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Minimization of polynomial functions

E={xeR"|fi(x)="---=M(x)=0,f11(x) > 0,...,fm(x) > 0}

basic closed semialgebraic set defined by fi, ..., fm € Z[x1, ..., Xn],
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Minimization of polynomial functions

E:{XGRH ‘ fl(X):: ﬁ(X):07f/+1(X) 207-"7fm(x) ZO}
basic closed semialgebraic set defined by fi, ..., f, € Z[x1, ..., Xxx],
g € Z[x1, ..., Xxn] such that the function x — g(x) attains a

minimum value gmin on E,
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Minimization of polynomial functions

E:{XGRH ‘ fl(X):: ﬁ(X):07f/+1(X) 207-"7fm(x) ZO}
basic closed semialgebraic set defined by fi, ..., f, € Z[x1, ..., Xxx],
g € Z[x1, ..., Xxn] such that the function x — g(x) attains a

minimum value gmin on E,

Emin = {x € E | g(X) = &min}-

o If deg(f;),deg(g) < d and H(f;), H(g) < H, obtain explicit
bounds § > 0 and b > 0 depending on n, m, d, H such that, if
8min ?é 0, then deg(gmin) <9 and |gmin| > b.
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Minimization of polynomial functions

E:{XGRH ‘ fl(X):: ﬁ(X):07f/+1(X) 207-"7fm(x) ZO}
basic closed semialgebraic set defined by fi, ..., f, € Z[x1, ..., Xxx],
g € Z[x1, ..., Xxn] such that the function x — g(x) attains a

minimum value gmin on E,

Emin = {x € E | g(X) = &min}-

o If deg(f;),deg(g) < d and H(f;), H(g) < H, obtain explicit
bounds § > 0 and b > 0 depending on n, m, d, H such that, if
8min ?é 0, then deg(gmin) <9 and |gmin| > b.

@ Compute at least one point in Enin.
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Minimization of polynomial functions

E:{XGRH ‘ fl(X):: ﬁ(X):07f/+1(X) 207-"7fm(x) ZO}
basic closed semialgebraic set defined by fi, ..., f, € Z[x1, ..., Xxx],
g € Z[x1, ..., Xxn] such that the function x — g(x) attains a

minimum value gmin on E,

Emin = {x € E | g(X) = &min}-

o If deg(f;),deg(g) < d and H(f;), H(g) < H, obtain explicit
bounds § > 0 and b > 0 depending on n, m, d, H such that, if
8min ?é 0, then deg(gmin) <9 and |gmin| > b.

@ Compute at least one point in Enin.

Assumption: Enin has a compact connected component.
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Related work

@ Upper bounds for the degree of the minimum

Nie-Ranestad (2009), if the set of critical points is
zero-dimensional.

Gabriela Jeronimo Polynomial optimization



Related work

@ Upper bounds for the degree of the minimum

Nie-Ranestad (2009), if the set of critical points is
zero-dimensional.

@ Lower bounds for the minimum

Emiris-Mourrain-Tsigaridas (2010), separation among isolated
points; J.-Perrucci (2010), for the standard simplex.

Gabriela Jeronimo Polynomial optimization



Related work

@ Upper bounds for the degree of the minimum

Nie-Ranestad (2009), if the set of critical points is
zero-dimensional.

@ Lower bounds for the minimum
Emiris-Mourrain-Tsigaridas (2010), separation among isolated
points; J.-Perrucci (2010), for the standard simplex.

@ Numerical or symbolic-numerical computation methods
Lasserre (2001), Parrilo-Sturmfels (2003),
Nie-Demmel-Sturmfels (2006), Schweighofer (2006);
Greuet-Guo-Safey El Din-Zhi (2012), among others.
Certificates of positivity, SDP, moments.
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Related work

Upper bounds for the degree of the minimum

Nie-Ranestad (2009), if the set of critical points is
zero-dimensional.

@ Lower bounds for the minimum
Emiris-Mourrain-Tsigaridas (2010), separation among isolated
points; J.-Perrucci (2010), for the standard simplex.

@ Numerical or symbolic-numerical computation methods
Lasserre (2001), Parrilo-Sturmfels (2003),
Nie-Demmel-Sturmfels (2006), Schweighofer (2006);

Greuet-Guo-Safey El Din-Zhi (2012), among others.
Certificates of positivity, SDP, moments.

