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A) Low-order polynomial approx. on subintervals of decreasing size

Commonly used Newton-Cotes formulas

T n = 1
∫ b

a
f (x) dx = h

2 [f (a) + f (b)]−h3

12 f
′′(ξ)

S n = 2
∫ b

a
f (x) dx = h

3 [f (a) + 4f (a+b
2 ) + f (b)]−h5

90 f
(4)(ξ)

3

8
n = 3

∫ b

a
f (x) dx =

{
3h
8 [f (a) + 3f (a+ h) + 3f (b − h) + f (b)]

−3h5
80 f (4)(ξ)

n = 4
∫ b

a
f (x) dx =

{
2h
45[7f (a) + 32f (a + h) + 12f (a+b

2 )

+32f (b − h) + 7f (b)]− 8h7

945 f
(6)(ξ)
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B) Polynomial approximation of increasing degree, using fewer,

strategically-placed nodes

Definition

A quadrature (or cubature) rule of size p and precision m is a numerical

integration formula which uses p nodes, is exact for all polynomials of

degree at most m, and fails to recover the integral of some polynomial of

degree m + 1.

Gaussian Quadrature (size n, precision 2n − 1)
∫ 1
−1 f (t) dt =

∑n−1
j=0 ρj f (t

(n)
j ) for every polynomial f ∈ R2n−1[t]

(Gaussian means minimum number of nodes possible)
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Interpolating Equations:

n−1∑

j=0

ρj t
k
j =

∫ 1

−1
tk dt =





0 k = 1, 3, ..., 2n − 1

2
k+1 k = 0, 2, ..., 2n − 2
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Example: n = 2 



ρ0 + ρ1 = 2

ρ0t0 + ρ1t1 = 0

ρ0t
2
0 + ρ1t

2
1 = 2

3

ρ0t
3
0 + ρ1t

3
1 = 0

ρ0 = ρ1 = 1; t0 = −
√
3
3 , t1 =

√
3
3 .

∫ 1

−1

3∑

k=0

akt
k =

1∑

j=0

ρj

3∑

k=0

akt
k
j

NA textbooks prove this by using orthogonal Legendre polynomials

(t0 < ... < tn−1 are the zeros of the nth Legendre polynomial)
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(RC-L. Fialkow, 1990) Can do this as follows:

γ0 := 2, γ1 := 0, γ2 :=
2
3 , γ3 := 0, γ4 :=

2
5 , etc.

Assume n even, and form the Hankel matrix

H(n) :=




2 0 2
3 · · · 0 2

n+1

0 2
3 0 · · · 2

n+1 0
2
3 0 · · · 0 2

n+3

· · · · · · · · · · · · · · · · · ·
0 2

n+1 0 · · · 2
2n−1 0

2
n+1 0 2

n+3 · · · 0




,

label the columns 1,T,T2, ...,

observe that Tn = ϕ01+ ...+ ϕn−1T
n−1,

build the polynomial

g(t) := tn − (ϕ0 + ...+ ϕn−1t
n−1),

(non-iterative construction of Legendre polynomials)
Raúl E. Curto (Singapore, 12/11/2013) Cubic Column Relations 6 / 72



find its zeros (t0 < ... < tn−1),

and compute the densities using the Vandermonde system




1 1 · · · 1

t0 t1 · · · tn−1

· · · · · · · · · · · ·
tn−1
0 tn−1

1 · · · tn−1
n−1







ρ0

ρ1

· · ·
ρn−1




=




γ0

γ1

· · ·
γn−1




.
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With K. Clouse (1996 honors undergrad at Iowa) we checked that

Gaussian quadrature together with [Tot] makes approximation very precise:

∫ 1

0
f (t) dt ∼=

∫ 1

0
B2n−1(f )(t) dt =

n−1∑

j=0

ρjB2n−1(f )(t
(n)
j )

for f (t) = e−t2 , sin(sin x), ln(x2 + 1), sin(ex),
ex

x
,
√
4 + x3,

sin x

π + x
.
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The basic idea is to augment the original Hankel matrix by one row and

one column at a time, preserving the rank (which a fortiori preserves

positivity):

H(n) ≺ H(n + 1) ≺ ...H(∞)

Then define

〈p, q〉H(∞) := (H(∞)p̂, q̂)ℓ2 ,

and show that

〈p, q〉H(∞) =

∫
pq̄ dµ

for some finitely atomic rep. meas., with supp µ = Z(g).

