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Minimization of polynomial functions

E = {x ∈ Rn | f1(x) = · · · = fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0}

basic closed semialgebraic set defined by f1, . . . , fm ∈ Z[x1, . . . , xn],

g ∈ Z[x1, . . . , xn] such that the function x 7→ g(x) attains a
minimum value gmin on E ,

Emin = {x ∈ E | g(x) = gmin}.

Aim:

If deg(fi ), deg(g) ≤ d and H(fi ),H(g) ≤ H, obtain explicit
bounds δ > 0 and b > 0 depending on n,m, d ,H such that, if
gmin 6= 0, then deg(gmin) ≤ δ and |gmin| ≥ b.

Compute at least one point in Emin.

Assumption: Emin has a compact connected component.
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Related work

Upper bounds for the degree of the minimum

Nie-Ranestad (2009), if the set of critical points is
zero-dimensional.

Lower bounds for the minimum

Emiris-Mourrain-Tsigaridas (2010), separation among isolated
points; J.-Perrucci (2010), for the standard simplex.

Numerical or symbolic-numerical computation methods

Lasserre (2001), Parrilo-Sturmfels (2003),
Nie-Demmel-Sturmfels (2006), Schweighofer (2006);
Greuet-Guo-Safey El Din-Zhi (2012), among others.
Certificates of positivity, SDP, moments.

Symbolic computation methods

Quantifier elimination over the reals, Basu-Pollack-Roy (1996).
Safey El Din (2008), computation of generalized critical values.
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Our approach

Find a finite set of points containing at least one point in each
compact connected component of Emin.

Lagrange multipliers: If g attains a minimum on
E = {x ∈ Rn | f1(x) = · · · = fm(x) = 0} at x∗, (under certain
assumptions on g , f1, . . . , fm) there exists λ1, . . . , λm ∈ R such that

∇g(x∗) = λ1∇f1(x∗) + · · ·+ λm∇fm(x∗)

Karush-Kuhn-Tucker: Extension to inequality constraints.

Difficulties:

Infinitely many minimizing points.
Degenerate systems.
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Bounds for the minimum: Deformation techniques

ĝ(x) = a00 +
∑n

j=1 a0jx
d
j , f̂i (x) = ai0 +

∑n
j=1 aijx

d
j for 1 ≤ i ≤ m.

d ∈ Z>0 an even upper bound for the degrees of g and fi ,

(aij) ∈ (Z>0)(m+1)×(n+1) with each submatrix having maximal rank.

g(x) G (t, x) = g(x) + t ĝ(x)

fi (x) 

{
F+
i (t, x) = fi (x) + t f̂i (x)

F−i (t, x) = fi (x)− t f̂i (x)

E  Et

{f1(x) = · · · = fl(x) = 0, {F+
1 (t, x) ≥ 0, . . . ,F+

l (t, x) ≥ 0,
F−1 (t, x) ≤ 0, . . . ,F−l (t, x) ≤ 0,

fl+1(x) ≥ 0, . . . , fm(x) ≥ 0} F+
l+1(t, x) ≥ 0, . . . ,F+

m (t, x) ≥ 0}

Since f̂i (x) > 0 for every 1 ≤ i ≤ m:
E0 = E and Et1 ⊂ Et2 if 0 ≤ t1 ≤ t2.
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General strategy

Minimize Gt = g(x) + t ĝ(x) on Et for generic t and let t → 0.

For t small enough, minimizers of Gt on Et are solutions to a
system

FS,σ :
{
F
σi1
i1

(t, x) = 0, . . . ,F
σis
is

(t, x) = 0

GS,σ :
{
∇xG (t, x) =

∑
1≤j≤s

λj ∇xF
σij
ij

(t, x)

for some (S , σ) such that

S = {i1, . . . , is} ⊂ {1, . . . ,m} with s ≤ n, and

σ ∈ {+,−}S with σi = + for l + 1 ≤ i ≤ m.
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For generic t, the system (FS,σ,GS ,σ)
has finitely many solutions.

Let VS ,σ be the union of the
irreducible components of the variety
defined by (FS,σ,GS ,σ) not included in
{t = t0} for any t0. t=0

Proposition

Let C be a compact connected component of

E = {f1(x) = · · · = fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0}.

Then, there exist x∗ ∈ C , S ⊂ {1, . . . ,m} with 0 ≤ |S | ≤ n, and
σ ∈ {+,−}S with σi = + for l + 1 ≤ i ≤ m, such that

x∗ ∈ πx(VS ,σ ∩ {t = 0}) and g(x∗) = min{g(x) | x ∈ C}.
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Getting bounds for |gmin,C | and deg(gmin,C )

Construct a family of univariate polynomials QS ,σ ∈ Z[u]
having among their roots the minimum values gmin,C that g
takes on the compact connected components C of E .

