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Fourier inversion problem

f : S1 → R

ck(f ) =
1

2π

∫ π

−π
e−ıkx f (x)dx

(f )N =
∑
|k|6N

ck(f )eıkx

(∆f )N = f − (f )N

• If f ∈ Cd(S1) then
∣∣(∆f )N

∣∣ ∼ N−d−1, uniformly.

• If f ∈ Cd(S1 \ {ξ}pj=1) then we have the Gibbs phenomenon:

• No uniform convergence
•
∣∣(∆f )N

∣∣ ∼ N−1 away from the jumps
• Implications: PDE, signal processing, imaging, ...
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Main problem

Question

Can piecewise-smooth functions be reconstructed from their
Fourier coefficients with high accuracy?

• Main problem: accurate determination of the jump locations
{ξ}pj=1.

• Best possible accuracy: O(N−d−2) for jumps, O(N−d−1) for
pointwise values.

• Linear methods: no better than O(N−1)

• Tadmor et. al (concentration kernels): O(N−1) for jumps, full
accuracy between the jumps

• Our result: full accuracy for jumps and values in between.
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Krylov-Gottlieb-Eckhoff method

f = Φ︸︷︷︸
piecewise polynomial

+ Ψ︸︷︷︸
∈Cd (S1)

ck(f ) = ck(Φ)︸ ︷︷ ︸
finite-parametric

+ O
(
k−d−2

)
, k � 1.

• One gets a nonlinear system of algebraic equations of Prony
type, with errors in the left-hand side.

• Its stability analysis turns out to be hard.

Eckhoff’s conjecture (1995)

By solving the above system, one can reconstruct the jumps
(positions + magnitudes), as well as the point-wise values of f ,
with the maximal (asymptotic) accuracy.
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Eckhoff system

Start with piecewise polynomial Φ of degree d

Dd+1Φ =

p∑
j=1

d∑
`=0

c`,jδ
(`)(x − ξj)

(ık)d+1ck(Φ) = ck(Dd+1Φ)

Eckhoff system

(ık)d+1ck(Φ) =
1

2π

p∑
j=1

e−ıkξj
d∑
`=0

(ık)`c`,j , c`,j ∈ R, ξj ∈ S1;

|∆ck(Φ)| ∼ k−d−2.



Prony type systems

mk =

p∑
j=1

zkj aj

mk =

p∑
j=1

dj−1∑
`=0

a`,jz
k−`
j k(k − 1) · · · (k − `+ 1)

mk =

p∑
j=1

zkj

dj−1∑
`=0

a`,jk
`

• Frequency estimation, Padé approximation, array processing,
statistics, interpolation, quadrature, radar signal detection,
error correction codes, analytic continuation ...

• Sub-Nyquist Sampling (reconstruction of ”spike trains”)

• Shape reconstruction from moments (quadrature domains, ...)
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Algebraic reconstruction

Method

Given: integral measurements of an unknown function f

mk =

∫
fdσk (1)

1 Represent f by a finite-parametric model F (p1, . . . , pn).

2 Replace f with F in (1) and obtain system of (algebraic)
equations

mk =

∫
Fdσk = Gk(p1, . . . , pn). (2)

3 Solve (2) in a robust way.

• Systems (2) will be of Prony type.
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Solution methods

• Prony-like methods

• Subspace-based/SVD (MUSIC, ESPRIT, Matrix pencils)

• Least-squares methods

• Algebraic methods

• Total variation minimization
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Prony stability - open questions

mk =

p∑
j=1

zkj

dj−1∑
`=0

a`,jk
`

Robust Prony solution

How robustly∗ can the parameters {a`,j , zj} be recovered from the
noisy data {m̃k = mk + δk}N−1

k=0 ?

Superresolution

How robustly∗ can two closely spaced nodes {zi , zj} be recovered
from the noisy data {m̃k = mk + δk}N−1

k=0 ?