Our operator-theoretic methods have allowed to solve the so-called

truncated moment problem in the real line (Hausdorff, Stieltjes,

Hamburger).
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The Truncated Real Moment Problem

Given a family of real numbers β: β0, β1, . . . , β2n with β0 > 0, the TMP

entails finding a positive Borel measure µ supported in the real line R such

that

βi =

∫
t i dµ (0 ≤ i ≤ 2n);

µ is called a representing measure for β.

Theorem

FULL MP (Hamburger, 1920)

∃µ ⇔ A(n) := (βi+j)
n
i ,j=0 ≡




β0 β1 β2 β3 · · ·
β1 β2 β3

. . . · · ·
β2 β3

. . .
. . . · · ·

β3
. . .

. . .
. . . · · ·

...
...

...
...

. . .




≥ 0 ∀ n ≥ 0.
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Theorem

FULL MP (Stieltjes, 1894)

∃µ with supp µ ⊆ [0,+∞)

⇔ (βi+j)
n
i ,j=0 ≥ 0 and (βi+j+1)

n
i ,j=0 ≥ 0 ∀ n ≥ 0.




β0 β1 β2 β3 · · ·
β1 β2 β3

. . . · · ·
β2 β3

. . .
. . . · · ·

β3
. . .

. . .
. . . · · ·

...
...

...
...

. . .




≥ 0 and




β1 β2 β3 β4 · · ·
β2 β3 β4

. . . · · ·
β3 β4

. . .
. . . · · ·

β4
. . .

. . .
. . . · · ·

...
...

...
...

. . .

(localizing matrix)




≥ 0
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The Truncated Complex Moment Problem

Given γ : γ00, γ01, γ10, . . . , γ0,2n, . . . , γ2n,0, with γ00 > 0 and γji = γ̄ij ,

the TCMP entails finding a positive Borel measure µ supported in

the complex plane C such that

γij =

∫
z̄ iz jdµ (0 ≤ i + j ≤ 2n);

µ is called a rep. meas. for γ.

In earlier joint work with L. Fialkow,

We have introduced an approach based on matrix positivity and

extension, combined with a new “functional calculus” for the columns

of the associated moment matrix.
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We have shown that when the TCMP is of flat data type, a solution

always exists; this is compatible with our previous results for

supp µ ⊆ R (Hamburger TMP)

supp µ ⊆ [0,∞) (Stieltjes TMP)

supp µ ⊆ [a, b] (Hausdorff TMP)

supp µ ⊆ T (Toeplitz TMP)

Along the way we have developed new machinery for analyzing

TMP’s in one or several real or complex variables. For simplicity,

in this talk we focus on one complex variable or two real

variables, although several results have multivariable versions.
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Our techniques also give concrete algorithms to provide finitely-atomic

rep. meas. whose atoms and densities can be explicitly computed.

We have fully resolved, among others, the cases

Z̄ = α1 + βZ

and

Z k = pk−1(Z , Z̄ ) (1 ≤ k ≤ [
n

2
] + 1; deg pk−1 ≤ k − 1).

We obtain applications to quadrature problems in numerical analysis.

We have obtained a duality proof of a generalized form of the

Tchakaloff-Putinar Theorem on the existence of quadrature rules for

positive Borel measures on R
d .
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Applications

Subnormal Operator Theory (unilateral weighted shifts)

For α0 ≤ α1 ≤ α2 ≤ · · · , the weighted shift Wα is subnormal if and

only if the moment problem α2
0α

2
1 · · ·α2

k−1 =
∫
skdµ(s) is soluble.

