Inverse trigonometric moment problem for piecewise-smooth functions

IMS Program on Inverse Moment Problems Singapore, January 2014

Dmitry Batenkov

Weizmann Institute of Science Rehovot, Israel

January 8th, 2014

Fourier inversion problem

$$
\begin{aligned}
f: & S^{1} \rightarrow \mathbb{R} \\
c_{k}(f) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-\imath k x} f(x) d x \\
(f)_{N} & =\sum_{|k| \leqslant N} c_{k}(f) e^{\imath k x} \\
(\Delta f)_{N} & =f-(f)_{N}
\end{aligned}
$$

- If $f \in C^{d}\left(S^{1}\right)$ then $\left|(\Delta f)_{N}\right| \sim N^{-d-1}$, uniformly.

Fourier inversion problem

$$
\begin{aligned}
f: & S^{1} \rightarrow \mathbb{R} \\
c_{k}(f) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-\imath k x} f(x) d x \\
(f)_{N} & =\sum_{|k| \leqslant N} c_{k}(f) e^{\imath k x} \\
(\Delta f)_{N} & =f-(f)_{N}
\end{aligned}
$$

- If $f \in C^{d}\left(S^{1}\right)$ then $\left|(\Delta f)_{N}\right| \sim N^{-d-1}$, uniformly.
- If $f \in C^{d}\left(S^{1} \backslash\{\xi\}_{j=1}^{p}\right)$ then we have the Gibbs phenomenon:

Fourier inversion problem

$$
\begin{aligned}
f: & S^{1} \rightarrow \mathbb{R} \\
c_{k}(f) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-\imath k x} f(x) d x \\
(f)_{N} & =\sum_{|k| \leqslant N} c_{k}(f) e^{\imath k x} \\
(\Delta f)_{N} & =f-(f)_{N}
\end{aligned}
$$

- If $f \in C^{d}\left(S^{1}\right)$ then $\left|(\Delta f)_{N}\right| \sim N^{-d-1}$, uniformly.
- If $f \in C^{d}\left(S^{1} \backslash\{\xi\}_{j=1}^{p}\right)$ then we have the Gibbs phenomenon:
- No uniform convergence

Fourier inversion problem

$$
\begin{aligned}
f: & S^{1} \rightarrow \mathbb{R} \\
c_{k}(f) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-\imath k x} f(x) d x \\
(f)_{N} & =\sum_{|k| \leqslant N} c_{k}(f) e^{\imath k x} \\
(\Delta f)_{N} & =f-(f)_{N}
\end{aligned}
$$

- If $f \in C^{d}\left(S^{1}\right)$ then $\left|(\Delta f)_{N}\right| \sim N^{-d-1}$, uniformly.
- If $f \in C^{d}\left(S^{1} \backslash\{\xi\}_{j=1}^{p}\right)$ then we have the Gibbs phenomenon:
- No uniform convergence
- $\left|(\Delta f)_{N}\right| \sim N^{-1}$ away from the jumps

Fourier inversion problem

$$
\begin{aligned}
f & : S^{1} \rightarrow \mathbb{R} \\
c_{k}(f) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-\imath k x} f(x) d x \\
(f)_{N} & =\sum_{|k| \leqslant N} c_{k}(f) e^{\imath k x} \\
(\Delta f)_{N} & =f-(f)_{N}
\end{aligned}
$$

- If $f \in C^{d}\left(S^{1}\right)$ then $\left|(\Delta f)_{N}\right| \sim N^{-d-1}$, uniformly.
- If $f \in C^{d}\left(S^{1} \backslash\{\xi\}_{j=1}^{p}\right)$ then we have the Gibbs phenomenon:
- No uniform convergence
- $\left|(\Delta f)_{N}\right| \sim N^{-1}$ away from the jumps
- Implications: PDE, signal processing, imaging, ...

Main problem

Question

Can piecewise-smooth functions be reconstructed from their Fourier coefficients with high accuracy?

Main problem

Question

Can piecewise-smooth functions be reconstructed from their Fourier coefficients with high accuracy?

- Main problem: accurate determination of the jump locations $\{\xi\}_{j=1}^{p}$.

Main problem

Question

Can piecewise-smooth functions be reconstructed from their Fourier coefficients with high accuracy?

- Main problem: accurate determination of the jump locations $\{\xi\}_{j=1}^{p}$.
- Best possible accuracy: $O\left(N^{-d-2}\right)$ for jumps, $O\left(N^{-d-1}\right)$ for pointwise values.

Main problem

Question

Can piecewise-smooth functions be reconstructed from their Fourier coefficients with high accuracy?

- Main problem: accurate determination of the jump locations $\{\xi\}_{j=1}^{p}$.
- Best possible accuracy: $O\left(N^{-d-2}\right)$ for jumps, $O\left(N^{-d-1}\right)$ for pointwise values.
- Linear methods: no better than $O\left(N^{-1}\right)$

Main problem

Question

Can piecewise-smooth functions be reconstructed from their Fourier coefficients with high accuracy?

- Main problem: accurate determination of the jump locations $\{\xi\}_{j=1}^{p}$.
- Best possible accuracy: $O\left(N^{-d-2}\right)$ for jumps, $O\left(N^{-d-1}\right)$ for pointwise values.
- Linear methods: no better than $O\left(N^{-1}\right)$
- Tadmor et. al (concentration kernels): $O\left(N^{-1}\right)$ for jumps, full accuracy between the jumps

Main problem

Question

Can piecewise-smooth functions be reconstructed from their Fourier coefficients with high accuracy?

