Numerical reconstruction of polytopes from directional moments.

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis

January 10, 2014

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis nD-shape-from-moments problem

n-dimensional shape-from-moments problem

Reconstruct a polytope ${\mathcal P}$ from a finite set of its moments.

Retrieve ${\mathcal V}$ the set of vertices of ${\mathcal P}$ from moments.

Previously

- 2D-case solved by computing complex vertices and using numerical methods (Milanfar *et al.* 95, Golub *et al.* 99)
- convex polytopes solved for exact computation using Brion's identities (Gravin, Pasechnik, Lasserre, Robins 12)

Our method

Combine numerical methods of the 2D-case with theoretical results of the higher dimensional case; solve the underlying problems with an algorithm numerically valid.

Plan

Directional moments

- Real, complex and directional moments
- Brion's identities

2 Recovering the vertices from directional moments

- Prony's method and Pencil method
- Matching the coordinates of the vertices together
- Estimating the number of vertices

3 Simulations

- First example : regular hexagon
- Second example : polygon with 12 vertices
- Third example : non-convex polygon
- Diamond

Real, complex and directional moments Brion's identities

- Real, complex and directional moments
- Brion's identities

2 Recovering the vertices from directional moments

3 Simulations

Real, complex and directional moments Brion's identities

Consider a polytope \mathcal{P} in \mathbb{R}^n .

Real moments of order k

$$m_{k_1,k_2,\ldots,k_n} = \int_{\mathcal{P}} x_1^{k_1} x_2^{k_2} \ldots x_n^{k_n} dx_1 dx_2 \ldots dx_n,$$

with $k_1 + k_2 + \ldots + k_n = k$.

Complex moment of order k

$$m_k(1,i) = \int_{\mathcal{P}} z^k dx_1 dx_2$$
, where $z = x_1 + i x_2$.

Directional moment of order k

$$m_k(\delta) = \int_{\mathcal{P}} \langle x, \delta \rangle^k dx = \int_{\mathcal{P}} (x_1 \delta_1 + \ldots + x_n \delta_n)^k dx_1 dx_2 \ldots dx_n,$$

where δ is the unit vector on the direction.

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis

Real, complex and directional moments Brion's identities

Brion's identities

Consider a convex polytope \mathcal{P} in \mathbb{R}^n with r vertices. Assume that the orthogonal projections on the direction δ of the vertices in \mathcal{V} are distinct. Then

$$rac{(k+n)!}{k!(-1)^n}\,m_k(\delta) = \sum_{egin{smallmatrix} v\in\mathcal{V}\ k!(-1)^n \end{pmatrix}} a_k(\delta) = \sum_{egin{smallmatrix} v\in\mathcal{V}\ k\in\mathcal{V} \end{pmatrix}} a_{egin{smallmatrix} a_{eta}(\delta)\ \langle v,\,\delta
angle^k, & 0\leq k\leq n-1, \end{pmatrix}$$

where the coefficients $a_v(\delta)$ depend on δ and the adjacent vertices of v in a triangulation of \mathcal{P} . Moreover

$$a_v(\delta) \neq 0 \quad \forall \ v \in \mathcal{V}.$$

Real, complex and directional moments Brion's identities

Case of a simple convex polytope \mathcal{P}

In this case, the coefficients $a_v(\delta)$ are given by

$$a_{\mathbf{v}}(\delta) = rac{V_{\mathbf{v}}}{\prod\limits_{u \in K_{\mathbf{v}}} \langle u - \mathbf{v}, \delta
angle}$$

where V_v is the volume of the parallelepiped K_v defined by the edges adjacent to v.

Real, complex and directional moments Brion's identities

Davis' formula

For any polygon \mathcal{V} in the complex plane and for any analytic function f,

$$\iint_{\mathcal{V}} f''(z) \, dx_1 dx_2 = \sum_{v \in \mathcal{V}} a_v \, f(v),$$

where v are the complex vertices.

In this case, the coefficients a_v - or $a_v(\delta)$ with $\delta=(1,\mathrm{i})$ - are given by

$$\mathsf{a}_{\mathsf{v}}(\delta) = rac{\mathsf{V}_{\mathsf{v}}}{\prod\limits_{u\in \mathsf{K}_{\mathsf{v}}} \langle u-\mathsf{v},\delta
angle},$$

where V_v is the volume of the parallelogram K_v defined by the edges adjacent to v.