∗ How does the error depend on |δk |,N and other data?
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Known lower bounds

mk =

p∑
j=1

zkj

dj−1∑
`=0

a`,jk
`, k = 0, 1, . . .N

∆mk ∼ ε,
∑
j

dj = R

• Node separation: |zi − zj | > δ

• Donoho [1992]: for dj = 1

Error ≈
(

1

δ

)2R+1

ε

• Statistical estimation literature: as N � 1

Error{zj} ≈
1

|adj−1,j |Ndj
ε
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Prony systems: assumptions

mk =

p∑
j=1

zkj

dj−1∑
`=0

a`,jk
`, k ∈ S ⊆ {0, . . . ,N − 1}.

• Small perturbations: m̃k = mk + δk with |δk | � 1.

• Number of equations |S | = number of unknowns C .

• Stability measure is given by the Lipschitz constant of the
”data → result mapping”.

• Require row-wise norm estimates of the inverse Jacobian
matrix.

• Index subset S is an arithmetic progression with step σ.
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Non-decimated Prony stability

mk =

p∑
j=1

zkj

dj−1∑
`=0

a`,jk
`, k = 0, 1, . . . ,C − 1

δ = min
i<j
|zi − zj |, |∆mk | < ε

=⇒ |∆zj | ∼ |adj−1,j |−1δ−Cε

• Problem is ill-posed as |adj−1,j | → 0 and/or δ → 0.

• Numerical simulations confirm qualitative predictions.

D.Batenkov, Y.Yomdin, ”On the accuracy of solving confluent
Prony systems”, SIAM J.Appl.Math., 73(1), pp.134–154, 2013.
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Decimation

mk =

p∑
j=1

zkj

dj−1∑
`=0

a`,jk
`, k=η,η+σ,η+2σ,...,η+(C−1)σ

δσ = min
i<j
|zσi − zσj |, |∆mk | < ε

=⇒ |∆zj | ∼ |adj−1,j |−1δ−Cσ σ−dj ε

• Decimation provides improvement by ∼ σdj

• Superresolution: for δσ � 1 we have δσ ∼ σδ and so
improvement by ∼ σC+dj (!!).

• Qualitative similarity to CRB and Donoho’s lower bounds.

• Reduction in number of samples without sacrificing accuracy
too much

• Problem is ill-posed as |adj−1,j | → 0 and/or δσ → 0.

D.Batenkov, ”Decimated Generalized Prony systems”, submitted.
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Why this works?

mk =

p∑
j=1

zkj

dj−1∑
`=0

a`,jk
`, k = 0, σ, 2σ, . . . , (C − 1)σ

b`,j = a`,jσ
`, wj = zσj , nk = mkσ, |wi − wj | > δσ

nk =

p∑
j=1

wk
j

dj−1∑
`=0

b`,jk
`, k = 0, 1, . . . ,C − 1

|∆wj | ∼
1

|bdj−1,j |δσC
ε
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Why this works?

Rescaling!



Eckhoff’s problem via Prony systems
Eckhoff system

(ık)d+1ck(Φ) =
1

2π

p∑
j=1

e−ıkξj
d∑
`=0

(ık)`c`,j , k = 0, 1, . . . ,N

|∆ck(Φ)| ∼ k−d−2 =⇒ |∆LHS | ∼ k−1

• Eckhoff (1995): Solve with k = N − C + 1, . . . ,N, i.e.
η ∼ N, σ = 1.

=⇒ |∆ξj | ∼ N−1.

• Batenkov & Yomdin (Math.Comp. 81(2012), pp.277–318):
take d above to be half the actual smoothness.

=⇒ |∆ξj | ∼ N−b
d
2 c−1.

• Decimation: take η = σ =
⌊
N
C

⌋
, this gives improvement by

σd+1

=⇒ |∆ξj | ∼ N−1 × N−d−1 = N−d−2.
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take d above to be half the actual smoothness.
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• Decimation: take η = σ =
⌊
N
C
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A-priori bounds

f = Φ︸︷︷︸
piecewise polynomial

+ Ψ︸︷︷︸
∈Cd (S1)

min
i<j
|ξi − ξj | > J > 0

|a`,j | 6 A <∞
|a0,j | > B > 0

|ck(Ψ)| 6 R · k−d−2



Algorithm

f = Φ(d) + Ψ

1 Obtain initial approximations for {ξ1, . . . , ξp}

2 Localize each ξj by multiplying f with a mollifier (convolution
in the Fourier domain)

3 Solve resulting Eckhoff system for one point with decimation:
σ = η =

⌊
N

d+2

⌋

• Recovery of ξj = ξ boils down to solving a single polynomial
equation P(s) = 0.