- Main problem: accurate determination of the jump locations $\{\xi\}_{j=1}^{p}$.
- Best possible accuracy: $O\left(N^{-d-2}\right)$ for jumps, $O\left(N^{-d-1}\right)$ for pointwise values.
- Linear methods: no better than $O\left(N^{-1}\right)$
- Tadmor et. al (concentration kernels): $O\left(N^{-1}\right)$ for jumps, full accuracy between the jumps
- Our result: full accuracy for jumps and values in between.

Krylov-Gottlieb-Eckhoff method

$$
\begin{aligned}
f= & \underbrace{\Phi}_{\text {piecewise polynomial }}+\underbrace{\Psi}_{\in C^{d}\left(S^{1}\right)} \\
c_{k}(f) & =\underbrace{c_{k}(\Phi)}_{\text {finite-parametric }}+O\left(k^{-d-2}\right), \quad k \gg 1 .
\end{aligned}
$$

- One gets a nonlinear system of algebraic equations of Prony type, with errors in the left-hand side.

Krylov-Gottlieb-Eckhoff method

$$
\begin{array}{rc}
f= & \underbrace{\Phi}_{\text {piecewise polynomial }}+\underbrace{\Psi}_{\in C^{d}\left(S^{1}\right)} \\
c_{k}(f)= & \underbrace{c_{k}(\Phi)}_{\text {finite-parametric }}+O\left(k^{-d-2}\right), \quad k \gg 1
\end{array}
$$

- One gets a nonlinear system of algebraic equations of Prony type, with errors in the left-hand side.
- Its stability analysis turns out to be hard.

Krylov-Gottlieb-Eckhoff method

$$
\begin{aligned}
f= & \underbrace{\Phi}_{\text {piecewise polynomial }}+\underbrace{\Psi}_{\in C^{d}\left(S^{1}\right)} \\
c_{k}(f) & =\underbrace{c_{k}(\Phi)}_{\text {finite-parametric }}+O\left(k^{-d-2}\right), \quad k \gg 1 .
\end{aligned}
$$

- One gets a nonlinear system of algebraic equations of Prony type, with errors in the left-hand side.
- Its stability analysis turns out to be hard.

Eckhoff's conjecture (1995)

By solving the above system, one can reconstruct the jumps (positions + magnitudes), as well as the point-wise values of f, with the maximal (asymptotic) accuracy.

Eckhoff system

Start with piecewise polynomial Φ of degree d

$$
\begin{aligned}
D^{d+1} \Phi & =\sum_{j=1}^{p} \sum_{\ell=0}^{d} c_{\ell, j} \delta^{(\ell)}\left(x-\xi_{j}\right) \\
(\imath k)^{d+1} c_{k}(\Phi) & =c_{k}\left(D^{d+1} \Phi\right)
\end{aligned}
$$

Eckhoff system

$$
\begin{aligned}
(\imath k)^{d+1} c_{k}(\Phi) & =\frac{1}{2 \pi} \sum_{j=1}^{p} e^{-\imath k \xi_{j}} \sum_{\ell=0}^{d}(\imath k)^{\ell} c_{\ell, j}, \quad c_{\ell, j} \in \mathbb{R}, \xi_{j} \in S^{1} ; \\
\left|\Delta c_{k}(\Phi)\right| & \sim k^{-d-2} .
\end{aligned}
$$

Prony type systems

$$
\begin{aligned}
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} a_{j} \\
m_{k} & =\sum_{j=1}^{p} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} z_{j}^{k-\ell} k(k-1) \cdots(k-\ell+1) \\
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}
\end{aligned}
$$

- Frequency estimation, Padé approximation, array processing, statistics, interpolation, quadrature, radar signal detection, error correction codes, analytic continuation ...

Prony type systems

$$
\begin{aligned}
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} a_{j} \\
m_{k} & =\sum_{j=1}^{p} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} z_{j}^{k-\ell} k(k-1) \cdots(k-\ell+1) \\
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}
\end{aligned}
$$

- Frequency estimation, Padé approximation, array processing, statistics, interpolation, quadrature, radar signal detection, error correction codes, analytic continuation ...
- Sub-Nyquist Sampling (reconstruction of "spike trains")

Prony type systems

$$
\begin{aligned}
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} a_{j} \\
m_{k} & =\sum_{j=1}^{p} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} z_{j}^{k-\ell} k(k-1) \cdots(k-\ell+1) \\
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}
\end{aligned}
$$

- Frequency estimation, Padé approximation, array processing, statistics, interpolation, quadrature, radar signal detection, error correction codes, analytic continuation ...
- Sub-Nyquist Sampling (reconstruction of "spike trains")
- Shape reconstruction from moments (quadrature domains, ...)

Algebraic reconstruction

Method
Given: integral measurements of an unknown function f

$$
\begin{equation*}
m_{k}=\int f d \sigma_{k} \tag{1}
\end{equation*}
$$

Algebraic reconstruction

Method

Given: integral measurements of an unknown function f

$$
\begin{equation*}
m_{k}=\int f d \sigma_{k} \tag{1}
\end{equation*}
$$

(1) Represent f by a finite-parametric model $F\left(p_{1}, \ldots, p_{n}\right)$.