Symbolic computation methods

e Quantifier elimination over the reals, Basu-Pollack-Roy (1996).
o Safey El Din (2008), computation of generalized critical values.
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Our approach

Find a finite set of points containing at least one point in each
compact connected component of Enin.
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Our approach

Find a finite set of points containing at least one point in each
compact connected component of Enin. ’

Lagrange multipliers: If g attains a minimum on
E={xeR"|fi(x)="---= fm(x) =0} at x*, (under certain
assumptions on g, f, ..., fm) there exists A1,..., A\m € R such that

VE(x*) = MVAK) + 4 ApVin(x*)
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Our approach

Find a finite set of points containing at least one point in each
compact connected component of Enin. ’

Lagrange multipliers: If g attains a minimum on

E={xeR"|fi(x)="---= fm(x) =0} at x*, (under certain

assumptions on g, f, ..., fm) there exists A1,..., A\m € R such that
Vg(x*) = MVAKX") + - + AnVin(x¥)

Karush-Kuhn-Tucker: Extension to inequality constraints.
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Our approach

Find a finite set of points containing at least one point in each
compact connected component of Enin.

Lagrange multipliers: If g attains a minimum on
E={xeR"|fi(x)="---= fm(x) =0} at x*, (under certain
assumptions on g, f, ..., fm) there exists A1,..., A\m € R such that

Vg(x*) = MVA(X") 4+ - - + A Vin(x")
Karush-Kuhn-Tucker: Extension to inequality constraints.

Difficulties:

@ Infinitely many minimizing points.
@ Degenerate systems.
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Bounds for the minimum: Deformation techniques
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Bounds for the minimum: Deformation techniques

g“,r(x) = agg + Zj:l aoj){l-d, ?,(X) = ajo + Z]:l a,Jde for1 <i<m.

d € Z~¢ an even upper bound for the degrees of g and f;,
(a;) € (Zs)(m1)x(n+1) with each submatrix having maximal rank.
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Bounds for the minimum: Deformation techniques

g“,r(x) = ago + Zj:l aoj){l-d, ?,(X) = ajo + Zj:l a,Jde for1 <i<m.

d € Z~¢ an even upper bound for the degrees of g and f;,
(a;) € (Zs)(m1)x(n+1) with each submatrix having maximal rank.

g(x)~  G(t.x) =g(x)+tg(x)
. FH(t,x) = fi(x) + t fi(x)
filx) = { Fr(tx) = £i(x) — t F(x)
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Bounds for the minimum: Deformation techniques

g“,r(x) = agg + Zj:l aoj){l-d, ?,(X) = ajo + Z]:l a,Jde for1 <i<m.

d € Z~¢ an even upper bound for the degrees of g and f;,
(a;) € (Zs)(m1)x(n+1) with each submatrix having maximal rank.

g(x)~  G(t,x) =g(x)+1t&x)

| Fi(t,x) = fi(x) + t fi(x)
fi(x) ~ { Fi(t,x) =fi(x) — t fi(x)

Fy (t,x) <0,...,F (t,x) <0,

() 2 0,0 fn(x) 2 0) Fly(8,%) 20, FA(t,x) > 0}

Gabriela Jeronimo Polynomial optimization



Bounds for the minimum: Deformation techniques

g“,r(x) = agg + Zj:l aoj){l-d, ?,(X) = ajo + Z]:l a,Jde for1 <i<m.

d € Z~¢ an even upper bound for the degrees of g and f;,
(a;) € (Zs)(m1)x(n+1) with each submatrix having maximal rank.

g(x)~  G(t.x) =g(x)+tg(x)
. FH(t,x) = fi(x) + t fi(x)
filx) = { Fr(tx) = £i(x) — t F(x)

{A(x)=---=fi(x) =0, (FH(t,%) 2 0,..., F(t,x) 2 0,
Fi(t,x) <0,...,F (t,x) <0,

() 2 0,0 fn(x) 2 0) Fly(8,%) 20, FA(t,x) > 0}

Since rA‘,-(x) >0 forevery 1 <i< m:
Eo = E and Et1 C Et2 if0<t; <t
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General strategy

Minimize G; = g(x) + t g(x) on E; for generic t and let t — 0.
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General strategy

Minimize G; = g(x) + t g(x) on E; for generic t and let t — 0.