Physics (determination of contours)

Computer Science (image recognition and reconstruction)

Geography (location of proposed distribution centers)

Probability (reconstruction of p.d.f.’s)
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Environmental Science (oil spills, via quadrature domains)

Engineering (tomography)

Optimization (finding the global minimum of a real polynomial in

several real variables - J. Lasserre)

Function Theory (a dilation-type structure theorem in Fejér-Riesz

factorization theory - S. McCullough)

Geophysics (inverse problems, cross sections)

Typical Problem: Given a 3-D body, let X-rays act on the body at

different angles, collecting the information on a screen. One then seeks to

obtain a constructive, optimal way to approximate the body, or in some

cases to reconstruct the body.
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Basic Positivity Condition

Pn : polynomials p in z and z , deg p ≤ n

Given p ∈ Pn, p(z , z) ≡∑0≤i+j≤n aij z̄
iz j ,

0 ≤
∫

| p(z , z) |2 dµ(z , z)

=
∑

ijkℓ

aij ākℓ

∫
z̄ i+ℓz j+kdµ(z , z)

=
∑

ijkℓ

aij ākℓγi+ℓ,j+k .

To understand this “matricial” positivity, we introduce the following

lexicographic order on the rows and columns of M(n):

1,Z , Z̄ ,Z 2, Z̄Z , Z̄ 2, . . .

Raúl E. Curto (Singapore, 12/11/2013) Cubic Column Relations 17 / 72



Define M[i , j ] as in

M[3, 2] :=




γ32 γ41 γ50

γ23 γ32 γ41

γ14 γ23 γ32

γ05 γ14 γ23




Then

(“matricial” positivity)
∑

ijkℓ

aij ākℓγi+ℓ,j+k ≥ 0

⇔ M(n) ≡ M(n)(γ) :=




M[0, 0] M[0, 1] ... M[0, n]

M[1, 0] M[1, 1] ... M[1, n]

... ... ... . . .

M[n, 0] M[n, 1] . . . M[n, n]




≥ 0.
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For example,

M(1) =




γ00 γ01 γ10

γ10 γ11 γ20

γ01 γ02 γ11


 ,

M(2) =




γ00 γ01 γ10 γ02 γ11 γ20

γ10 γ11 γ20 γ12 γ21 γ30

γ01 γ02 γ11 γ03 γ12 γ21

γ20 γ21 γ12 γ22 γ31 γ40

γ11 γ12 γ21 γ13 γ22 γ31

γ02 γ03 γ12 γ04 γ13 γ22




.
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In general,

M(n + 1) =

(
M(n) B

B∗ C

)

Similarly, one can build M(∞).

In the real case, M(n)ij := γi+j , i , j ∈ Z
2
+.

Positivity Condition is not sufficient:

By modifying an example of K. Schmüdgen, we have built a family

γ00, γ01,γ10, ..., γ06, ..., γ60 with positive invertible moment matrix M(3)

but no rep. meas. But this can also be done for n = 2.
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A Version of Riesz-Haviland for TMP

Given a moment sequence β, the Riesz functional is

Lβ(p) := p(β) (p ∈ C[z , z̄ ]).

Recall the Riesz-Haviland Theorem:

∃ µ rep. meas. for β ⇔ L ≡ Lβ ≥ 0 on P+.

For TMP, the natural analogue won’t work.

We say that the Riesz functional L is K-positive if

p ∈ P and p|K ≥ 0 ⇒ L(p) ≥ 0.
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Consider the case

d = 1, K = R, and

M(2) :=




1 1 1

1 1 1

1 1 2


 ≥ 0.

Then Lβ is R-positive, but no rep.meas. exists. For, in this case,

L(a0 + a1x + a2x
2 + a3x

3 + a4x
4) := a0 + a1 + a2 + a3 + 2a4

To see that L is R-positive, recall that if p ∈ P4 satisfies p|R ≥ 0,

then there exist f , g ∈ P2 such that p = f 2 + g2.
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Now

L(p) = L(f 2 + g2) = 〈M(2)f̂ , f̂ 〉+ 〈M(2)ĝ , ĝ〉 ≥ 0;

thus, L is R-positive.

Assume that µ is a representing measure for β. Since

∫
(x − 1)2 dµ = L(x2 − 2x + 1) = β2 − 2β1 + β0 = 0,

it follows that (x − 1)|supp µ ≡ 0. We thus have (x − 1)x3|supp µ ≡ 0, so

0=
∫
(x − 1)x3 dµ = L(x4 − x3) = β4 − β3 = 1,

a contradiction. Thus L is K -positive, but β has no representing measure.
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In TMP, K -positivity is a necessary (but not sufficient) condition for a

K -representing measure µ.