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis nD-shape-from-moments problem

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

< 67 ▶

1 Directional moments

- 2 Recovering the vertices from directional moments
 - Prony's method and Pencil method
 - Matching the coordinates of the vertices together
 - Estimating the number of vertices

3 Simulations

・ ロ ト ・ 同 ト ・ 三 ト ・

Reconstruction of a *n*-dimensional convex polytope \mathcal{P} with *r* vertices. First, we assume we know *r*.

Algorithm

- recovering the projections $\mathcal{V}(\delta) = \{ \langle v, \delta \rangle | v \in \mathcal{V} \}$ of the *r* vertices of \mathcal{P} from its directional moments $m_k(\delta)$.
- 2 recovering the set of vertices \mathcal{V} from n+1 sets $\mathcal{V}(\delta)$.

Key assumption

The projections of the vertices on the chosen directions δ are pairwise distinct.

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

< A >

- A 🗄 🕨

From the moments to an appropriate sequence

Consider the sequence $(\mu_k)_{k\in\mathbb{N}}$ defined by

$$\begin{cases} \mu_k = 0 & \text{for } 0 \le k \le n-1 \\ \\ \mu_k = \frac{k!(-1)^n}{(k-n)!} m_{k-n}(\delta) & \text{for } k \ge n. \end{cases}$$

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

From the moments to an appropriate sequence

Consider the sequence $(\mu_k)_{k\in\mathbb{N}}$ defined by

$$\begin{cases} \mu_k = 0 & \text{for } 0 \le k \le n-1 \\ \\ \mu_k = \frac{k!(-1)^n}{(k-n)!} m_{k-n}(\delta) & \text{for } k \ge n. \end{cases}$$

Thus we have a sequence $(\mu_k)_{k\in\mathbb{N}}$ such that

$$\mu_k = \sum_{i=1}^r a_i \, w_i^k, \; \forall k \in \mathbb{N},$$

with a_1, \ldots, a_r non-zero real numbers and $\mathcal{V}(\delta) = (w_1, \ldots, w_r)$ the sought numbers.

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis nD-shape-from-moments problem

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

< 6 >

- A 3 N

Recurrence equation of order r

Such a sequence is a solution to the recurrence equation of order r

$$\mu_{k+r} = p_{r-1}\,\mu_{k+r-1}+\ldots+p_0\,\mu_k,$$

where $(-p_0, \ldots, -p_{r-1}, 1)$ are the coefficients of the characteristic polynomial

$$p(w) = \prod_{i=1}^{r} (w - w_i) = w^r - p_{r-1} w^{r-1} - \ldots - p_1 w - p_0.$$

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

Prony's method

Linear system

2-step procedure

- Solving this linear system gives the coefficients of the polynomial p.
- **2** Finding the roots of p gives the sought $\mathcal{V}(\delta)$.

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis nD-shape-from-moments problem

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

Pencil method

Matrix equality

$$H_0C_p=H_1,$$

where H_0 is the Hankel matrix in Prony's method, H_1 is the shifted Hankel matrix and C_p is the companion matrix of the polynomial p.

1-step procedure

Consider the generalized eigenvalues problem for the pair of matrices (H_1, H_0) .

$$H_1 W^{-1} = H_0 W^{-1} D,$$

where D is the diagonal matrix with diagonal elements $\mathcal{V}(\delta)$ and W is the Vandermonde matrix defined by $\mathcal{V}(\delta)$.

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

- - ◆ 同 ▶ - ◆ 目 ▶

Set of solutions

 $\mathcal{V}(\delta)$ are the projections $\langle v_j, \delta \rangle$ of the vertices v_j on the direction δ .

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

- - ◆ 同 ▶ - ◆ 目 ▶

Set of solutions

 $\mathcal{V}(\delta)$ are the projections $\langle v_j, \delta \rangle$ of the vertices v_j on the direction δ .

2D-case

Using complex vertices $\delta = (1, i)$,

this is sufficient for reconstructing a convex polygon.

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

< □ > < 同 > < 三 >

Set of solutions

 $\mathcal{V}(\delta)$ are the projections $\langle v_j, \delta \rangle$ of the vertices v_j on the direction δ .

2D-case

Using complex vertices $\delta = (1, i)$,

this is sufficient for reconstructing a convex polygon.

nD-case

Using real numbers,

this method needs to be repeated for at least n directions.

