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f:S' =R
1 ™
c(f) = / e " f(x)dx
2r J_»
(Fv= > c(f)e™
|k|<N

(Af)N =f- (f)N

o If f € CY(S) then |(Af)y| ~ N=97L, uniformly.
o If f e CI(SL\ {5}1’-’:1) then we have the Gibbs phenomenon:

e No uniform convergence
o |(Af)y| ~ N~ away from the jumps
e Implications: PDE, signal processing, imaging, ...
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Main problem

Can piecewise-smooth functions be reconstructed from their
Fourier coefficients with high accuracy?

e Main problem: accurate determination of the jump locations
{&7

e Best possible accuracy: O(N~972) for jumps, O(N—9~1) for
pointwise values.

e Linear methods: no better than O(N~1)

e Tadmor et. al (concentration kernels): O(N~!) for jumps, full
accuracy between the jumps

e Our result: full accuracy for jumps and values in between.
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Krylov-Gottlieb-Eckhoff method

F= o) + v
~— ~—
piecewise polynomial €Cd(st)
c(f) = w(®) + Ok 3,  k>1
——

finite-parametric

e One gets a nonlinear system of algebraic equations of Prony
type, with errors in the left-hand side.

e Its stability analysis turns out to be hard.

Eckhoff’s conjecture (1995)

By solving the above system, one can reconstruct the jumps
(positions + magnitudes), as well as the point-wise values of f,
with the maximal (asymptotic) accuracy.




Eckhoff system

Start with piecewise polynomial ¢ of degree d

Dd+1¢ Z Z CZJ §J

Jj=14¢=0
(1k)¥ L (D) = (D1 D)

Eckhoff system

(Zk)d+1ck(¢) Z ek Z Cg,_,, crj € R,fj = 51;
/=0

|Ack(®)| ~ k™ o 2.
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di—1
mie=Y_ Y ajzf k(k—1)--- (k=L +1)
j=1 ¢=0
p dj—1
my = Z ZJk agdké
j=1  ¢=0

e Frequency estimation, Padé approximation, array processing,
statistics, interpolation, quadrature, radar signal detection,
error correction codes, analytic continuation ...

e Sub-Nyquist Sampling (reconstruction of "spike trains”)

e Shape reconstruction from moments (quadrature domains, ...)
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Algebraic reconstruction

Given: integral measurements of an unknown function f

mk:/fdak (1)

@ Represent f by a finite-parametric model F(p,..., pn).

@® Replace f with F in (1) and obtain system of (algebraic)
equations

my = /Fdak = Gk(pl,. . .,pn). (2)

© Solve (2) in a robust way.

e Systems (2) will be of Prony type.
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Solution methods

Prony-like methods

Subspace-based/SVD (MUSIC, ESPRIT, Matrix pencils)
Least-squares methods

Algebraic methods

Total variation minimization
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Prony stability - open questions

p 41
me= e Y gk
j=1 =0

Robust Prony solution

How robustly* can the parameters {ay, z;} be recovered from the
noisy data {mx = my + (5k}N 12

Superresolution

How robustly* can two closely spaced nodes {z;, z;} be recovered
from the noisy data {m, = my + 5k}N 17

* How does the error depend on |dk|, N and other data?
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Known lower bounds

p

di—1
mk:szkZag,jke, kZO,l,...N
Jj=1 =0

Amy ~ ¢, Zdj:R
j

e Node separation: |z; — zj| >
e Donoho [1992]: for d; =1

1)\ 2R+1
Error ~ <6) €

e Statistical estimation literature: as N > 1
1

Error{zj'} =~ WE
i—1J
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Prony systems: assumptions

p d-1
mk:szk ag,jké, keSg{O,,N—l}
j=1

=0

Small perturbations: M, = my + Ok with [0k < 1.
Number of equations |S| = number of unknowns C.

Stability measure is given by the Lipschitz constant of the
"data — result mapping”.
e Require row-wise norm estimates of the inverse Jacobian
matrix.

Index subset S is an arithmetic progression with step o.
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p d4-1
me=Y_zf Y ak', k=0,1,...,C—1
j=1  ¢=0
§=min|z -z, [Amy|<e
1<J
= |8z~ fag1| 76

e Problem is ill-posed as |ag,—1;| — 0 and/or § — 0.

e Numerical simulations confirm qualitative predictions.

D.Batenkov, Y.Yomdin, " On the accuracy of solving confluent
Prony systems”, SIAM J.Appl.Math., 73(1), pp.134-154, 2013.
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= |Az| ~ag_14]716; 0%

Decimation provides improvement by ~ o

Superresolution: for 6, < 1 we have §, ~ od and so
improvement by ~ o¢+d (11).

Qualitative similarity to CRB and Donoho's lower bounds.
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my = E ij aé,jkzv k=n,n+om+20,...n+(C-1)0
0

=1 =
0o =min|zy —z7|, [Amy| <e
1<J
= |Azj| ~ |ag_14]7"6; o™ %e

Decimation provides improvement by ~ o

Superresolution: for 6, < 1 we have §, ~ od and so
improvement by ~ o¢+d (11).