Theorem (TMP Version of Riesz-Haviland)

(RC-LF, 2007) β ≡ β(2n) admits a K-representing measure if and only if

Lβ admits a K-positive linear extension L : P2n+2 7−→ R.

This Theorem implies the classical Riesz-Haviland, via Stochel’s Theorem.
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P
...

↑
P2n+2

↑
K -pos.

ց
P2n

K -pos.−→ R
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Main tool. Let β ≡ β(2n) and let K ⊆ R
d be closed. Assume Lβ is

K -positive. Then β ≡ β(2n−1) has a K -representing measure.

In general it is quite difficult to directly verify that an extension

L̃ : P2n+2 −→ R is K -positive. One approach to establishing

K -positivity or the existence of representing measures is through

extensions of moment matrices.
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Positivity of Block Matrices

Theorem

(Smul’jan, 1959)

(
A B

B∗ C

)
≥ 0 ⇔





A ≥ 0

B = AW

C ≥ W ∗AW

.

Moreover, rank

(
A B

B∗ C

)
=rank A ⇔ C = W ∗AW .
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Corollary

Assume rank

(
A B

B∗ C

)
= rank A. Then

A ≥ 0 ⇔
(

A B

B∗ C

)
≥ 0.

We say that (
A B

B∗ C

)

is a flat extension of A. Observe that

(
A B

B∗ C

)
=

(
A AW

W ∗A W ∗AW

)
.
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Corollary

Assume that (
A B

B∗ C

)
≥ 0.

Then

(
A B

B∗ C

)
=

(
A AW

W ∗A W ∗AW

)
+

(
0 0

0 C −W ∗AW

)

=
( √

A
√
AW

)∗ ( √
A

√
AW

)

+
(

0
√
C −W ∗AW

)∗ (
0

√
C −W ∗AW

)

(sum-of-squares representation).
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Functional Calculus

For p ∈ Pn, p(z , z̄) ≡
∑

0≤i+j≤n aij z̄
iz j , let p̂ denote the vector of

coefficients and define

p(Z , Z̄ ) :=
∑

aij Z̄
iZ j ≡ M(n)p̂.

If there exists a rep. meas. µ, then

p(Z , Z̄ ) = 0 ⇔ supp µ ⊆ Z(p).

The following is our analogue of recursiveness for the TCMP

(RG) Ifp, q, pq ∈ Pn, and p(Z , Z̄ ) = 0,

then (pq)(Z , Z̄ ) = 0.
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Singular TMP; Real Case

Given a finite family of moments, build moment matrix.

Identify all column relations p(Z , Z̄ ) = 0, i.e., M(n)p̂ = 0.

Build algebraic variety

V :=
⋂

p∈Pn, p̂∈kerM(n)

Zp.

Always true: in the presence of a measure,

supp µ ⊆ V .
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Therefore,

r := rankM(n) ≤ card supp µ ≤ v := cardV(γ).

Thus, if the variety is finite there’s a natural candidate for supp µ, i.e.,

supp µ = V(γ)
(It is possible for the inclusion supp µ ⊆ V to be proper.)
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Finite rank case

Flat case

Extremal case

Recursively generated relations

Strategy: Build positive extension, repeat, and eventually extremal

rank M(n) ≤ rank M(n + 1) ≤ card V(M(n + 1)) ≤ cardV(M(n))

General case.
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First Existence Criterion

Theorem

(RC-L. Fialkow, 1998) Let γ be a truncated moment sequence. TFAE:

(i) γ has a rep. meas.;

(ii) γ has a rep. meas. with moments of all orders;

(iii) γ has a compactly supported rep. meas.;

(iv) γ has a finitely atomic rep. meas. (with at most (n + 2)(2n + 3)

atoms);

(v) M(n) ≥ 0 and for some k ≥ 0 M(n) admits a positive extension

M(n + k), which in turn admits a flat (i.e., rank-preserving) extension

M(n + k + 1) (here k ≤ 2n2 + 6n + 6) ).
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Case of Flat Data

Recall: If µ is a rep. meas. for M(n), then rank M(n) ≤ card supp µ.

γ is flat if M(n) =

(
M(n − 1) M(n − 1)W

W ∗M(n − 1) W ∗M(n − 1)W

)
.

