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(x,y)=x"y=yTx

For K c R w e RY,

sup(K; w) := sup(w, k) (upper)
keK
inf(K; w) := inf (w, k) (lower)
kek Let K={Ax<b)}
= —sup(K; —w)
sup(K;c) =  maxc’x
Ax < b
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(x,y)=x"y=yTx

For K c R, w e RY,

sup(K; w) 1= iu’g( w, k) (upper)
€

inf(K; w) := klg}‘(( w, k) (lower)

Let polyhedron K = { Ax < b}

= —sup(K; —w)
sup(K;c) =  maxc'x

Ax < b
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For K C RY, p € K, the outer
normal cone

N(K;p) :={y|(y,p)=sup(K;y)}




For K C RY, p € K, the outer
normal cone

N(K;p) :={y|(y,p)=sup(K;y)}

e N(K; p) is the set of all objective functions optimal at x
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P* =conv{y|Vx e P,(y,x)<1}



Ixllg =inf{y>0]xec~B} (1)
= sup(B"; x) (2)



Notation

Minkowski Norms

Ixllg = inf{y>0]xe€B} (1)
= sup(B*; x) (2)

|- ll2 = /x¢ +X2 |- lloo = |-l = x| + x]
max(|xi|, |x2|)
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Notation

Minkowski Norms

Ixllg = inf{y>0]xe€B} (1)
= sup(B*; x) (2)

|- ll2 = /x¢ +X2 |- lloo = |-l = x| + x]
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S=bdB S* = bd(B*)
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P,Q C R are separable if 3z ;é )
such that sup(Q; z) < inf(P; z) N
dz e S°

sup(Q; z) + v < inf(P; 2)

For the Euclidean norm

z € S* just means z is a unit
vector.

Both that constraint and

z # 0 are non-convex

max~y such that
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P,Q C RY are separable if 3z 7& o SR
such that sup(Q; z) < inf(P; z) max<y such that

Jdz e §*

H sup(Q; z) + v < inf(P; 2)

@ For the Euclidean norm
z € $* just means z is a unit
vector.




P C R resepaabie 3z o SR
maxy such that

such that sup(Q; z) < inf(P; z)
JzeS*

r'\ sup(Q: 2) + 7 < inf(P; 2

@ For the Euclidean norm
z € $* just means z is a unit
vector.

@ Both that constraint and
z # 0 are non-convex
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(w,p—q)>1-vy peP,ge@
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@ Need C suff. large to force
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e Given optimal (w,vy < 1),
p > 1, define

/
w' = pw
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min ||w||2 + Cy
s.t. o Ify<1
(w,p—q)>1-v peP,ge@ ,
4> 0 1=y == =7)>0

@ Need C suff. large to force
v < 1 at opt.

e Given optimal (w,vy < 1),
p > 1, define

/
w' = pw

Y'=1-p(1—7)



min ||w||2 + Cy
s.t. o Ify<1
(w,p—q)>1-v peP,ge@ ,
4> 0 1=y == =7)>0

@ Therefore
@ Need C suff. large to force

v < 1 at opt. W] — Cy < |lw|| + C~v
e Given optimal (w,vy < 1),
p > 1, define
w' = pw

Y'=1-p(1—7)



Maximum margin classifiers

A simplified convex approximation

min ||w||® + Cy
s.t. o Ify<1
(w,p—q)>21-7 peP,geq /
v>0 T=7=(p-1D1-7)>0

@ Therefore
@ Need C suff. large to force

v <1atopt. Iw'll = C" < llw] + Cy
e Given optimal (w,vy < 1),

p > 1, define @ For large enough C, we can

scale w up without making the
w = pw objective worse.

7' =1-p(1-7)
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Let P and @ convex bodies.

sup(P;z) <inf(Q + t; 2)
z#0, q€Q, qg+teP

inf ||r||
ze N(P—-Q;r)
240, reP-Q




Maximum margin classifiers

Translate until separable

Minimize Translation
Let P and @ convex bodies.

inf ||t]]
sup(P; z) <inf(Q + t; 2)
2#6, geQ, qg+teP
inf ||r||
ze N(P—-Q;r)

Equivalent Formulation

0, rep-
z#0, reP-Q shift(P, Q) := min { |¢] : t € bd(P — @) }
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If0oe P—Q,

shift(P, Q) = — margin(P, Q)




If0oe P—Q,

shift(P, Q) = — margin(P, Q)

Choose w € S*,
z € N(B*; w) N bd(P — Q)

sup(P — Q,w) > (z,w) = [|Z]]

> inf k||
kebd P—Q




If0oe P—Q,

shift(P, Q) = — margin(P, Q)