Algebraic reconstruction

Method

Given: integral measurements of an unknown function f

$$
\begin{equation*}
m_{k}=\int f d \sigma_{k} \tag{1}
\end{equation*}
$$

(1) Represent f by a finite-parametric model $F\left(p_{1}, \ldots, p_{n}\right)$.
(2) Replace f with F in (1) and obtain system of (algebraic) equations

$$
\begin{equation*}
m_{k}=\int F d \sigma_{k}=G_{k}\left(p_{1}, \ldots, p_{n}\right) \tag{2}
\end{equation*}
$$

Algebraic reconstruction

Method

Given: integral measurements of an unknown function f

$$
\begin{equation*}
m_{k}=\int f d \sigma_{k} \tag{1}
\end{equation*}
$$

(1) Represent f by a finite-parametric model $F\left(p_{1}, \ldots, p_{n}\right)$.
(2) Replace f with F in (1) and obtain system of (algebraic) equations

$$
\begin{equation*}
m_{k}=\int F d \sigma_{k}=G_{k}\left(p_{1}, \ldots, p_{n}\right) \tag{2}
\end{equation*}
$$

(3) Solve (2) in a robust way.

Algebraic reconstruction

Method

Given: integral measurements of an unknown function f

$$
\begin{equation*}
m_{k}=\int f d \sigma_{k} \tag{1}
\end{equation*}
$$

(1) Represent f by a finite-parametric model $F\left(p_{1}, \ldots, p_{n}\right)$.
(2) Replace f with F in (1) and obtain system of (algebraic) equations

$$
\begin{equation*}
m_{k}=\int F d \sigma_{k}=G_{k}\left(p_{1}, \ldots, p_{n}\right) \tag{2}
\end{equation*}
$$

(3) Solve (2) in a robust way.

- Systems (2) will be of Prony type.

Solution methods

- Prony-like methods

Solution methods

- Prony-like methods
- Subspace-based/SVD (MUSIC, ESPRIT, Matrix pencils)

Solution methods

- Prony-like methods
- Subspace-based/SVD (MUSIC, ESPRIT, Matrix pencils)
- Least-squares methods

Solution methods

- Prony-like methods
- Subspace-based/SVD (MUSIC, ESPRIT, Matrix pencils)
- Least-squares methods
- Algebraic methods

Solution methods

- Prony-like methods
- Subspace-based/SVD (MUSIC, ESPRIT, Matrix pencils)
- Least-squares methods
- Algebraic methods
- Total variation minimization

Prony stability - open questions

$$
m_{k}=\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}
$$

Robust Prony solution

How robustly* can the parameters $\left\{a_{\ell, j}, z_{j}\right\}$ be recovered from the noisy data $\left\{\tilde{m}_{k}=m_{k}+\delta_{k}\right\}_{k=0}^{N-1}$?

* How does the error depend on $\left|\delta_{k}\right|, N$ and other data?

Prony stability - open questions

$$
m_{k}=\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}
$$

Robust Prony solution

How robustly* can the parameters $\left\{a_{\ell, j}, z_{j}\right\}$ be recovered from the noisy data $\left\{\tilde{m}_{k}=m_{k}+\delta_{k}\right\}_{k=0}^{N-1}$?

Superresolution

How robustly* can two closely spaced nodes $\left\{z_{i}, z_{j}\right\}$ be recovered from the noisy data $\left\{\tilde{m}_{k}=m_{k}+\delta_{k}\right\}_{k=0}^{N-1}$?

* How does the error depend on $\left|\delta_{k}\right|, N$ and other data?

Known lower bounds

$$
\begin{aligned}
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a \ell, j k^{\ell}, \quad k=0,1, \ldots N \\
\Delta m_{k} & \sim \varepsilon, \sum_{j} d_{j}=R
\end{aligned}
$$

- Node separation: $\left|z_{i}-z_{j}\right|>\delta$

Known lower bounds

$$
\begin{aligned}
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a \ell, j k^{\ell}, \quad k=0,1, \ldots N \\
\Delta m_{k} & \sim \varepsilon, \sum_{j} d_{j}=R
\end{aligned}
$$

- Node separation: $\left|z_{i}-z_{j}\right|>\delta$
- Donoho [1992]: for $d_{j}=1$

$$
\text { Error } \approx\left(\frac{1}{\delta}\right)^{2 R+1} \varepsilon
$$

Known lower bounds

$$
\begin{aligned}
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k=0,1, \ldots N \\
\Delta m_{k} & \sim \varepsilon, \sum_{j} d_{j}=R
\end{aligned}
$$

- Node separation: $\left|z_{i}-z_{j}\right|>\delta$
- Donoho [1992]: for $d_{j}=1$

$$
\text { Error } \approx\left(\frac{1}{\delta}\right)^{2 R+1} \varepsilon
$$

- Statistical estimation literature: as $N \gg 1$

$$
\operatorname{Error}\left\{z_{j}\right\} \approx \frac{1}{\left|a_{d_{j}-1, j}\right| N^{d_{j}}} \varepsilon
$$

Prony systems: assumptions

$$
m_{k}=\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k \in S \subseteq\{0, \ldots, N-1\} .
$$

- Small perturbations: $\tilde{m}_{k}=m_{k}+\delta_{k}$ with $\left|\delta_{k}\right| \ll 1$.