Theorem

(RC-L. Fialkow, 1996) If γ is flat and M(n) ≥ 0, then M(n) admits a

unique flat extension of the form M(n + 1).

Theorem

(RC-L. Fialkow, 1996) The truncated moment sequence γ has a

rank M(n)-atomic rep. meas. if and only if M(n) ≥ 0 and M(n) admits a

flat extension M(n + 1).

To find µ concretely, let r :=rank M(n) and look for the relation
Raúl E. Curto (Singapore, 12/11/2013) Cubic Column Relations 35 / 72



Z r = c01 + c1Z + ...+ cr−1Z
r−1.

We then define

p(z) := z r − (c0 + ...+ cr−1z
r−1)

and solve the Vandermonde equation




1 · · · 1

z0 · · · zr−1

· · · · · · · · ·
z r−1
0 · · · z r−1

r−1







ρ0

ρ1

· · ·
ρr−1




=




γ00

γ01

· · ·
γ0r−1




.

Then

µ =
r−1∑

j=0

ρjδzj .
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The Quartic Moment Problem

Recall the lexicographic order on the rows and columns of M(2):

1,Z , Z̄ ,Z 2, Z̄Z , Z̄ 2

Z = A 1 (Dirac measure)

Z̄ = A 1 + B Z (supp µ ⊆ line)

Z 2 = A 1 + B Z + C Z̄ (flat extensions always exist)

Z̄Z = A 1 + B Z + C Z̄ + D Z 2

D = 0 ⇒ Z̄Z = A 1 + B Z + B̄ Z̄ and C = B̄

⇒ (Z̄ − B)(Z − B̄) = A+ |B |2

⇒ W̄W = 1 (circle), for W :=
Z − B̄√
A+ |B |2

.
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The functional calculus we have constructed is such that p(Z , Z̄ ) = 0

implies supp µ ⊆ Z(p).

When
{
1,Z , Z̄ ,Z 2, Z̄Z

}
is a basis for CM(2), the associated algebraic

variety is the zero set of a real quadratic equation in

x := Re[z ] and y := Im[z ].

Using the flat data result, one can reduce the study to cases corresponding

to the following four real conics:

(a) W̄ 2 = −2iW + 2iW̄ −W 2 − 2W̄W parabola; y = x2

(b) W̄ 2 = −4i1 +W 2 hyperbola; yx = 1

(c) W̄ 2 = W 2 pair of intersect. lines; yx = 0

(d) W̄W = 1 unit circle; x2 + y2 = 1.
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Theorem QUARTIC

(RC-L. Fialkow, 2005) Let γ(4) be given, and assume M(2) ≥ 0 and
{
1 ,Z , Z̄ ,Z 2, Z̄Z

}
is a basis for CM(2). Then γ(4) admits a rep. meas. µ.

Moreover, it is possible to find µ with card supp µ = rank M (2), except

in some cases when V(γ(4)) is a pair of intersecting lines, in which cases

there exist µ with card supp µ ≤ 6.

Corollary

Assume that M(2) ≥ 0, M(2) singular, and that

rank M(2) ≤ card V(γ(4)). Then M(2) admits a representing measure.
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Extremal Real MP; r = v

The algebraic variety of β is

V ≡ Vβ :=
⋂

p∈Pn,p̂∈kerM(n)

Zp,

where Zp = {x ∈ R
d : p(x) = 0}.

If β admits a representing measure µ, then

p ∈ Pn satisfies p̂ ∈ kerM(n) ⇔ supp µ ⊆ Zp

Thus supp µ ⊆ V , so r := rank M(n) and v := card V satisfy

r ≤ card supp µ ≤ v .
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Easy Example:




1 1 1

1 1 1

1 1 2


 .

Observe that X = 1, so V = {1}, and therefore r = 2 and v = 1. It

follows that this TMP admits no representing measure.

If p ∈ P2n and p|V ≡ 0, then Λ(p) =
∫
p dµ = 0.