Obtain upper bounds for the degrees of the polynomials QS ,σ.
 upper bound for deg(gmin,C )

Obtain upper bounds for the absolute values of the
coefficients of QS ,σ and deduce a lower bound for the absolute
values of their roots.  lower bound for |gmin,C |

Basic result:
Let Q(u) =

∑D
j=0 cju

j ∈ Z[u] \ {0} and M ∈ Z such that |cj | < M for

0 ≤ j ≤ D. If u0 ∈ C \ {0} is a root of Q, then |u0| ≥ M−1.
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Let P(u, x) = u − g(x).

For S ⊂ {1, . . . ,m} with |S | ≤ n and σ ∈ {+,−}S with σi = + for
l + 1 ≤ i ≤ m, the values that g takes on the common solutions of
(FS ,σ,GSσ) for generic t are roots of

RS ,σ(t, u) = Resultantx ,λ(P,FS ,σ,GS,σ) ∈ Z[t][u]

Let νS,σ be the largest power of t dividing RS ,σ(t, u) and

QS ,σ(u) = (t−νS,σRS,σ(t, u))|t=0 ∈ Z[u]

For every x∗ ∈ πx(VS ,σ ∩ {t = 0}), we have QS ,σ(g(x∗)) = 0.

For each compact connected component C of E , there exists
(S , σ) such that gmin,C is a root of QS,σ.
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To estimate the degree and coefficients size of QS,σ, we apply

classical Bézout-type upper bounds for the degree of
multihomogeneos resultants,

upper bounds for heights of sparse resultants (Sombra, 2004).

Theorem (J.-Perrucci-Tsigaridas)

Let E = {f1(x) = . . . fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0} be
defined in Rn by f1, . . . , fm ∈ Z[x1, . . . , xn] and let
g ∈ Z[x1, . . . , xn]. If deg(fi ), deg(g) ≤ d for an even positive
integer d , and H(fi ),H(g) ≤ H, the minimum value that g takes
over a compact connected component C of E is a real algebraic
number gmin,C such that, if it is nonzero,

deg(gmin,C ) ≤ 2n−1dn and |gmin,C | ≥ (24− n
2Hdn)−n2ndn

where H := max(H, 2n + 2m).
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Noncompact situations

The upper bound for the degree remains valid in the case
where C is a non-compact connected component of E ,
provided that g attains a minimum gmin,C on C .

If, in addition, the set Cmin = {x ∈ C | g(x) = gmin,C} has a
compact connected component, the lower bound for |gmin,C |
also holds.

In both cases, the bounds follow from the previous result applied
to a set which is constructed from E by adding a new constraint of
type M −

∑n
i=1 x

2
i ≥ 0 for a suitable M ∈ R>0.
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Application: separation bounds

E1 = {f1(x) = · · · = fl1(x) = 0, fl1+1(x) ≥ 0, . . . , fm1(x) ≥ 0}
E2 = {g1(x) = · · · = gl2(x) = 0, gl2+1(x) ≥ 0, . . . , gm2(x) ≥ 0}
C1 a compact connected component of E1 and C2 an arbitrary
connected component of E2 such that C1 ∩ C2 = ∅.

C1 × C2 is a connected component of T1 × T2,

D : R2n → R, D(x , y) =
∑

1≤k≤n(xk − yk)2 satisfies

d(C1,C2)2 = min{D(x , y) | (x , y) ∈ C1 × C2},

(C1 × C2)min is compact.

Theorem (J.-Perrucci-Tsigaridas)

If deg(fi ), deg(gj) ≤ d and H(fi ),H(gj) ≤ H, then

d(C1,C2) ≥
(
24−nHd2n

)−n4nd2n

where H := max(H, 4n + 2m1 + 2m2).
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Algorithmic computation of minimizers

Assumption: The set of minimizers Emin of g on E is non-empty
and has a compact connected component.

General strategy: adapt the previous techniques to the
algorithmic framework.

Apply a symbolic deformation based on the Newton-Hensel
lifting to compute a finite set of points containing minimizers.

Compare the values that the function g takes on the
computed points using Thom encodings by analyzing sign
conditions on suitable families of univariate polynomials.
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A modified deformation

g(x) G (t, x) = t g(x) + (1− t)ĝ(x)

fi (x) 

{
F+
i (t, x) = t fi (x) + (1− t)f̂i (x)

F−i (t, x) = t fi (x)− (1− t) f̂i (x)

ĝ(x) = a00 +
∑n

j=1 a0jTd(xj), f̂i (x) = ai0 +
∑n

j=1 aij(Td(xj) + 1)

[Td(x) = Tchebychev polynomial of degree d .]