Prony systems: assumptions

$$
m_{k}=\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k \in S \subseteq\{0, \ldots, N-1\} .
$$

- Small perturbations: $\tilde{m}_{k}=m_{k}+\delta_{k}$ with $\left|\delta_{k}\right| \ll 1$.
- Number of equations $|S|=$ number of unknowns C.

Prony systems: assumptions

$$
m_{k}=\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k \in S \subseteq\{0, \ldots, N-1\} .
$$

- Small perturbations: $\tilde{m}_{k}=m_{k}+\delta_{k}$ with $\left|\delta_{k}\right| \ll 1$.
- Number of equations $|S|=$ number of unknowns C.
- Stability measure is given by the Lipschitz constant of the "data \rightarrow result mapping".

Prony systems: assumptions

$$
m_{k}=\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k \in S \subseteq\{0, \ldots, N-1\} .
$$

- Small perturbations: $\tilde{m}_{k}=m_{k}+\delta_{k}$ with $\left|\delta_{k}\right| \ll 1$.
- Number of equations $|S|=$ number of unknowns C.
- Stability measure is given by the Lipschitz constant of the "data \rightarrow result mapping".
- Require row-wise norm estimates of the inverse Jacobian matrix.

Prony systems: assumptions

$$
m_{k}=\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k \in S \subseteq\{0, \ldots, N-1\} .
$$

- Small perturbations: $\tilde{m}_{k}=m_{k}+\delta_{k}$ with $\left|\delta_{k}\right| \ll 1$.
- Number of equations $|S|=$ number of unknowns C.
- Stability measure is given by the Lipschitz constant of the "data \rightarrow result mapping".
- Require row-wise norm estimates of the inverse Jacobian matrix.
- Index subset S is an arithmetic progression with step σ.

Non-decimated Prony stability

$$
\begin{aligned}
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k=0,1, \ldots, C-1 \\
\delta & =\min _{i<j}\left|z_{i}-z_{j}\right|, \quad\left|\Delta m_{k}\right|<\varepsilon \\
\Longrightarrow \quad\left|\Delta z_{j}\right| & \sim\left|a_{d_{j}-1, j}\right|^{-1} \delta^{-C} \varepsilon
\end{aligned}
$$

- Problem is ill-posed as $\left|a_{d_{j}-1, j}\right| \rightarrow 0$ and/or $\delta \rightarrow 0$.
D.Batenkov, Y.Yomdin, "On the accuracy of solving confluent Prony systems", SIAM J.Appl.Math., 73(1), pp.134-154, 2013.

Non-decimated Prony stability

$$
\begin{aligned}
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k=0,1, \ldots, C-1 \\
\delta & =\min _{i<j}\left|z_{i}-z_{j}\right|, \quad\left|\Delta m_{k}\right|<\varepsilon \\
\Longrightarrow \quad\left|\Delta z_{j}\right| & \sim\left|a_{d_{j}-1, j}\right|^{-1} \delta^{-C} \varepsilon
\end{aligned}
$$

- Problem is ill-posed as $\left|a_{d_{j}-1, j}\right| \rightarrow 0$ and/or $\delta \rightarrow 0$.
- Numerical simulations confirm qualitative predictions.
D.Batenkov, Y.Yomdin, "On the accuracy of solving confluent Prony systems", SIAM J.Appl.Math., 73(1), pp.134-154, 2013.

Decimation

$$
\begin{aligned}
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k=\eta, \eta+\sigma, \eta+2 \sigma, \ldots, \eta+(C-1) \sigma \\
\delta_{\sigma} & =\min _{i<j}\left|z_{i}^{\sigma}-z_{j}^{\sigma}\right|, \quad\left|\Delta m_{k}\right|<\varepsilon \\
\Longrightarrow \quad\left|\Delta z_{j}\right| & \sim\left|a_{d_{j}-1, j}\right|^{-1} \delta_{\sigma}^{-C} \sigma^{-d_{j}} \varepsilon
\end{aligned}
$$

- Decimation provides improvement by $\sim \sigma^{d_{j}}$
D.Batenkov, "Decimated Generalized Prony systems", submitted.

Decimation

$$
\begin{aligned}
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k=\eta, \eta+\sigma, \eta+2 \sigma, \ldots, \eta+(C-1) \sigma \\
\delta_{\sigma} & =\min _{i<j}\left|z_{i}^{\sigma}-z_{j}^{\sigma}\right|, \quad\left|\Delta m_{k}\right|<\varepsilon \\
\Longrightarrow \quad\left|\Delta z_{j}\right| & \sim\left|a_{d_{j}-1, j}\right|^{-1} \delta_{\sigma}^{-C} \sigma^{-d_{j}} \varepsilon
\end{aligned}
$$

- Decimation provides improvement by $\sim \sigma^{d_{j}}$
- Superresolution: for $\delta_{\sigma} \ll 1$ we have $\delta_{\sigma} \sim \sigma \delta$ and so improvement by $\sim \sigma^{C+d_{j}}$ (!!).
D.Batenkov, "Decimated Generalized Prony systems", submitted.

