

)
is one of these functions.
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The Stieltjes-Wigert polynomials

The orthonormal polynomials are

Pn(x ; q) = (−1)n
q

n

2√
(q; q)n

n∑
k=0

[
n
k

]
q

(−1)kqk
2+ k

2 xk .

Here we have used the Gaussian q-binomial coe�cients[
n
k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
,

involving the q-shifted factorial

(z ; q)n =
n∏

k=1

(1− zqk−1), z ∈ C, n = 0, 1, . . . ,∞.
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Three-term recurrence relation

The orthonormal polynomials satisfy a second order di�erence
equation

xPn(x) = bnPn+1(x) + anPn(x) + bn−1Pn−1(x), n ≥ 0, (Di�)

for certain sequences an ∈ R, bn > 0, n ≥ 0.
Conversely�Favard's Theorem�given two sequences
an ∈ R, bn > 0, n ≥ 0, the initial conditions P−1 = 0,P0 = 1 and
the di�erence equation uniquely determine polynomials Pn of
degree n which are orthonormal with respect to some probability
measure µ as discussed before.
There is a linearly independent solution (Qn(x)) to (Di�) given by

Qn(x) =

∫
Pn(x)− Pn(y)

x − y
dµ(y).

Qn(x) is a polynomial of degree n − 1. Q−1 = −1,Q0 = 0.
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Jacobi matrices

Matrix representation of the operator of multiplication
p(x) 7→ xp(x) in the basis (Pn):

J =


a0 b0 0 · · ·
b0 a1 b1 · · ·
0 b1 a2 · · ·
...

...
...

. . .


This 3-diagonal matrix is called the Jacobi matrix of the moment
problem. It acts as a densely de�ned symmetric operator in the
Hilbert space `2.
The following are equivalent:

Determinacy ⇐⇒ defect indices of J equal to (0, 0)

Indeterminacy ⇐⇒ defect indices of J equal to (1, 1)
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Nevanlinna matrix

The following polynomials will be needed

An(z) = z
∑n−1

k=0Qk(0)Qk(z),

Bn(z) = −1 + z
∑n−1

k=0Qk(0)Pk(z),

Cn(z) = 1 + z
∑n−1

k=0 Pk(0)Qk(z),

Dn(z) = z
∑n−1

k=0 Pk(0)Pk(z).

In the indeterminate case we can let n→∞ to get real entire
functions A,B,C ,D satisfying

det

(
A B
C D

)
≡ 1

The above matrix is called the Nevanlinna matrix, because
Nevanlinna (1922) used it to give the Nevanlinna parametrization
of the solutions to the indeterminate moment problem.
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Nevanlinna parametrization of solutions ν to
sn =

∫
xn dν(x), n = 0, 1, . . .

The formula∫
dνϕ(u)

u − z
= −A(z)ϕ(z)− C (z)

B(z)ϕ(z)− D(z)
, z ∈ C \ R ,

expresses the Stieltjes transform of any solution ν = νϕ in terms of
a parameter ϕ running through P ∪ {∞}, where P denotes the set
of Pick functions, i.e., the holomorphic functions in the upper
half-plane H with values in H.
To any indeterminate moment problem, there are always �many�
solution of the following types:

measures with a C∞-density

discrete

continuous singular
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Order of entire functions

For and unbounded continuous function f : C→ C, the maximum
modulus Mf is

Mf (r) = max
|z|≤r
|f (z)|, r ≥ 0.

The order ρf is

ρf := inf{α > 0 |Mf (r) ≤as e
rα },

where ≤as means that it holds for r su�ciently large. (ρf =∞ if
no such α exists.) Clearly

ρf = lim sup
r→∞

log logMf (r)

log r
.

sin, exp are entire functions of order 1.

exp(P(z)) is of order n, if P(z) = anz
n + an−1z

n−1 + · · · is a
polynomial of degree n.

exp(exp z) is of order ∞.
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Type of functions

For functions of order 0 < ρ <∞ the type τf is

τf := inf{c > 0 |Mf (r) ≤as e
crρ },

so the type of sin, exp is 1, 1/Γ(z) is of type ∞, while exp(P(z))
above has type |an|. Clearly

τf = lim sup
r→∞

logMf (r)

rρ
.

A function f is of minimal exponential type if

∀ε > 0 : Mf (r) ≤as exp(εr).