Choose w € S*,
z € N(B*; w) N bd(P — Q)

sup(P— Q,w) = (z,w) = | ]|
> inf ||k

If kebdP —Q,
~ kebd P—Q we N(P—Q; k)nsS*

IKl| > (w, k) = sup(P — Qi w)




For convex polyhedron K

inf _|lrl=_ min_ min|r|
rebd K F facet of K reF
= min min_||r||

F facet of K rcaff F




For convex polyhedron K

inf _|lrl=_ min_ min|r|
rebd K F facet of K reF
= min min_||r||
F facet of K reaff F

min{x|aTx:1}:ﬁ




For convex polyhedron K

inf ||r|| =

rebd K

min{x|a’x=1}=

F facet of K reF
min_||r||

min_ min |||

mi

n
F facet of K rcaff F

Assuming 0 € int K

inf ||r||
rebd K

max
v vertex of K*

max ||x||
xeEK*

1
all

v




Maximum margin classifiers

Convex Maximization
For convex polyhedron K

inf ||r[[=_ min_ min|r||
rebd K F facet of K reF

= min min_||r||
F facet of K recaff F

1
min{x|ax=1}=——

a Theorem (Brieden 2002)

Assuming 0 € int K For 2 < p < oo max||x||p | Ax < b

cannot be computed in polynomial
inf ||r|| = max [[v]] time within a factor of 1.090 ,
rebd K v vertex of K*
unless P=NP.
= max ||x||
xeK*
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breadth,, (X) := sup (w,x —y) =sup(X — X; w)
x,yeX

width(X) := ing breadth,, (X)
weES*

width(X) = — margin(X, X)
Computing the width is NP-hard.
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function
MINNORMFACET(P, @ C RY)
A =400
R = ExtremePoints(P — Q)
for all facets F of conv R do
A = min(MinNormAff(F), A)
end for
end function



function
MINNORMFACET(P, @ C RY)
A =400
R = ExtremePoints(P — Q)
for all facets F of conv R do
A = min(MinNormAff(F), A)
end for
end function




@ Facets of P — @ are computed
without extra memory




bases per vertex

Enumerative Algorithms

Enumerating Facets with Reverse Search

@ Facets of P — @ are computed
without extra memory

@ the number of facets and bases Adj

grow quickly.
125+
100+ T
1/ 1 @0OC
50+ T
! F(AdI(X, 7)) = X

3 4 5 6 7 8

dimension
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@ Most of the volume is far away from the interesting péft



@ Most of the volume is far away from the interesting part

@ Hopefully most of the combinatorial complexity is also far away.



cmme
N

Let

x* = argmin,epd p—q [IX|l-
For any A > |x*||, H
tangent to AB preserves
bd(P — Q) N AB > x*,



m
Let
X" = argmin, cpqp_q ||x||-
For any A > |x*||, H
tangent to AB preserves

bd(P — Q)N AB 5 x*,

Let Ey be the edges of conv V that properly intersect H. The vertex set
of conv(V)NH™ is VN H™ Uleeg,(eNH)



@ Adding a cutting plane is
(usually) only effective if it cuts
off many more vertices than it
creates.



@ Adding a cutting plane is
(usually) only effective if it cuts
off many more vertices than it
creates.

o Experimentally, the farthest
vertex seems to be a good
choice of cutting plane normal,
at least for “random-ish” data.



@ In some sense what we want is
polytopal approximation of the
sphere.
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V' complexity containing sphere.
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@ In some sense what we want is
polytopal approximation of the
sphere.

e Find polytope with small H and
V' complexity containing sphere.

e Using (approximately) regular
simplex

@ round carefully



Cutting Plane Approaches

Cutting Polytopes

@ In some sense what we want is
polytopal approximation of the
sphere.

@ Find polytope with small H and
V' complexity containing sphere.

e Using (approximately) regular
simplex
@ round carefully

@ doesn’t seem to iterate that
well.
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@ Minimum norm boundary point is dual to maximum margin
classifying hyperplane
e NP-Hard

@ Solvable via (partial) enumerative approaches.

e Cutting planes/polytopes yield some speedup, but plenty of room for
improvement.



@ Geometric background: with Peter Gritzmann

e Software: Irslib (Avis), cddlib (Fukuda), gmp, Minkowski sum
(Weibel)



Cutting Plane Approaches

Filtering redundant points of P — Q

U1 + S2
.

N

Proposition (Fukuda)

Let m be the max degree of a vertex
of conv(X;). The extreme points of
X1 — Xo can be computed with

S1 O(m- fo(X1 — Xo) + 153 (X1) + 17 (X2))

LPs with m constraints.
N

592

s1+ 1t
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function MiNNorMCUT(P, Q,B C RY
A = 400
for all vertices v of B do
F < SepFacet(P — Q, Av)
if F# 0 then 4\
A = min(MinNormAff(F, A))
end if
end for
end function
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