Decimation

$$
\begin{aligned}
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k=\eta, \eta+\sigma, \eta+2 \sigma, \ldots, \eta+(C-1) \sigma \\
\delta_{\sigma} & =\min _{i<j}\left|z_{i}^{\sigma}-z_{j}^{\sigma}\right|, \quad\left|\Delta m_{k}\right|<\varepsilon \\
\Longrightarrow \quad\left|\Delta z_{j}\right| & \sim\left|a_{d_{j}-1, j}\right|^{-1} \delta_{\sigma}^{-C} \sigma^{-d_{j}} \varepsilon
\end{aligned}
$$

- Decimation provides improvement by $\sim \sigma^{d_{j}}$
- Superresolution: for $\delta_{\sigma} \ll 1$ we have $\delta_{\sigma} \sim \sigma \delta$ and so improvement by $\sim \sigma^{C+d_{j}}$ (!!).
- Qualitative similarity to CRB and Donoho's lower bounds.
D.Batenkov, "Decimated Generalized Prony systems", submitted.

Decimation

$$
\begin{aligned}
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k=\eta, \eta+\sigma, \eta+2 \sigma, \ldots, \eta+(C-1) \sigma \\
\delta_{\sigma} & =\min _{i<j}\left|z_{i}^{\sigma}-z_{j}^{\sigma}\right|, \quad\left|\Delta m_{k}\right|<\varepsilon \\
\Longrightarrow \quad\left|\Delta z_{j}\right| & \sim\left|a_{d_{j}-1, j}\right|^{-1} \delta_{\sigma}^{-C} \sigma^{-d_{j}} \varepsilon
\end{aligned}
$$

- Decimation provides improvement by $\sim \sigma^{d_{j}}$
- Superresolution: for $\delta_{\sigma} \ll 1$ we have $\delta_{\sigma} \sim \sigma \delta$ and so improvement by $\sim \sigma^{C+d_{j}}$ (!!).
- Qualitative similarity to CRB and Donoho's lower bounds.
- Reduction in number of samples without sacrificing accuracy too much
D.Batenkov, "Decimated Generalized Prony systems", submitted.

Decimation

$$
\begin{aligned}
m_{k} & =\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k=\eta, \eta+\sigma, \eta+2 \sigma, \ldots, \eta+(C-1) \sigma \\
\delta_{\sigma} & =\min _{i<j}\left|z_{i}^{\sigma}-z_{j}^{\sigma}\right|, \quad\left|\Delta m_{k}\right|<\varepsilon \\
\Longrightarrow \quad\left|\Delta z_{j}\right| & \sim\left|a_{d_{j}-1, j}\right|^{-1} \delta_{\sigma}^{-C} \sigma^{-d_{j}} \varepsilon
\end{aligned}
$$

- Decimation provides improvement by $\sim \sigma^{d_{j}}$
- Superresolution: for $\delta_{\sigma} \ll 1$ we have $\delta_{\sigma} \sim \sigma \delta$ and so improvement by $\sim \sigma^{C+d_{j}}$ (!!).
- Qualitative similarity to CRB and Donoho's lower bounds.
- Reduction in number of samples without sacrificing accuracy too much
- Problem is ill-posed as $\left|a_{d_{j}-1, j}\right| \rightarrow 0$ and/or $\delta_{\sigma} \rightarrow 0$.
D.Batenkov, "Decimated Generalized Prony systems", submitted.

Why this works?

$$
\begin{aligned}
& m_{k}=\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k=0, \sigma, 2 \sigma, \ldots,(C-1) \sigma \\
& b_{\ell, j}=a_{\ell, j} \sigma^{\ell}, w_{j}=z_{j}^{\sigma}, n_{k}=m_{k \sigma},\left|w_{i}-w_{j}\right|>\delta_{\sigma}
\end{aligned}
$$

Why this works?

$$
\begin{aligned}
& m_{k}=\sum_{j=1}^{p} z_{j}^{k} \sum_{\ell=0}^{d_{j}-1} a_{\ell, j} k^{\ell}, \quad k=0, \sigma, 2 \sigma, \ldots,(C-1) \sigma \\
& b_{\ell, j}=a_{\ell, j} \sigma^{\ell}, w_{j}=z_{j}^{\sigma}, n_{k}=m_{k \sigma},\left|w_{i}-w_{j}\right|>\delta_{\sigma}
\end{aligned}
$$

$$
\begin{aligned}
n_{k} & =\sum_{j=1}^{p} w_{j}^{k} \sum_{\ell=0}^{d_{j}-1} b_{\ell, j} k^{\ell}, \quad k=0,1, \ldots, C-1 \\
\left|\Delta w_{j}\right| & \sim \frac{1}{\left|b_{d_{j}-1, j}\right| \delta_{\sigma}{ }^{C}} \varepsilon
\end{aligned}
$$

Why this works?

Rescaling!