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

Interval interpolation

We have n+1 sets of projected vertices $\mathcal{V}(\delta)$.

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis nD-shape-from-moments problem

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

Interval interpolation

Intervals

$$\begin{split} & [w - cw\varepsilon\kappa, w + cw\varepsilon\kappa],\\ & \text{where } w \in \mathcal{V}(\delta),\\ & \varepsilon \text{ error term}\\ & \text{and } \kappa \text{ conditioning term.} \end{split}$$

Conditioning

An upper bound for the conditioning κ of the generalized eigenvalues problem is given by $\kappa(W)^2$. (Beckermann,Golub,Labahn 07)

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

Interval interpolation

First step

From the *n* directions with the lowest κ , we construct all possible linear interpolants of the form

$$< v, \delta > = \sum_{i=1}^{n} v_i \delta_i.$$

▲ 同 ▶ → 三 ▶

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

Interval interpolation

Second step

We add the additional direction.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

Interval interpolation

Second step

We keep the *r* interpolants passing through the intervals.

□→ < □→</p>

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

Interval interpolation

Third step

With the help of the intervals, we compute the r best interpolants. (Salazar Celis *et al.* 07)

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

Intervals problem

Problem

If two intervals are not disjoint, then we cannot match the projections together.

Solutions

- to choose directions with
 a better conditioning κ
- 2 to increase the working precision ε

- - E

< 口 > < 同 >

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Reconstruction of a *n*-dimensional convex polytope \mathcal{P} with *r* vertices if an upper bound *R* is known.

Algorithm

- estimating the number of vertices r.
- recovering the projections $\mathcal{V}(\delta) = \{ \langle v, \delta \rangle \mid v \in \mathcal{V} \}$ of the *r* vertices of *P* from its directional moments *m_k(δ)*.
- **③** recovering the set of vertices \mathcal{V} from n+1 sets $\mathcal{V}(\delta)$.

Key assumption

The projections of the vertices on the chosen directions δ are pairwise distinct.

Prony's method and Pencil method Matching the coordinates of the vertices together Estimating the number of vertices

Estimating the number of vertices

Factorization of the Hankel matrix H_0 of size $k \times k$, $k \ge 1$

 $H_0 = W^t A W,$

where W is the Vandermonde matrix of size $r \times k$ defined by the set of projected vertices $V(\delta)$ and A is the diagonal matrix of size $r \times r$ whose elements are the non-zero coefficients $a_v(\delta)$.

Numerical rank by Singular Values Decomposition

If an upper bound R for r is known,

then analysing the singular values of the Hankel matrix H_0 of size $R \times R$ gives us an estimation of r.

2 Recovering the vertices from directional moments

Simulations

- First example : regular hexagon
- Second example : polygon with 12 vertices
- Third example : non-convex polygon
- Diamond

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Regular hexagon

Regular centered-scaled hexagon

x_1 -coordinates	x_2 -coordinates
0.3102	0.5373
-0.3102	0.5373
-0.6204	0.0000
-0.3102	-0.5373
0.3102	-0.5373
0.6204	0.0000

(日) (同) (三) (三)

э

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Regular hexagon

Estimation of the number of vertices

< 17 >

3

э

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Regular hexagon

Estimation of the number of vertices

< 17 >

- ₹ 🖬 🕨

э

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis nD-shape-from-moments problem

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Regular hexagon

Choice of a reference direction

Image: Image:

→ 3 → 4 3

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Regular hexagon

Pencil method For the reference direction	
Reference direction	$(\cos \theta, \sin \theta)$
heta	1.30724
Conditioning	
$\kappa(W)$	2.8 10 ²
Projections	$\mathcal{V}(\delta)$
0.5995 0.4379	0.1616
-0.1616 -0.4379	-0.5995
Maximum error	
Err _w	$5.8 10^{-14}$

< 同 ▶

э

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Regular hexagon

Interval interpolation

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis nD-shape-from-moments problem

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Polygon with 12 vertices

Centered-scaled polygon

x ₁ -coordinates	x ₂ -coordinates
-0.0960	-0.5764
-0.0243	-0.5764
0.3309	-0.4170
0.4777	-0.2713
0.5415	0.1578
0.5734	0.4140
0.5506	0.4413
-0.1404	0.5620
-0.3157	0.5449
-0.5354	0.0042
-0.5081	-0.2167
-0.4489	-0.5457