For t small enough, minimizers of G; on E; are solutions to a
system

Fsot {F(t:x) = o,...,F,.jfs(t,x) =0
Gs.o {v G(t.x)= > N VuF, (t.x)
1<j<s
for some (S, o) such that
e S={n,...,isy C{1,...,m} with s < n, and
eoc{+, P withoj=+for/+1<i<m
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e For generic t, the system (Fs, Gs )
has finitely many solutions.
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e For generic t, the system (Fs,, Gs o) //
has finitely many solutions. N
/0/

@ Let Vs, be the union of the -
irreducible components of the variety
defined by (Fs s, Gs,;) not included in ]
{t = to} for any tp. o0
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e For generic t, the system (Fs, Gs ) /(} /
| o— |

has finitely many solutions.
@ Let Vs, be the union of the -
irreducible components of the variety
defined by (Fs s, Gs,;) not included in ]
{t = to} for any tp. o0
Proposition

Let C be a compact connected component of
E={f(x)="-=1fi(x) =0,f41(x) 20,...,fm(x) = 0}.

Then, there exist x* € C, S C {1,..., m} with 0 < |S| < n, and
o€ {+,—}° with g; = + for I + 1 < i < m, such that

x* € m(Vs o N{t=0}) and g(x*) = min{g(x) | x € C}.
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Getting bounds for |gmin.c| and deg(gmin.c)
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Getting bounds for |gmin.c| and deg(gmin.c)

@ Construct a family of univariate polynomials Qs , € Z[u]
having among their roots the minimum values gnin c that g
takes on the compact connected components C of E.
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Getting bounds for |gmin.c| and deg(gmin.c)

@ Construct a family of univariate polynomials Qs , € Z[u]
having among their roots the minimum values gnin c that g
takes on the compact connected components C of E.

@ Obtain upper bounds for the degrees of the polynomials Qs .
~~ upper bound for deg(gmin,c)
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Getting bounds for |gmin.c| and deg(gmin.c)

@ Construct a family of univariate polynomials Qs , € Z[u]
having among their roots the minimum values gnin c that g
takes on the compact connected components C of E.

@ Obtain upper bounds for the degrees of the polynomials Qs .
~~ upper bound for deg(gmin,c)
@ Obtain upper bounds for the absolute values of the

coefficients of Qs , and deduce a lower bound for the absolute
values of their roots. ~~ lower bound for |gmin,c|
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Getting bounds for |gmin.c| and deg(gmin.c)

@ Construct a family of univariate polynomials Qs , € Z[u]
having among their roots the minimum values gnin c that g
takes on the compact connected components C of E.

@ Obtain upper bounds for the degrees of the polynomials Qs .
~~ upper bound for deg(gmin,c)
@ Obtain upper bounds for the absolute values of the

coefficients of Qs , and deduce a lower bound for the absolute
values of their roots. ~~ lower bound for |gmin,c|

Basic result:

Let Q(u) = Y7o gt € Z[u] \ {0} and M € Z such that |¢j| < M for

0<j<D. IfueC\{0}isa root of Q, then |ug| > M~1.
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Let P(u,x) = u— g(x).

Gabriela Jeronimo Polynomial optimization



Let P(u,x) = u— g(x).

For S C {1,...,m} with |[S| < nand o € {+,—}> with o; = + for
I+1 < i< m, the values that g takes on the common solutions of
(Fs,s, Gs,) for generic t are roots of

Rs »(t,u) = Resultant, \(P, Fs o, Gs ») € Z[t][u]
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Let P(u,x) = u— g(x).

For S C {1,...,m} with |[S| < nand o € {+,—}> with o; = + for
I+1 < i< m, the values that g takes on the common solutions of
(Fs,s, Gs,) for generic t are roots of

Rs »(t,u) = Resultant, \(P, Fs o, Gs ») € Z[t][u]
Let vs, be the largest power of t dividing Rs ,(t, u) and

Qs (u) = (t797Rs 5(t, u))|e=0 € Z[u]
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Let P(u,x) = u— g(x).