Qualitative similarity to CRB and Donoho's lower bounds.

Reduction in number of samples without sacrificing accuracy
too much

e Problem is ill-posed as |aj,—1 ;| — 0 and/or 6, — 0.

D.Batenkov, " Decimated Generalized Prony systems”, submitted.
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Why this works?

p d-1
me=Y_zf Y agk', k=0,0,20,...,(C—1)o
j=1  ¢=0

¢
byj = apjo", wi =z7, ng = Mio, |wj —wj| > 65

P di—1
ne=Y wf> bk, k=01,...,C-1
j=1 £=0

1 13
|bg;—1,j105

J

|Awj| ~



Why this works?

Rescaling!
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Eckhoff’s problem via Prony systems
Eckhoff system

(1k) e (@) = Z ek Z ‘ej, k=0,1,...,N

/=0
|Ack ()] ~ k~ a2 — |ALHS| ~ k71

o Eckhoff (1995): Solve with k =N —C+1,..., N, ie.
n~N, oc=1.
— |Ag| ~ N1,

¢ Batenkov & Yomdin (Math.Comp. 81(2012), pp.277-318):
take d above to be half the actual smoothness.
— |Ag] ~ NTLEIL

o Decimation: take = o = | ¥], this gives improvement by

gd+1

:>|Afj|~N1><Nd1 N—d=2,



A-priori bounds

f= () L4
~— + ~—
piecewise polynomial € Cd(S?)

min[§ — &> J >0
1<J

‘a&j’ <A<
|ao,j’ >B>0
c(W)| < R k42
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Algorithm

f=old v

© Obtain initial approximations for {&1,...,&p}
® Localize each & by multiplying f with a mollifier (convolution
in the Fourier domain)
© Solve resulting Eckhoff system for one point with decimation:
. _ | N
o=N= 932
o Recovery of & = ¢ boils down to solving a single polynomial
equation P(s) = 0.
e Perturbations of the roots of P are explicitly analyzed using
Rouche's principle.

O The final approximation is

F=b( (a8 )+ {ck(f)—zﬁrge’é > ok b

|k|<N :o




Main result

The approximation f satisfies, for N >> 1:

|€J - gjl ~ N*d*27
|agj — g | ~ N9,
|f(x) — F(x)| ~ N1,

D.Batenkov & Y.Yomdin, " Algebraic Fourier reconstruction of
piecewise-smooth functions”, Math.Comp. 81(2012), pp.277-318
D.Batenkov, " Complete algebraic reconstruction of
piecewise-smooth functions from Fourier data”, submitted.
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The approximation f satisfies, for N >> 1:

& — & ~ N~972,
|agj — g | ~ N9,
|f(x) — F(x)| ~ N1,

e The pointwise bound is valid "away from the jumps”

D.Batenkov & Y.Yomdin, " Algebraic Fourier reconstruction of
piecewise-smooth functions”, Math.Comp. 81(2012), pp.277-318
D.Batenkov, " Complete algebraic reconstruction of
piecewise-smooth functions from Fourier data”, submitted.



Main result

Theorem

The approximation f satisfies, for N >> 1:

|€J - éjl ~ N*d*27
|agj — g | ~ N9,
|f(x) — F(x)| ~ N1,

e The pointwise bound is valid "away from the jumps”

e The constants are fairly explicit, depending on the a-priori
bounds A, B, J, R and on the "size" of the problem t,d.

D.Batenkov & Y.Yomdin, " Algebraic Fourier reconstruction of
piecewise-smooth functions”, Math.Comp. 81(2012), pp.277-318
D.Batenkov, " Complete algebraic reconstruction of
piecewise-smooth functions from Fourier data”, submitted.



Construction of the polynomial

d
Zk Z Cgkf
=0

VAR R

Mmyrg + mMyi1rg—1+ -+ Mergro + Meydia,

k=0,1,..



Example: d =1

my = z¥(co + ker)
22 2
(x—2z)"=x"—2zx+ z
=n =n
pr(w) = mew? — 2wmyy1 + myio

k — 00 pr(w) = crz(w — 2)?

If px is perturbed by O(k~2) then as k — oo we have
|2 —z| ~ VK2,

i.e. first order accuracy!



Example: d =1 - decimated setting

my = Zk(Co + kCl)
ak(w) = mew? — 2wk moy + may

k — o001 qu(w) = cz¥[w?k — 4zKwk + 322K

If gy is perturbed by O(k~2) then as k — oo we have roots z* and
3z, and therefore

k2K~ k2 = |7 — 2| ~ k73,

i.e. full accuracy!
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Spectral edge detection:

Efficient 1D algorithm

Lower bounds for performance
Dealing with incorrect model
Piecewise-analytic case
Application to PDEs?

what next?
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Prony: global accuracy bounds

Algebraic methods - potentially best results, not only
asymptotic?

" Algebraic superresolution”

Study algebraic-geometric structure of the " Prony manifold”

Oversampling?
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