E  Et

{f1(x) = · · · = fl(x) = 0, {F+
1 (t, x) ≥ 0, . . . ,F+

l (t, x) ≥ 0,
F−1 (t, x) ≤ 0, . . . ,F−l (t, x) ≤ 0,

fl+1(x) ≥ 0, . . . , fm(x) ≥ 0} F+
l+1(t, x) ≥ 0, . . . ,F+

m (t, x) ≥ 0}

Compute minimizers for Gt = G (t, ·) on Et for generic t.

Let t → 1 to obtain points in Emin.
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fi (x) 

{
F+
i (t, x) = t fi (x) + (1− t)f̂i (x)

F−i (t, x) = t fi (x)− (1− t) f̂i (x)
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S = {(S , σ) | S ⊂ {1, . . . ,m}, 0 ≤ |S | ≤ n, and σ ∈ {+,−}S ,
σi = + for l + 1 ≤ i ≤ m}.

FS,σ,GS ,σ as before.

For generic t, (FS ,σ,GS,σ) has
finitely many solutions.

VS,σ = union of the irreducible
components of V (FS,σ,GS ,σ)
not included in {t = t0}.

If C is a compact connected component of Emin, there exist
x∗ ∈ C and (S , σ) ∈ S such that x∗ ∈ πx(VS ,σ ∩ {t = 1}).

The set
⋃

(S ,σ)∈S

πx(VS,σ ∩ {t = 1}) is finite and contains a point in

every compact connected component of Emin.
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Basic steps of the algorithm

For every (S , σ) ∈ S, compute a finite set PS ,σ containing
πx(VS ,σ ∩ {t = 1}).
Subroutine: GeometricResolution

Look for the points of each PS ,σ that lie in E and the
minimum value that g takes over these points.
Subroutine: MinimumInGeometricResolution

Compare the minimum values that g takes on the sets
PS,σ ∩ E for different (S , σ).
Subroutine: ComparingMinimums
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Representing finite sets

V = {z1, . . . , zD} ⊂ Cn a 0-dimensional variety definable over Q.

Given a linear form ` ∈ Q[x1, . . . , xn] such that `(zi ) 6= `(zj) if
i 6= j , a geometric resolution of V (associated with `) is the family
of univariate polynomials (p, v1, . . . , vn) where:

p =
∏

1≤i≤D
(u − `(zi )) ∈ Q[u],

v1, . . . , vn ∈ Q[u] with deg(vj) < D for every 1 ≤ j ≤ n such
that

V =
{(

v1(ξ), . . . , vn(ξ)
)
∈ Cn | ξ ∈ C, p(ξ) = 0

}
.

The real roots of p correspond to the real points of V .
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∏

1≤i≤D
(u − `(zi )) ∈ Q[u],

v1, . . . , vn ∈ Q[u] with deg(vj) < D for every 1 ≤ j ≤ n such
that

V =
{(

v1(ξ), . . . , vn(ξ)
)
∈ Cn | ξ ∈ C, p(ξ) = 0

}
.

The real roots of p correspond to the real points of V .
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Geometric resolution of critical points

Assume S = {1, . . . , s} with s ≤ n and σ = {+}S . Recall that

G (t, x) = t g(x) + (1− t)ĝ(x)

Fi (t, x) = t fi (x) + (1− t)f̂i (x), 1 ≤ i ≤ s,

Gj(t, λ, x) = ∂G
∂xj
−
∑

1≤i≤s
λi
∂Fi
∂xj

=

= t gj(λ, x) + (1− t)ĝj(λ, x),

gj = ∂g
∂xj
−
∑

1≤i≤s
λi

∂fi
∂xj

and ĝj = ∂ĝ
∂xj
−
∑

1≤i≤s
λi

∂ f̂i
∂xj

, 1 ≤ j ≤ n.

VS ,σ = union of irreducible components of
V (F1, . . . ,Fs ,G1, . . . ,Gn) not included in {t = t0} for any t0.

Compute a geometric resolution of πx(VS ,σ ∩ {t = 1}) going from
t = 0 to t = 1.
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gj = ∂g
∂xj
−
∑

1≤i≤s
λi

∂fi
∂xj

and ĝj = ∂ĝ
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1 Compute a geometric resolution of V (f̂1, . . . , f̂s , ĝ1, . . . , ĝn).

f̂i = ai0 +
∑

1≤j≤n aij(Td(xj) + 1) for 1 ≤ i ≤ s

ĝj = T ′d(xj)
(
a0j −

∑
1≤i≤s aijλi

)
for 1 ≤ j ≤ n

2 By a symbolic Newton-Hensel lifting ([GiLeSa2001]) obtain a
geometric resolution of VS ,σ ⊂ V (F1, . . . ,Fs ,G1, . . . ,Gn).