• Perturbations of the roots of P are explicitly analyzed using
Rouche’s principle.

4 The final approximation is

f̃ = Φ̃

({
ã`,j , ξ̃j

})
+
∑
|k|6N

{
ck(f )− 1

2π

p∑
j=1

e−ıξ̃jk
d∑
`=0

ã`,j
(ık)`+1

}
eıkx .
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Main result

Theorem

The approximation f̃ satisfies, for N � 1:

|ξj − ξ̃j | ∼ N−d−2,

|a`,j − ã`,j | ∼ N`−d−1,

|f (x)− f̃ (x)| ∼ N−d−1.

• The pointwise bound is valid ”away from the jumps”

• The constants are fairly explicit, depending on the a-priori
bounds A,B, J,R and on the ”size” of the problem t, d .

D.Batenkov & Y.Yomdin, ”Algebraic Fourier reconstruction of
piecewise-smooth functions”, Math.Comp. 81(2012), pp.277–318
D.Batenkov, ”Complete algebraic reconstruction of
piecewise-smooth functions from Fourier data”, submitted.



Main result

Theorem

The approximation f̃ satisfies, for N � 1:

|ξj − ξ̃j | ∼ N−d−2,
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|a`,j − ã`,j | ∼ N`−d−1,

|f (x)− f̃ (x)| ∼ N−d−1.

• The pointwise bound is valid ”away from the jumps”

• The constants are fairly explicit, depending on the a-priori
bounds A,B, J,R and on the ”size” of the problem t, d .

D.Batenkov & Y.Yomdin, ”Algebraic Fourier reconstruction of
piecewise-smooth functions”, Math.Comp. 81(2012), pp.277–318
D.Batenkov, ”Complete algebraic reconstruction of
piecewise-smooth functions from Fourier data”, submitted.



Construction of the polynomial

mk = zk
d∑
`=0

c`k
`

(x − z)d+1 = xd+1 + rdx
d + · · ·+ r0

=⇒ 0 = mk rd + mk+1rd−1 + · · ·+ mk+d r0 + mk+d+1, k = 0, 1, . . .



Example: d = 1

mk = zk(c0 + kc1)

(x − z)2 = x2−2z︸︷︷︸
=r0

x + z2︸︷︷︸
=r1

pk(w) = mkw
2 − 2wmk+1 + mk+2

k →∞ : pk(w)→ c1z
k(w − z)2

If pk is perturbed by O(k−2) then as k →∞ we have

|z̃ − z | ∼
√
k−2,

i.e. first order accuracy!



Example: d = 1 - decimated setting

mk = zk(c0 + kc1)

qk(w) = mkw
2k − 2wkm2k + m3k

k →∞ : qk(w)→ c1z
k [w2k − 4zkwk + 3z2k ]

If qk is perturbed by O(k−2) then as k →∞ we have roots zk and
3zk , and therefore

|z̃k − zk | ∼ k−2 =⇒ |z̃ − z | ∼ k−3,

i.e. full accuracy!



Spectral edge detection: what next?

• Efficient 1D algorithm

• Lower bounds for performance

• Dealing with incorrect model

• Piecewise-analytic case

• Application to PDEs?
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Prony: global accuracy bounds

• Algebraic methods - potentially best results, not only
asymptotic?

• ”Algebraic superresolution”

• Study algebraic-geometric structure of the ”Prony manifold”

• Oversampling?



Prony: global accuracy bounds

• Algebraic methods - potentially best results, not only
asymptotic?

• ”Algebraic superresolution”

• Study algebraic-geometric structure of the ”Prony manifold”

• Oversampling?



Prony: global accuracy bounds

• Algebraic methods - potentially best results, not only
asymptotic?

• ”Algebraic superresolution”

• Study algebraic-geometric structure of the ”Prony manifold”

• Oversampling?



Prony: global accuracy bounds

• Algebraic methods - potentially best results, not only
asymptotic?

• ”Algebraic superresolution”

• Study algebraic-geometric structure of the ”Prony manifold”

• Oversampling?



∫∫∫
THANK YOU

∫∫∫
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