This is equivalent to: Either ρf < 1 or ρf = 1 and τf = 0.
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Work about Nevanlinna matrices

All the functions A,B,C ,D are of minimal exponential type
(Marcel Riesz (1923)).
The beautiful work of Akhiezer: The classical moment problem
(Russian edition 1961, English 1965) contains no examples of
indeterminate moment problems with explicit Nevanlinna matrix.
The �rst complete Nevanlinna matrices were published in
1993-1994:

Ismail-Masson: The functions are of order 0 related to
theta-functions

Berg-Valent: The functions are of order 1/4. The simplest one
is

D(z) =
4

π

√
z sin(kz1/4) sinh(kz1/4),

where k > 0 is some constant.
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Further results about Nevanlinna matrices

Berg-Pedersen (1994) The functions A,B,C ,D,P have the
same order and type.
The order ρ and type τ of these functions are called the order
and type of the moment problem.

Possible pairs (ρ, τ) for indeterminate moment problems are
(1, 0) and ]0, 1[×[0,∞].

Many indeterminate moment problems occur within the
so-called q-Askey scheme of orthogonal polynomials. They
were all classi�ed in the thesis of J.S. Christiansen (2004) and
they have all order 0.

Berg-Pedersen (2005) showed using a re�ned growth scale
called logarithmic order and type: The functions A,B,C ,D,P
from an indeterminate moment problem of order zero have the
same logarithmic order and type called the logarithmic order
and type of the moment problem.

Christian Berg Indeterminate moment problems/entire functions



q-Askey scheme
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q-Askey scheme

Christian Berg Indeterminate moment problems/entire functions



Figure : Christiansen's scheme of indeterminacy
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Logarithmic order and type

For an unbounded continuous function f we de�ne the logarithmic

order ρ
[1]
f

ρ
[1]
f = inf{α > 0 |Mf (r) ≤as r

(log r)α }.

Of course ρ
[1]
f <∞ is only possible for functions of order 0.

It is easy to obtain that

ρ
[1]
f = lim sup

r→∞

log logMf (r)

log log r
− 1.

When ρ
[1]
f <∞ we de�ne the logarithmic type τ

[1]
f

τ
[1]
f = inf{c > 0 |Mf (r) ≤as r

c(log r)
ρ

[1]
f },

and it is readily found that

τ
[1]
f = lim sup

r→∞

logMf (r)

(log r)ρ
[1]
f

+1
.
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The D-function for the Stieltjes-Wigert case

D(z) =
z

(q; q)∞

∞∑
n=0

qn
2

(q; q)n
(−zq3/2)n

so it is closely related to the Rogers-Ramanujan function

Φ(z) =
∞∑
n=0

qn
2

(q; q)n
zn.

It appears in Ramanujan's lost notebook, and the zeros have been
studied by Andrews(2005), Bergweiler-Hayman(2003),
Hayman(2005), Ismail-Zhang(2007) and Huber(2010). They are
not explicitly known.

We have ρ
[1]
Φ = 1 and τ

[1]
Φ = (4 log(1/q))−1.
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Replacing `2 by `α

Theorem (1.B.-Szwarc(2012))

For a moment problem and 0 < α ≤ 1 the following conditions are equivalent:

(i) (P2
n (0)), (Q

2
n(0)) ∈ `α,

(ii) (P2
n (z)), (Q

2
n(z)) ∈ `α for all z ∈ C.

If the conditions are satis�ed, the moment problem is indeterminate and the
two series indicated in (ii) converge uniformly on compact subsets of C.
Furthermore, (1/bn) ∈ `α and

P(z) ≤ C exp(K |z |α),

where

C =

(
∞∑
n=0

(P2
n (0) + Q2

n(0))

)1/2

, K =
1

α

∞∑
n=0

(|Pn(0)|2α + |Qn(0)|2α).

The moment problem has order ρ ≤ α, and if the order is α, then the type

τ ≤ K.
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Indeterminacy in terms of an, bn

Indeterminacy implies that bn →∞.
More is known:

Carleman's Criterion(1926): Indeterminacy ⇒
∑

1/bn <∞
Warning: There exist determinate problems with

∑
1/bn <∞, but

this is not possible if (bn) has a "regular" behaviour.
We start with an elementary Lemma:

Lemma

Let bn > 0 satisfy
∑

1/bn <∞ and assume that bn is eventually
log-convex (i.e., b2n ≤ bn−1bn+1, n ≥ n0) or eventually log-concave
(i.e., b2n ≥ bn−1bn+1, n ≥ n0), then bn is eventually strictly
increasing to in�nity.
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Carleman plus �extra condition� implies indeterminacy

Theorem (2.B.-Szwarc(2012))

Assume that the coe�cients an, bn satisfy

∞∑
n=1

1 + |an|√
bnbn−1

<∞,

and that bn is either eventually log-convex or eventually
log-concave.
The for a constant c independent of z

√
bn−1|Pn(z)| ≤ c Π(|z |), Π(z) =

∞∏
k=0

(
1 +

z

bk−1

)
, n ≥ 0,

The moment problem is indeterminate.