Eckhoff's problem via Prony systems

Eckhoff system

$$
\begin{aligned}
(\imath k)^{d+1} c_{k}(\Phi) & =\frac{1}{2 \pi} \sum_{j=1}^{p} e^{-\imath k \xi_{j}} \sum_{\ell=0}^{d}(\imath k)^{\ell} c_{\ell, j}, \quad k=0,1, \ldots, N \\
\left|\Delta c_{k}(\Phi)\right| & \sim k^{-d-2} \Longrightarrow|\Delta L H S| \sim k^{-1}
\end{aligned}
$$

Eckhoff's problem via Prony systems

Eckhoff system

$$
\begin{aligned}
(\imath k)^{d+1} c_{k}(\Phi) & =\frac{1}{2 \pi} \sum_{j=1}^{p} e^{-\imath k \xi_{j}} \sum_{\ell=0}^{d}(\imath k)^{\ell} c_{\ell, j}, \quad k=0,1, \ldots, N \\
\left|\Delta c_{k}(\Phi)\right| & \sim k^{-d-2} \Longrightarrow|\Delta L H S| \sim k^{-1}
\end{aligned}
$$

- Eckhoff (1995): Solve with $k=N-C+1, \ldots, N$, i.e. $\eta \sim N, \sigma=1$.

Eckhoff's problem via Prony systems

Eckhoff system

$$
\begin{aligned}
(\imath k)^{d+1} c_{k}(\Phi) & =\frac{1}{2 \pi} \sum_{j=1}^{p} e^{-\imath k \xi_{j}} \sum_{\ell=0}^{d}(\imath k)^{\ell} c_{\ell, j}, \quad k=0,1, \ldots, N \\
\left|\Delta c_{k}(\Phi)\right| & \sim k^{-d-2} \Longrightarrow|\Delta L H S| \sim k^{-1}
\end{aligned}
$$

- Eckhoff (1995): Solve with $k=N-C+1, \ldots, N$, i.e.

$$
\begin{aligned}
& \eta \sim N, \sigma=1 . \\
& \Longrightarrow\left|\Delta \xi_{j}\right| \sim N^{-1} .
\end{aligned}
$$

Eckhoff's problem via Prony systems

Eckhoff system

$$
\begin{aligned}
(\imath k)^{d+1} c_{k}(\Phi) & =\frac{1}{2 \pi} \sum_{j=1}^{p} e^{-\imath k \xi_{j}} \sum_{\ell=0}^{d}(\imath k)^{\ell} c_{\ell, j}, \quad k=0,1, \ldots, N \\
\left|\Delta c_{k}(\Phi)\right| & \sim k^{-d-2} \Longrightarrow|\Delta L H S| \sim k^{-1}
\end{aligned}
$$

- Eckhoff (1995): Solve with $k=N-C+1, \ldots, N$, i.e.

$$
\begin{aligned}
& \eta \sim N, \sigma=1 \\
& \Longrightarrow\left|\Delta \xi_{j}\right| \sim N^{-1} .
\end{aligned}
$$

- Batenkov \& Yomdin (Math.Comp. 81(2012), pp.277-318): take d above to be half the actual smoothness.

Eckhoff's problem via Prony systems

Eckhoff system

$$
\begin{aligned}
(\imath k)^{d+1} c_{k}(\Phi) & =\frac{1}{2 \pi} \sum_{j=1}^{p} e^{-\imath k \xi_{j}} \sum_{\ell=0}^{d}(\imath k)^{\ell} c_{\ell, j}, \quad k=0,1, \ldots, N \\
\left|\Delta c_{k}(\Phi)\right| & \sim k^{-d-2} \Longrightarrow|\Delta L H S| \sim k^{-1}
\end{aligned}
$$

- Eckhoff (1995): Solve with $k=N-C+1, \ldots, N$, i.e.

$$
\begin{aligned}
& \eta \sim N, \sigma=1 \\
& \Longrightarrow\left|\Delta \xi_{j}\right| \sim N^{-1} .
\end{aligned}
$$

- Batenkov \& Yomdin (Math.Comp. 81(2012), pp.277-318): take d above to be half the actual smoothness.
$\Longrightarrow\left|\Delta \xi_{j}\right| \sim N^{-\left\lfloor\frac{d}{2}\right\rfloor-1}$.

Eckhoff's problem via Prony systems

Eckhoff system

$$
\begin{aligned}
(\imath k)^{d+1} c_{k}(\Phi) & =\frac{1}{2 \pi} \sum_{j=1}^{p} e^{-\imath k \xi_{j}} \sum_{\ell=0}^{d}(\imath k)^{\ell} c_{\ell, j}, \quad k=0,1, \ldots, N \\
\left|\Delta c_{k}(\Phi)\right| & \sim k^{-d-2} \Longrightarrow|\Delta L H S| \sim k^{-1}
\end{aligned}
$$

- Eckhoff (1995): Solve with $k=N-C+1, \ldots, N$, i.e.

$$
\begin{aligned}
& \eta \sim N, \sigma=1 \\
& \Longrightarrow\left|\Delta \xi_{j}\right| \sim N^{-1}
\end{aligned}
$$

- Batenkov \& Yomdin (Math.Comp. 81(2012), pp.277-318): take d above to be half the actual smoothness.
$\Longrightarrow\left|\Delta \xi_{j}\right| \sim N^{-\left\lfloor\frac{d}{2}\right\rfloor-1}$.
- Decimation: take $\eta=\sigma=\left\lfloor\frac{N}{C}\right\rfloor$, this gives improvement by σ^{d+1}

Eckhoff's problem via Prony systems

Eckhoff system

$$
\begin{aligned}
(\imath k)^{d+1} c_{k}(\Phi) & =\frac{1}{2 \pi} \sum_{j=1}^{p} e^{-\imath k \xi_{j}} \sum_{\ell=0}^{d}(\imath k)^{\ell} c_{\ell, j}, \quad k=0,1, \ldots, N \\
\left|\Delta c_{k}(\Phi)\right| & \sim k^{-d-2} \Longrightarrow|\Delta L H S| \sim k^{-1}
\end{aligned}
$$