For S C {1,...,m} with |[S| < nand o € {+,—}> with o; = + for
I+1 < i< m, the values that g takes on the common solutions of
(Fs,s, Gs,) for generic t are roots of

Rs »(t,u) = Resultant, \(P, Fs o, Gs ») € Z[t][u]
Let vs, be the largest power of t dividing Rs ,(t, u) and
QS,J(U) = (tiys’g RS,U(tv U))‘tzo € Z[U]

For every x* € m,(Vs, N {t =0}), we have Qs ,(g(x*)) = 0.
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Let P(u,x) = u— g(x).

For S C {1,...,m} with |[S| < nand o € {+,—}> with o; = + for
I+1 < i< m, the values that g takes on the common solutions of
(Fs,s, Gs,) for generic t are roots of

Rs »(t, u) = Resultant, z\(P, Fs », Gs ») € Z[t][u]
Let vs, be the largest power of t dividing Rs ,(t, u) and
Qs.o(u) = (t775 Rs 5(t, u))|e=0 € Z[u]
For every x* € m,(Vs, N {t =0}), we have Qs ,(g(x*)) = 0.

For each compact connected component C of E, there exists
(S, o) such that gmin ¢ is a root of Qs .
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To estimate the degree and coefficients size of Qs ,, we apply

@ classical Bézout-type upper bounds for the degree of
multihomogeneos resultants,

@ upper bounds for heights of sparse resultants (Sombra, 2004).
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To estimate the degree and coefficients size of Qs ,, we apply

@ classical Bézout-type upper bounds for the degree of
multihomogeneos resultants,

@ upper bounds for heights of sparse resultants (Sombra, 2004).

Theorem (J.-Perrucci-Tsigaridas)

Let E ={fi(x) =...fi(x) =0, fiz1(x) > 0,...,fm(x) > 0} be
defined in R" by f1,...,fm € Z[x1,...,xn] and let

g € Z[x1,...,xn]. If deg(f;),deg(g) < d for an even positive
integer d, and H(f;), H(g) < H, the minimum value that g takes
over a compact connected component C of E is a real algebraic
number gmin ¢ such that, if it is nonzero,

deg(gmin,c) < 2"'d" and [gmin.c| > (2°FHd") "

where H := max(H,2n +2m).
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Noncompact situations

@ The upper bound for the degree remains valid in the case
where C is a non-compact connected component of E,
provided that g attains a minimum gmin,c on C.

e If, in addition, the set Cnin = {x € C | g(x) = &min,c} has a
compact connected component, the lower bound for |gmin c|
also holds.
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Noncompact situations

@ The upper bound for the degree remains valid in the case
where C is a non-compact connected component of E,
provided that g attains a minimum gmin,c on C.

e If, in addition, the set Cnin = {x € C | g(x) = &min,c} has a
compact connected component, the lower bound for |gmin c|
also holds.

In both cases, the bounds follow from the previous result applied
to a set which is constructed from E by adding a new constraint of
type M — >, x? > 0 for a suitable M € R-o.
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Application: separation bounds
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Application: separation bounds

Ey = {fl(X) == f/1(X) =0, f/1+1(X) >0,..., fml(X) > 0}
E, = {gl(x) == glz(x) = ng/2+1(x) >0,... 7gm2(X) > 0}
C; a compact connected component of £y and C; an arbitrary
connected component of E, such that G, N G = ().

Gabriela Jeronimo Polynomial optimization



Application: separation bounds

Er = {fl(X) == f/1(X) =0, f/1+1(X) >0,..., fml(X) > 0}

E> = {gl(x) == glz(x) = ng/2+1(x) >0,... 7gm2(X) = 0}

C; a compact connected component of £y and C; an arbitrary
connected component of E, such that G, N G = ().

@ (C; x G, is a connected component of T; x Ty,

@ D:R? 4R, D(x,y) = > 1<k<n(Xk — yi)? satisfies
d(Clv C2)2 = mm{D(X7y) | (X7y) € G x C2}’

@ (G X G3)min is compact.
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Application: separation bounds

Er = {fl(X) == f/1(X) =0, f/1+1(X) >0,..., fml(X) > 0}

E, = {gl(x) == glz(x) = ng/2+1(X) >0,... 7gm2(X) > 0}
C; a compact connected component of £y and C; an arbitrary
connected component of E, such that G, N G = ().