Here Λ is the Riesz functional, given by Λ(z̄ iz j) := γij
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Basic necessary conditions for the existence

of a representing measure

(Positivity) M(n) ≥ 0 (8.1)

(Consistency) p ∈ P2n, p|V ≡ 0 =⇒ Λ(p) = 0 (8.2)

(Variety Condition) r ≤ v , i.e., rank M(n) ≤ card V . (8.3)

Consistency implies

(Recursiveness) p, q, pq ∈ Pn, p̂ ∈ kerM(n) =⇒ p̂q ∈ kerM(n). (8.4)

(ideal-like property)
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Previous results:

For d = 1 (the T Hamburger MP for R), positivity and recursiveness are

sufficient

For d = 2, there exists M(3) > 0 for which β has no representing measure

In general, Positivity, Consistency and the Variety Condition are not

sufficient.

Question C

Suppose M(n)(β) is singular. If M(n) is positive, β is consistent, and

r ≤ v, does β admit a representing measure?
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The next result gives an affirmative answer to Question C in the extremal

case, i.e., r = v .

Theorem EXT

(RC, L. Fialkow and M. Möller, 2005) For β ≡ β(2n) extremal, i.e., r = v,

the following are equivalent:

(i) β has a representing measure;

(ii) β has a unique representing measure, which is rank M(n)-atomic

(minimal);

(iii) M(n) ≥ 0 and β is consistent.
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Cubic Column Relations

Since we know how to solve the singular Quartic MP, WLOG we will

assume M(2) > 0.

Recall

Theorem A

(RC-L. Fialkow) If M(n) admits a column relation of the form

Z k = pk−1(Z , Z̄ ) (1 ≤ k ≤
[
n
2

]
+ 1 and deg pk−1 ≤ k − 1), then M(n)

admits a flat extension M(n + 1), and therefore a representing measure.

Now, if k = 3, Theorem A can be used only if n ≥ 4. Thus, one strategy

is to somehow extend M(3) to M(4) and preserve the column relation

Z 3 = p2(Z , Z̄ ). This requires checking that the C block in the extension

satisfies the Toeplitz condition, something highly nontrivial.
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Here’s a different approach:

We’d like to study the case of harmonic poly’s: q(z , z̄) := f (z)− g(z),

with deg q = 3.

Recall that rank M(n) ≤ card Z(q)

so of special interest is the case when card Z(q) ≥ 7, since otherwise the

TMP admits a flat extension, or has no representing measure. In the case

when g(z) ≡ z , we have

Lemma

(Wilmshurst ’98, Sarason-Crofoot, ’99, Khavinson-Swiatek, ’03)

card Z(f (z)− z) ≤ 7.

Bézout’s Theorem predicts card Z(f (z)− z) ≤ 9
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To get 7 points is not easy, as most complex cubic harmonic poly’s tend to

have 5 or fewer zeros. One way to maximize the number of zeros is to

impose symmetry conditions on the zero set K . Also, the substitution

w = z + b/3 (which produces an equivalent TMP) transforms a cubic

z3 + bz2 + cz + d into w3 + c̃w + d̃ ; WLOG, we always assume that

there’s no quadratic term in the analytic piece.

Now, for a poly of the form z3 + αz + βz̄ , it is clear that 0 ∈ K and that

z ∈ K ⇒ −z ∈ K . Another natural condition is to require that K be

symmetric with respect to the line y = x , which in complex notation is

z = i z̄ . When this is required, we obtain α ∈ iR and β ∈ R. Thus, the

column relation becomes Z 3 = itZ + uZ̄ , with t, u ∈ R.

Under these conditions, one needs to find only two points, one on

the line y = x , the other outside that line.
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We thus consider the harmonic polynomial q7(z , z̄) := z3 − itz − uz̄ .

Proposition

(RC-S. Yoo, ’09) card Z(q7) = 7. In fact, for 0 < |u| < t < 2 |u|,

Z(q7) = {0, p + iq, q + ip,−p − iq,−q − ip, r + ir ,−r − ir},

where p, q, r > 0, p2 + q2 = u and r2 = t−u
2 .
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To prove this result, we first identify the two real poly’s

Re q7 = x3 − 3xy2 + ty − ux and Im q7 = −y3 + 3x2y − tx + uy and

calculate Resultant(Req7, Imq7, y), which is the determinant of the

Sylvester matrix, i.e.,

det




−3x t x3 − ux 0 0

0 −3x t x3 − ux 0

0 0 −3x t x3 − ux

−1 0 3x2 + u −tx 0

0 −1 0 3x2 + u −tx




= x
(
u − t + 2x2

) (
u + t + 2x2

) (
16x4 − 16x2u + t2

)
.
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(0, 0)