This extends a result of Berezanski�� (1956).
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Some comments

Under the conditions of the theorem we can further obtain

P2
n(0) = O(1/bn−1); 1/bn = o(1/n)

K

bn+1
≤ |Pn(z)|2 + |Pn+1(z)|2 ≤ L

bn−1

for suitable constants K ,L depending on z (but not on n). Similar
results are true for Qn.

In the symmetric case an = 0 the sum condition

∞∑
n=1

1 + |an|√
bnbn−1

<∞,

is equivalent to
∑

1/bn <∞.
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A partial converse of Theorem 2

Theorem (3.B.-Szwarc(2012))

Assume that an, bn satisfy

∞∑
n=1

1 + |an|√
bnbn−1

<∞,

and that logconvexity/logconcavity holds. Assume in addition that
P satis�es

P(z) ≤ C exp(K |z |α)

for some α such that 0 < α < 1 and suitable constants C ,K > 0.
Then

1/bn,P
2
n(0),Q2

n(0) = O(n−1/α),

so in particular (1/bn), (P2
n(0)), (Q2

n(0)) ∈ `α+ε for any ε > 0.
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Summing up

Assume 0 < α < 1.
Then

(P2
n(0)), (Q2

n(0)) ∈ `α ⇒ P(z) ≤ C exp(K |z |α)

Under logconvexity/logconcavity and the sumcondition

P(z) ≤ C exp(K |z |α)⇒ (P2
n(0)), (Q2

n(0)) ∈ `α+ε

for any ε > 0.
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Exponent of convergence for a sequence

For a sequence (zn) of complex numbers for which |zn| → ∞, we
introduce the exponent of convergence

E(zn) = inf

{
α > 0 |

∞∑
n=n∗

1

|zn|α
<∞

}
,

where n∗ ∈ N is such that |zn| > 0 for n ≥ n∗.
The counting function of (zn) is de�ned as

n(r) = #{n | |zn| ≤ r}.

The following result is well-known

Lemma

E(zn) = lim sup
r→∞

log n(r)

log r
.
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Theorem (4.B.-Szwarc(2012))

Assume that an, bn satisfy

∞∑
n=1

1 + |an|√
bnbn−1

<∞,

and that logconvexity/logconcavity holds.
Then the order ρ of the moment problem is given by ρ = E(bn).
If ρ = 0, then the logarithmic order ρ[1] is given by ρ[1] = E(logbn).
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Some examples

1. For α > 1 let bn = (n + 1)α, an = 0, n ≥ 0. The three-term
recurrence relation with these coe�cients determine the
orthonormal polynomials of a symmetric indeterminate moment
problem satisfying the logconcavity condition and

∑
(1/bn) <∞.

By Theorem 4 the order of the moment problem is 1/α.
2. bn = (n + 1) logα(n + 2), an = 0 lead for α > 1 to a symmetric
indeterminate moment problem of order 1 and type 0.
3. For a > 1, α > 0 let

bn = an
1/α
, |an| ≤ acn

1/α
where 0 < c < 1.

b2n


=
<
>

 bn−1bn+1 ⇔


α = 1
α < 1
α > 1

.

We �nd E(bn) = 0 and E(log bn) = α, so the moment problem has
order 0 and logarithmic order ρ[1] = α.
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Double logarithmic order and type

4. For a, b > 1 let

bn = ab
n

, |an| ≤ acb
n

with bc < 1.

(bn) is logconvex, and the coe�cients lead to an indeterminate
moment problem with order as well as logarithmic order equal to 0.
This motivates a re�ned growth scale: For an unbounded

continuous function f we de�ne the double logarithmic order ρ
[2]
f as

ρ
[2]
f = inf{α > 0 |Mf (r) ≤as r

(log log r)α }.

Of course ρ
[2]
f <∞ is only possible if ρ

[1]
f = 0.

In case 0 < ρ[2] = ρ
[2]
f <∞ we de�ne the double logarithmic type

as

τ
[2]
f = inf{c > 0 |Mf (r) ≤as r

c(log log r)ρ
[2]

}.
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Double logarithmic order and type of moment problems

Theorem (5.B.-Szwarc(2012))

For an indeterminate moment problem of logarithmic order zero the
functions A,B,C ,D,P,Q have the same double logarithmic order
ρ[2] and type τ [2] called the double logarithmic order and type of
the moment problem.
Under the sum condition and logconvexity/logconcavity

ρ[2] = E(log log bn).
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An example

Example 5. bn = exp(en
1/α

) is eventually log-convex because
exp(x1/α) is convex for x > (α− 1)α when α > 1 and convex for
x > 0 when 0 < α ≤ 1. The indeterminate moment problem with
recurrence coe�cients an = 0 and bn as above has double
logarithmic order equal to E(log log bn) = α.
The function

f (z) =
∞∏
n=1

(
1 +

z

exp(en
1/α

)

)
,

where 0 < α <∞, has ρ
[2]
f = α, τ

[2]
f = 1.
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Liv²ic's function

For an indeterminate moment sequence (sn) Liv²ic(1939)
considered the function

L(z) =
∞∑
n=0

zn
√
s2n

.