@ (C; x G, is a connected component of T; x Ty,

@ D:R? 4R, D(x,y) = > 1<k<n(Xk — yi)? satisfies
d(Clv C2)2 = mm{D(X7y) | (X7y) € G x C2}’

@ (G X G3)min is compact.

Theorem (J.-Perrucci-Tsigaridas)

If deg(f7),deg(gj) < d and H(f;), H(gj) < H, then
d( C1’ Cg) > (247”7_[d2n)7n4"d2n
where H := max(H,4n +2m; + 2my).
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Algorithmic computation of minimizers

Assumption: The set of minimizers E.;, of g on E is non-empty
and has a compact connected component.
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Algorithmic computation of minimizers

Assumption: The set of minimizers E.;, of g on E is non-empty
and has a compact connected component.

General strategy: adapt the previous techniques to the
algorithmic framework.
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Algorithmic computation of minimizers

Assumption: The set of minimizers E.;, of g on E is non-empty
and has a compact connected component.

General strategy: adapt the previous techniques to the
algorithmic framework.

@ Apply a symbolic deformation based on the Newton-Hensel
lifting to compute a finite set of points containing minimizers.
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Algorithmic computation of minimizers

Assumption: The set of minimizers E.;, of g on E is non-empty
and has a compact connected component.

General strategy: adapt the previous techniques to the
algorithmic framework.

@ Apply a symbolic deformation based on the Newton-Hensel
lifting to compute a finite set of points containing minimizers.

@ Compare the values that the function g takes on the
computed points using Thom encodings by analyzing sign
conditions on suitable families of univariate polynomials.
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A modified deformation
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A modified deformation

B(x) = a00+ 27— a0; Ta(x),  fi(x) = aio+ 27—y aj(Ta() + 1)
[T4(x) = Tchebychev polynomial of degree d.]
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A modified deformation

B(x) = a00+ 27— a0; Ta(x),  fi(x) = aio+ 27—y aj(Ta() + 1)
[T4(x) = Tchebychev polynomial of degree d.]

E XA Et
{ﬂ_(X): ﬁ(X) 07 {Ff_(t,X) 207"-)F/+(t’x) 207
Fy(t,x) <0

..... F, (t,x) <0,
fir1(x) 2 0,... fm(x) 20} Fly(t,x) 2 0,..., Ff(t,x) > 0}
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A modified deformation

B(x) = a00+ 27— a0; Ta(x),  fi(x) = aio+ 27—y aj(Ta() + 1)
[T4(x) = Tchebychev polynomial of degree d.]

E XA Et
{ﬁ_(X) == ﬁ(X) = 07 {Ff_(t,X) > 07 ocog F/+(t’x) > 07
Fi(t,x) <0,..., F, (t,x) <0,

fir1(x) 2 0,... fm(x) 20} Fly(t,x) 2 0,..., Ff(t,x) > 0}

e Compute minimizers for G; = G(t,-) on E; for generic t.
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A modified deformation

B(x) = a00+ 27— a0; Ta(x),  fi(x) = aio+ 27—y aj(Ta() + 1)
[T4(x) = Tchebychev polynomial of degree d.]

E XA Et
{ﬁ_(X) == ﬁ(X) = 07 {Ff_(t,X) > 07 ocog F/+(t’x) > 07
Fi(t,x) <0,..., F, (t,x) <0,

fir1(x) 2 0,... fm(x) 20} Fly(t,x) 2 0,..., Ff(t,x) > 0}

e Compute minimizers for G; = G(t,-) on E; for generic t.
@ Let t — 1 to obtain points in Enijn.
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S={(S,0)|Sc{l,...,m},0<|S|<n,and o € {+,-}°,
o=+ for I+1<i<m}.

Fs», Gs,, as before.
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S={(S,0)|Sc{l,...,m},0<|S|<n,and o € {+,-}°,
o=+ for I+1<i<m}.