(r, r)

(−r,−r)

(p, q)

(q, p)

(−p,−q)

(−q,−p)

Figure 1. The 7-point set Z(q7), where

r =
√

t−u

2
, p = 1

2
(2u +

√
4u2 − t2) and

p2 + q2 = u
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The fact that q7 has the maximum number of zeros predicted by the

Lemma is significant to us, in that each sextic TMP with invertible M(2)

and a column relation of the form q7(Z , Z̄ ) = 0 either does not admit a

representing measure or is necessarily extremal.

As a consequence, the existence of a representing measure will be

established once we prove that such a TMP is consistent. This means

that for each poly p of degree at most 6 that vanishes on Z(q7) we must

verify that Λ(p) = 0.
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Since rankM(3) = 7, there must be another column relation besides

q7(Z , Z̄ ) = 0. Clearly the columns

1,Z , Z̄ ,Z 2, Z̄Z , Z̄ 2, Z̄Z 2

must be linearly independent (otherwise M(3) would be a flat extension of

M(2)), so the new column relation must involve Z̄Z 2 and Z̄ 2Z . An

analysis using the properties of the functional calculus shows that, in the

presence of a representing measure, the new column relation must be

Z̄ 2Z + i Z̄Z 2 − iuZ − uZ̄ = 0.
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Notation

In what follows, C6[z , z̄ ] will denote the space of complex polynomials in z

and z̄ of degree at most 6, and let

qLC (z , z̄) := z̄2z + i z̄z2 − iuz − uz̄

= i(z − i z̄)(z̄z − u).

Observe that the zero set of qLC is the union of a line and a circle, and

that Z(q7) ⊂ Z(qLC ).
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(0, 0)

(r, r)

(−r,−r)

(p, q)

(q, p)

(−p,−q)

(−q,−p)

Figure 2. The sets Z(q7) and Z(qLC)
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Main Theorem (RC & S. Yoo, J. Funct. Anal., 2014)

Let M(3) ≥ 0, with M(2) > 0 and q7(Z , Z̄ ) = 0. There exists a

representing measure for M(3) if and only if

{
Λ(qLC ) = 0

Λ(zqLC ) = 0.
(9.1)

Equivalently,

{
Re γ12 − Im γ12 = u(Re γ01 − Im γ01) = 0

γ22 = (t + u)γ11 − 2u Im γ02 = 0.

Equivalently,

qLC (Z , Z̄ ) = 0 (9.2)
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Proof. (=⇒) Let µ be a representing measure. We know that

7 ≤ rank M(3) ≤ card supp µ ≤ card Z(q7) = 7, so that

supp µ = Z(q7) and rank M(3) = 7. Thus,

Λ(q7) =

∫
q7 dµ = 0.

Similarly, since supp µ ⊆ Z(qLC ), we also have

Λ(qLC ) = Λ(zqLC ) = 0,

as desired.
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(⇐=) On Z(q7) we have z3 = itz + uz̄ . Using this relation and (9.1), we

can prove that Λ(z̄ iz jqLC ) = 0 for all 0 ≤ i + j ≤ 3. For example,

z̄qLC − izqLC = (z̄ − iz)(z̄2z + i z̄z2 − iuz − uz̄)

= −uz2 + z̄z3 − uz̄2 + z̄3z

= −uz2 + z̄(itz + uz̄)− uz̄2 + (−itz̄ + uz)z

= 0,

and therefore Λ(z̄qLC ) = iΛ(zqLC ) = 0. It follows that for

f , g , h ∈ C3[z , z̄ ] we have Λ(fq7 + gq̄7 + hqLC ) = 0. Consistency will be

established once we show that all degree-six polynomials vanishing in

Z(q7) are of the form fq7 + gq̄7 + hqLC .
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Fundamental Theorem of Linear Algebra

Let T be a linear transformation from X to Y, and consider the exact

sequence

0 → ker T →֒ X → Ran T → 0.

Then

dim ker T − dim X + dim RanT = 0.