It is entire of minimal exponential type.
Liv²ic proved that ρL ≤ ρB . We know now that ρB = ρ: the order
of the moment problem. It is interesting to know whether the
equality sign holds. In fact, we do not know any example with
ρL < ρ. We will also consider the functions

G (z) =
∞∑
n=0

zn

bnn
, H(z) =

∞∑
n=0

zn

bn,n
.

Here bn,n is the leading coe�cient of Pn(z).
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The good cases where all orders agree

Theorem (6.B.-Szwarc(2012))

Given an (indeterminate) moment problem where

∞∑
n=1

1 + |an|√
bnbn−1

<∞,

and where the logconvexity/logconcavity condition holds.
Then

(i) ρ = ρG = ρH = ρL = E(bn).
If ρ = 0 then

(ii) ρ[1] = ρ
[1]
G = ρ

[1]
H = ρ

[1]
L = E(log bn).

If ρ[1] = 0 then

(iii) ρ[2] = ρ
[2]
G = ρ

[2]
H = ρ

[2]
L = E(log log bn).
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Order functions

Some of the previous results can be generalized using a concept of
an order function and its dual function. Some of our proofs also
depend on these notions.
De�nition. An order function is a continuous, positive and
increasing function α : (r0,∞)→ R such that limr→∞ α(r) =∞
and such that the function r/α(r) is also increasing with
limr→∞ r/α(r) =∞. Here 0 ≤ r0 <∞.
If α is an order function, then so is r/α(r).
De�nition. For an order function α the function

β(r) =
1

α(r−1)
, 0 < r < r−10

will be called the dual function.
Since limr→0 β(r) = 0, we de�ne β(0) = 0. Note that β as well as
r/β(r) are increasing.
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Examples of order functions and their dual

1.

α(r) = rα, β(r) = rα, 0 < α < 1, r0 = 0.

2.

α(r) = logα r , β(r) =
1

(− log r)α
, α > 0, r0 = exp(α).

3.

α(r) = logα log r , β(r) =
1

logα(− log r)
, α > 0,

where r0 > e is the unique solution to (log r) log log r = α.
4.

α(r) = (logα r) logβ log r , α, β > 0.

5. If α is an order function, then so are cα(r) and α(cr) for c > 0.
6. If α1 and α2 are order functions, then α1(α2(r)) is an order
function for r su�ciently large.
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Remarks

Let α be an order function with dual function β. If un is a sequence
of non-negative numbers tending to zero, then β(un) is only de�ned
for n su�ciently large, but statements like

∞∑
n

β(un) <∞, β(un) = O(1/n)

make sense.
De�nition. We say that a continuous unbounded function
f : C→ C has order bounded by α(r) if

Mf (r) ≤as r
Kα(r),

for some constant K > 0.

Note. To have order bounded by α(r) = logα(r) for some α > 0,
is the same as to have �nite logarithmic order.
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Theorem (7.B.-Szwarc(2012))

For an order function α with dual function β the following
conditions are equivalent for a given indeterminate moment
problem:

(i) β(P2
n(0)), β(Q2

n(0)) ∈ `1,
(ii) β(|Pn(z)|2), β(|Qn(z)|2) ∈ `1 for all z ∈ C.
If the conditions are satis�ed, then the two series indicated in (ii)
converge uniformly on compact subsets of C.
Furthermore, β(1/bn) ∈ `1 and P has order bounded by α.
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Theorem (8.B.-Szwarc(2012))

Assume that an, bn satisfy the sum-condition and the
logconvexity/logconcavity condition. Assume in addition that the
function P(z) has order bounded by some given order function α.

(i) If there is 0 < α < 1 so that rα ≤as α(r), then

β(1/bn), β(P2
n(0)), β(Q2

n(0)) = O

(
log n

n

)
.

(ii) If α(r2) = O(α(r)), then

β(1/bn), β(P2
n(0)), β(Q2

n(0)) = O(1/n).

In both cases

β(1/bn), β(P2
n(0)), β(Q2

n(0)) ∈ `1+ε

for any ε > 0.
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Thank you for your attention
For more details see

C. Berg and R. Szwarc, On the order of indeterminate moment
problems, Advances in Mathematics 250 (2014), 105�143.
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