3 Let t → 1 to obtain a geometric resolution of a finite set PS ,σ
containing πx(VS ,σ ∩ {t = 1}).

Complexity: Olog(n3D2
s (L + dn + n3))

Ds =
(n
s

)
d s(d − 1)n−s

L = length of a straight-line program encoding f1, . . . , fs , g
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Thom encoding of real algebraic numbers

For p ∈ Q[u] and ξ ∈ R such that p(ξ) = 0, the Thom encoding of
ξ as a root of p is the sequence (sign(p′(ξ)), . . . , sign(p(deg p)(ξ))),
where sign : R→ {−1, 0, 1}.

Two different real roots of p have different Thom encodings.

Given the Thom encodings (τ1,1, . . . , τ1,deg p) and
(τ2,1, . . . , τ2,deg p) of two different real roots ξ1 and ξ2 of p, it
is possible to decide which is the smallest between ξ1 and ξ2:
if k0 = max{k | τ1,k 6= τ2,k}, then

if τ1,k0+1 = τ1,k0+1 = 1, we have ξ1 < ξ2 ⇐⇒ τ1,k0 < τ2,k0

if τ1,k0+1 = τ1,k0+1 = −1, we have ξ1 < ξ2 ⇐⇒ τ1,k0 > τ2,k0
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Sign conditions for univariate polynomials

A realizable sign condition for polynomials h1, . . . , hm ∈ R[u] is
σ = (σ1, . . . , σm) ∈ {<,=, >}m such that

{ξ ∈ R | h1(ξ)σ10, . . . , hm(ξ)σm0} 6= ∅

The family of all realizable sign conditions for
h1, . . . , hm ∈ R[u] with deg(hi ) ≤ d can be obtained within
complexity O(md2 log3 d).

Computing the Thom encodings of the real roots of p ∈ R[u]
amounts to computing the realizable sign conditions for
p, p′, . . . , p(deg p) where p vanishes.
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Computing minimizers with Thom encodings

P ⊂ Cn finite set given by a geometric resolution (p, v1, . . . , vn)

E = {x ∈ Rn | f1(x) = · · · = fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0}

1 Determine whether P ∩ E 6= ∅ by computing the list of
realizable sign conditions for f1(v(u)), . . . , fm(v(u)) over the
real roots of p, where v = (v1, . . . , vn).

2 If P ∩ E 6= ∅:
Let h(u) = Resũ(p(ũ), u − g(v(ũ))),
Compute the list of realizable sign conditions for
f1(v(u)), . . . , fm(v(u)), p′(u), . . . p(deg p−1)(u),
h′(g(v(u))), . . . , h(deg p−1)(g(v(u))) over the real roots of p,
Go through this list to find the Thom encodings of minimizers
for g on P ∩ E .
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Comparing values of g

P1,P2 ⊂ Cn finite sets given by geometric resolutions associated
to the same linear form.

1 Compute a geometric resolution (p, v1, . . . , vn) of P1 ∪ P2

2 Let h(u) = Resũ(p(ũ), u − g(v(ũ))),

3 Compute the list of realizable sign conditions for

p1(u), p′1(u), . . . , p
(deg(p1)−1)
1 , p2(u), p′2(u), . . . , p

(deg(p2)−1)
2 ,

h′(g(v(u))), . . . , h(deg p−1)(g(v(u))) over the real roots of p,

4 Go through this list to find the Thom encodings of the
minimizers for g on P1 ∪ P2.
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Theorem (J.-Perrucci)

E = {x ∈ Rn | f1(x) = · · · = fl(x) = 0, fl+1(x) ≥ 0, . . . , fm(x) ≥ 0}
g ∈ Q[x1, . . . , xn] attaining a minimum value at E in a set Emin 6= ∅
with at least one compact connected component.

There is a probabilistic procedure that computes a finite family{(
(pi , vi,1, . . . , vi,n), τi

)}
i∈I where, for every i ∈ I,

(pi , vi,1, . . . , vi,n) is a geometric resolution and

τi is the Thom encoding of a real root ξi of pi ,

such that {(vi,1(ξi ), . . . , vi,n(ξi ))}i∈I ⊂ Emin and intersects all its
compact connected components.

Complexity: Olog

(
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Thank you for your attention!
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