Equivalently,

dim X = dim ker T + dim Ran T .
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Proposition (Representation of Polynomials)

Let P6 := {p ∈ C6[z , z̄ ] : p|Z(q7) ≡ 0} and let

I := {p ∈ C6[z , z̄ ] : p = fq7 + gq̄7 + hqLC for some f , g , h ∈ C3[z , z̄ ]}.
Then P6 = I.

Proof. Clearly, I ⊆ P6. We shall show that dim I = dim P6. Let

T : C30 −→ C6[z , z̄ ] be given by

(a00, · · · , a30, b00, · · · , b30, c00, · · · , c30) 7−→

(a00 + a01z + a10z̄ + · · ·+ a30z̄
3)q7

+(b00 + b01z + b10z̄ + · · ·+ b30z̄
3)q̄7

+(c00 + c01z + c10z̄ + · · ·+ c30z̄
3)qLC .
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Recall that 30 = dim C
30 = dim ker T + dim Ran T , and observe that

I = Ran T , so that dim I = rank T .

To determine rank T , we first determine dim ker T . Using Gaussian

elimination, we prove that dim ker T = 9 whenever ut 6= 0. It follows

that rank T = 30− 9 = 21, that is, dim I = 21.
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Now consider the evaluation map S : C6[z , z̄ ] −→ C
7 given by

S(p(z , z̄)) := (p(w0, w̄0), p(w1, w̄1), p(w2, w̄2),

p(w3, w̄3), p(w4, w̄4), p(w5, w̄5), p(w6, w̄6)).

Again, dim ker S + dim Ran S = dim C6[z , z̄ ] = 28. Using Lagrange

Interpolation, it is easy to verify that S is onto, i.e., rank S = 7.

Moreover, ker S = P6. Since dim C6[z , z̄ ] = 28, it follows that

dim ker S = 21, and a fortiori that dim P6 = 21.

Therefore, dim I = 21 = dim P6, and since I ⊆ P6, we have established

that I = P6, as desired.
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Yet Another Approach to TMP:

The Division Algorithm

Division Algorithm in R[x1, · · · , xn]
Fix a monomial order > on Z

n
≥0 and let F = (f1, · · · , fs) be an ordered

s-tuple of polynomials in R[x1, · · · , xn]. Then every f ∈ R[x1, · · · , xn] can
be written as

f = a1f1 + · · ·+ as fs + r ,

where ai ,∈ R[x1, · · · , xn], and either r = 0 or r is a linear combination,

with coefficients in R, of monomials, none of which is divisible by any of

the leading terms in f1, · · · , fs .
Furthermore, if ai fi 6= 0, then we have

multideg(f ) ≥ multideg(ai fi ).
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The Division Algorithm work is as follows: we identify sufficiently many

polynomials f1, · · · , fs vanishing on V(β), and simultaneously in the kernel

of the Riesz functional Lβ . By the Division Algorithm, any polynomial f

vanishing on V(β) can be written as f = a1f1 + · · ·+ as fs + r , which

readily implies that r must also vanish on V(β). Due to the divisibility

condition on the monomials of r , and the characteristics of V(β), which
generate an invertible Vandermonde matrix, we then prove that r ≡ 0.

With some additional work, it is then possible to prove that f ∈ ker Lβ,

which establishes the Consistency of β.
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Summary

Given a finite family of moments, build moment matrix

Identify all column relations, and build algebraic variety V

Always true: r ≤ card supp µ ≤ v

Finite rank case; flat case

Quartic Case

Extremal case (must check Consistency)

Harmonic cubic poly’s in Sextic Case

General singular case

Invertible case still a big mystery...
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The Case of Invertible M(2)

(L. Fialkow and J. Nie, 2010) Consider a quartic moment problem with

invertible M(2). Then there exists a representing measure.

The proof is abstract, using convex analysis.

(RC and S. Yoo, 2013) Concrete construction of a representing measure,

when M(2) is invertible. Moreover, there exists a 6-atomic representing

measure, that is, M(2) admits a flat extension M(3).
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semi-algébriques, C.R. Acad. Sci. Paris 323(1996)

M. Putinar and F.-H. Vasilescu, Solving moment problems by dimensional

extension, Annals of Math. 149(1999)
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