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

< 17 >

< ∃ >

э

Polygon with 12 vertices

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis nD-shape-from-moments problem

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Polygon with 12 vertices

<ロト < 同ト < 三ト

э

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Polygon with 12 vertices

Pencil method for the reference direc	tion
Reference direction θ	$(\cos \theta, \sin \theta)$ 0.379521
Conditioning	7 0 10 ⁵
Projections	$\mathcal{V}(\delta)$
0.6859 0.6749 0.3432 0.1528	0.5614 0.0778
-0.0914 -0.2361	-0.3027
-0.4958 -0.5522 Maximum error	-0.6191
Err _w	$2.7 \ 10^{-8}$

.= ▶

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Polygon with 12 vertices

Interval interpolation

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis nD-sh

nD-shape-from-moments problem

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Non-convex polygon : C-shape

Centered-rescaled polygon	
x_1 -coordinates	x ₂ -coordinates
-0.3402	-0.8165
0.4763	-0.8165
0.4763	-0.4082
0.0680	-0.4082
0.0680	0.4082
0.4763	0.4082
0.4763	0.8165
-0.3402	0.8164

< 17 >

-

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

< 同 ▶

Non-convex polygon : C-shape

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis nD-shape-from-moments problem

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Image: Image:

- ∢ ≣ ▶

э

Non-convex polygon : C-shape

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Non-convex polygon : C-shape

Pencil method or the reference direction		
Reference direction	$(\cos heta, \sin heta)$	
heta	1.30724	
Conditioning		
$\kappa(W)$	1.0 10 ³	
Projections	$\mathcal{V}(\delta)$	
0.9124	0.6997	
0.5182	0.4119	
-0.2701	-0.3764	
-0.6642	-0.8769	
Maximum error		
Err _w	$1.4 \ 10^{-12}$	

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Non-convex polygon : C-shape

Interval interpolation

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis nD-shape-from

nD-shape-from-moments problem

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

< 同 ▶

Diamond : polyhedron with 57 vertices

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Diamond : polyhedron with 57 vertices

Estimation of the number of vertices using 70 digits

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Diamond : polyhedron with 57 vertices

Choice of a reference direction

M. Collowald, A. Cuyt, E. Hubert, W.-s. Lee, O. Salazar Celis nD-shape-from-moments problem

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Diamond : polyhedron with 57 vertices

Reference direction	
$(\cos\theta\cos\phi,$	$\cos\theta\sin\phi, \sin\theta)$
(θ, ϕ)	(0.2618, 1.0472)
Conditioning	
$\kappa(W)$	1.7 10 ³³
Working precision	
ε	70
Maximum error	_
Errw	$1.9 \ 10^{-9}$

< 17 >

First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond

Diamond : polyhedron with 57 vertices

<ロト < 同ト < 三ト

-

Directional moments Recovering the vertices from directional moments Simulations	First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond
--	---

Conclusion

At the moment, advantages

- less directions are needed than in previous polygon reconstruction (Milanfar *et al.* 95)
- generalization in any dimension with a robust matching process

Next directions

- finding a better optimization process for the reference direction
- solving similar problems, using multivariate methods (generalized Hankel matrices), like

multivariate exponential interpolation,

cubature formula.

Directional moments Recovering the vertices from directional moments Simulations	First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond
--	---

References

- Gravin N., Lasserre J., Pasechnik D.V., Robins, S., *The inverse moment problem for convex polytopes*, Discrete Comput Geom (2012)
- Milanfar P., Verghese G., Karl C., Willsky A., *Reconstructing polygons from moments with connections to array processing*, IEEE Transactions on Signal Processing (1995)
- Golub G.H., Milanfar P., Varah J., A stable numerical method for inverting shape from moments, SIAM J. Sci. Comput. (1999)
- Beckermann B., Golub G.H, Labahn G., *On the numerical condition of a generalized Hankel eigenvalue problem*, Numer. Math. (2007)
- Salazar Celis O., Cuyt A., Verdonk B., Rational approximation of vertical segments, Numer. Algorithms (2007).

Directional moments Recovering the vertices from directional moments Simulations	First example : regular hexagon Second example : polygon with 12 vertices Third example : non-convex polygon Diamond
--	---

Thanks for your attention !!