- Eckhoff (1995): Solve with $k=N-C+1, \ldots, N$, i.e.

$$
\begin{aligned}
& \eta \sim N, \sigma=1 \\
& \Longrightarrow\left|\Delta \xi_{j}\right| \sim N^{-1}
\end{aligned}
$$

- Batenkov \& Yomdin (Math.Comp. 81(2012), pp.277-318): take d above to be half the actual smoothness.
$\Longrightarrow\left|\Delta \xi_{j}\right| \sim N^{-\left\lfloor\frac{d}{2}\right\rfloor-1}$.
- Decimation: take $\eta=\sigma=\left\lfloor\frac{N}{C}\right\rfloor$, this gives improvement by σ^{d+1}

$$
\Longrightarrow\left|\Delta \xi_{j}\right| \sim N^{-1} \times N^{-d-1}=N^{-d-2} .
$$

A-priori bounds

$$
\begin{aligned}
f & =\underbrace{\Phi}_{\text {piecewise polynomial }}+\underbrace{\Psi}_{\in C^{d}\left(S^{1}\right)} \\
\min _{i<j}\left|\xi_{i}-\xi_{j}\right| & \geqslant J>0 \\
\left|a_{\ell, j}\right| & \leqslant A<\infty \\
\left|a_{0, j}\right| & \geqslant B>0 \\
\left|c_{k}(\Psi)\right| & \leqslant R \cdot k^{-d-2}
\end{aligned}
$$

Algorithm

$$
f=\Phi^{(d)}+\Psi
$$

(1) Obtain initial approximations for $\left\{\xi_{1}, \ldots, \xi_{p}\right\}$

Algorithm

$$
f=\Phi^{(d)}+\psi
$$

(1) Obtain initial approximations for $\left\{\xi_{1}, \ldots, \xi_{p}\right\}$
(2) Localize each ξ_{j} by multiplying f with a mollifier (convolution in the Fourier domain)

Algorithm

$$
f=\Phi^{(d)}+\psi
$$

(1) Obtain initial approximations for $\left\{\xi_{1}, \ldots, \xi_{p}\right\}$
(2) Localize each ξ_{j} by multiplying f with a mollifier (convolution in the Fourier domain)
(3) Solve resulting Eckhoff system for one point with decimation: $\sigma=\eta=\left\lfloor\frac{N}{d+2}\right\rfloor$

Algorithm

$$
f=\Phi^{(d)}+\Psi
$$

(1) Obtain initial approximations for $\left\{\xi_{1}, \ldots, \xi_{p}\right\}$
(2) Localize each ξ_{j} by multiplying f with a mollifier (convolution in the Fourier domain)
(3) Solve resulting Eckhoff system for one point with decimation: $\sigma=\eta=\left\lfloor\frac{N}{d+2}\right\rfloor$

- Recovery of $\xi_{j}=\xi$ boils down to solving a single polynomial equation $P(s)=0$.

Algorithm

$$
f=\Phi^{(d)}+\psi
$$

(1) Obtain initial approximations for $\left\{\xi_{1}, \ldots, \xi_{p}\right\}$
(2) Localize each ξ_{j} by multiplying f with a mollifier (convolution in the Fourier domain)
(3) Solve resulting Eckhoff system for one point with decimation: $\sigma=\eta=\left\lfloor\frac{N}{d+2}\right\rfloor$

- Recovery of $\xi_{j}=\xi$ boils down to solving a single polynomial equation $P(s)=0$.
- Perturbations of the roots of P are explicitly analyzed using Rouche's principle.

Algorithm

$$
f=\Phi^{(d)}+\psi
$$

(1) Obtain initial approximations for $\left\{\xi_{1}, \ldots, \xi_{p}\right\}$
(2) Localize each ξ_{j} by multiplying f with a mollifier (convolution in the Fourier domain)
(3) Solve resulting Eckhoff system for one point with decimation: $\sigma=\eta=\left\lfloor\frac{N}{d+2}\right\rfloor$

- Recovery of $\xi_{j}=\xi$ boils down to solving a single polynomial equation $P(s)=0$.
- Perturbations of the roots of P are explicitly analyzed using Rouche's principle.
(4) The final approximation is

$$
\tilde{f}=\tilde{\Phi}\left(\left\{\tilde{a}_{\ell, j}, \tilde{\xi}_{j}\right\}\right)+\sum_{|k| \leqslant N}\left\{c_{k}(f)-\frac{1}{2 \pi} \sum_{j=1}^{p} e^{-\imath \tilde{\xi}_{j} k} \sum_{\ell=0}^{d} \frac{\tilde{a}_{\ell, j}}{(\imath k)^{\ell+1}}\right\} e^{\imath k x}
$$

Main result

Theorem

The approximation \tilde{f} satisfies, for $N \gg 1$:

$$
\begin{aligned}
\left|\xi_{j}-\tilde{\xi}_{j}\right| & \sim N^{-d-2}, \\
\left|a_{\ell, j}-\tilde{a}_{\ell, j}\right| & \sim N^{\ell-d-1} \\
|f(x)-\tilde{f}(x)| & \sim N^{-d-1}
\end{aligned}
$$

D.Batenkov \& Y.Yomdin, "Algebraic Fourier reconstruction of piecewise-smooth functions", Math.Comp. 81(2012), pp.277-318 D.Batenkov, " Complete algebraic reconstruction of piecewise-smooth functions from Fourier data", submitted.

Main result

Theorem

The approximation \tilde{f} satisfies, for $N \gg 1$:

$$
\begin{aligned}
\left|\xi_{j}-\tilde{\xi}_{j}\right| & \sim N^{-d-2} \\
\left|a_{\ell, j}-\tilde{a}_{\ell, j}\right| & \sim N^{\ell-d-1} \\
|f(x)-\tilde{f}(x)| & \sim N^{-d-1}
\end{aligned}
$$

- The pointwise bound is valid "away from the jumps"
D.Batenkov \& Y.Yomdin, " Algebraic Fourier reconstruction of piecewise-smooth functions", Math.Comp. 81(2012), pp.277-318 D.Batenkov, "Complete algebraic reconstruction of piecewise-smooth functions from Fourier data", submitted.

Main result

Theorem

The approximation \tilde{f} satisfies, for $N \gg 1$:

$$
\begin{aligned}
\left|\xi_{j}-\tilde{\xi}_{j}\right| & \sim N^{-d-2} \\
\left|a_{\ell, j}-\tilde{a}_{\ell, j}\right| & \sim N^{\ell-d-1} \\
|f(x)-\tilde{f}(x)| & \sim N^{-d-1}
\end{aligned}
$$

- The pointwise bound is valid "away from the jumps"
- The constants are fairly explicit, depending on the a-priori bounds A, B, J, R and on the "size" of the problem t, d.
D.Batenkov \& Y.Yomdin, "Algebraic Fourier reconstruction of piecewise-smooth functions", Math.Comp. 81(2012), pp.277-318 D.Batenkov, "Complete algebraic reconstruction of piecewise-smooth functions from Fourier data", submitted.

Construction of the polynomial

$$
\begin{aligned}
m_{k} & =z^{k} \sum_{\ell=0}^{d} c_{\ell} k^{\ell} \\
(x-z)^{d+1} & =x^{d+1}+r_{d} x^{d}+\cdots+r_{0} \\
\Longrightarrow 0 & =m_{k} r_{d}+m_{k+1} r_{d-1}+\cdots+m_{k+d} r_{0}+m_{k+d+1}, \quad k=0,1,
\end{aligned}
$$

Example: $d=1$

$$
\begin{aligned}
m_{k} & =z^{k}\left(c_{0}+k c_{1}\right) \\
(x-z)^{2} & =x^{2} \underbrace{-2 z}_{=r_{0}} x+\underbrace{z^{2}}_{=r_{1}} \\
p_{k}(w) & =m_{k} w^{2}-2 w m_{k+1}+m_{k+2} \\
k \rightarrow \infty: p_{k}(w) & \rightarrow c_{1} z^{k}(w-z)^{2}
\end{aligned}
$$

If p_{k} is perturbed by $O\left(k^{-2}\right)$ then as $k \rightarrow \infty$ we have

$$
|\tilde{z}-z| \sim \sqrt{k^{-2}}
$$

i.e. first order accuracy!

Example: $d=1$ - decimated setting

$$
\begin{aligned}
m_{k} & =z^{k}\left(c_{0}+k c_{1}\right) \\
q_{k}(w) & =m_{k} w^{2 k}-2 w^{k} m_{2 k}+m_{3 k} \\
k \rightarrow \infty: q_{k}(w) & \rightarrow c_{1} z^{k}\left[w^{2 k}-4 z^{k} w^{k}+3 z^{2 k}\right]
\end{aligned}
$$

If q_{k} is perturbed by $O\left(k^{-2}\right)$ then as $k \rightarrow \infty$ we have roots z^{k} and $3 z^{k}$, and therefore

$$
\left|\tilde{z}^{k}-z^{k}\right| \sim k^{-2} \Longrightarrow|\tilde{z}-z| \sim k^{-3}
$$

i.e. full accuracy!

Spectral edge detection: what next?

- Efficient 1D algorithm

Spectral edge detection: what next?

- Efficient 1D algorithm
- Lower bounds for performance

Spectral edge detection: what next?

- Efficient 1D algorithm
- Lower bounds for performance
- Dealing with incorrect model

Spectral edge detection: what next?

- Efficient 1D algorithm
- Lower bounds for performance
- Dealing with incorrect model
- Piecewise-analytic case

Spectral edge detection: what next?

- Efficient 1D algorithm
- Lower bounds for performance
- Dealing with incorrect model
- Piecewise-analytic case
- Application to PDEs?

Prony: global accuracy bounds

- Algebraic methods - potentially best results, not only asymptotic?

Prony: global accuracy bounds

- Algebraic methods - potentially best results, not only asymptotic?
- "Algebraic superresolution"

Prony: global accuracy bounds

- Algebraic methods - potentially best results, not only asymptotic?
- "Algebraic superresolution"
- Study algebraic-geometric structure of the "Prony manifold"

Prony: global accuracy bounds

- Algebraic methods - potentially best results, not only asymptotic?
- "Algebraic superresolution"
- Study algebraic-geometric structure of the "Prony manifold"
- Oversampling?

\iiint THANK YOU \iiint