Fs.», Gs , as before. SO I

finitely many solutions.

e For generic t, (Fs 4, Gs5) has vx

@ Vs, = union of the irreducible
components of V(Fs ,, Gs )
not included in {t = tp}. -
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S={(S,0)|Sc{l,...,m},0<|S|<n,and o € {+,-}°,
o=+ for I+1<i<m}.

Fs», Gs,, as before. ,,:f‘::,\,\ ,,,,,, d Db )
e For i N
generic t, (Fs, Gs ) has ~_

finitely many solutions. ’//%

@ Vs, = union of the irreducible
components of V(Fs ,, Gs )
not included in {t = tp}. -

If C is a compact connected component of Enin, there exist
x* € Cand (S,0) € § such that x* € 7w, (Vs, N{t =1}).
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S={(S,0)|Sc{l,...,m},0<|S|<n,and o € {+,-}°,
o=+ for I+1<i<m}.

Fs.», Gs , as before. SO I

e For generic t, (Fs 4, Gs5) has vx

finitely many solutions.

@ Vs, = union of the irreducible
components of V(Fs ,, Gs )
not included in {t = tp}. -

If C is a compact connected component of Enin, there exist
x* € Cand (S,0) € § such that x* € 7w, (Vs, N{t =1}).

The set U (Vs N {t = 1}) is finite and contains a point in

(S,0)eS
every compact connected component of Epin.
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Basic steps of the algorithm
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Basic steps of the algorithm

@ For every (S,0) € S, compute a finite set Ps , containing
(Vs N{t=1}).

Subroutine: GeometricResolution
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Basic steps of the algorithm

@ For every (S,0) € S, compute a finite set Ps , containing
(Vs N{t=1}).

Subroutine: GeometricResolution

@ Look for the points of each Ps, that lie in E and the
minimum value that g takes over these points.
Subroutine: MinimumInGeometricResolution
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Basic steps of the algorithm

@ For every (S,0) € S, compute a finite set Ps , containing
(Vs N{t=1}).

Subroutine: GeometricResolution

@ Look for the points of each Ps, that lie in E and the
minimum value that g takes over these points.
Subroutine: MinimumInGeometricResolution

@ Compare the minimum values that g takes on the sets

Ps.o N E for different (S,0).

Subroutine: ComparingMinimums

Gabriela Jeronimo Polynomial optimization



Representing finite sets

V ={z1,...,zp} C C" a O-dimensional variety definable over Q.

Gabriela Jeronimo Polynomial optimization



Representing finite sets

V ={z1,...,zp} C C" a O-dimensional variety definable over Q.

Given a linear form ¢ € Q[xi, ..., xp] such that {(z;) # {(z) if
i # j, a geometric resolution of V (associated with ¢) is the family
of univariate polynomials (p, vi, ..., v,) where:

Gabriela Jeronimo Polynomial optimization



Representing finite sets

V ={z1,...,zp} C C" a O-dimensional variety definable over Q.

Given a linear form ¢ € Q[xi, ..., xp] such that {(z;) # {(z) if
i # j, a geometric resolution of V (associated with ¢) is the family

of univariate polynomials (p, vi, ..., v,) where:
o p= I (u—4(z)) Q[
1<i<D
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Representing finite sets

V ={z1,...,zp} C C" a O-dimensional variety definable over Q.

Given a linear form ¢ € Q[xi, ..., xp] such that {(z;) # {(z) if
i # j, a geometric resolution of V (associated with ¢) is the family

of univariate polynomials (p, vi, ..., v,) where:
o p= I (u—£(z)) Q]
1<i<D
® vi,...,V, € Qu] with deg(v;) < D for every 1 < j < n such
that

V={(n(),...,va(&)) €C" | £ €C, p(&) =0}
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Representing finite sets

V ={z1,...,zp} C C" a O-dimensional variety definable over Q.

Given a linear form ¢ € Q[xi, ..., xp] such that {(z;) # {(z) if
i # j, a geometric resolution of V (associated with ¢) is the family

of univariate polynomials (p, vi, ..., v,) where:
o p= I (u—£(z)) Q]
1<i<D
® vi,...,V, € Qu] with deg(v;) < D for every 1 < j < n such
that

V={(n(),...,va(&)) €C" | £ €C, p(&) =0}

The real roots of p correspond to the real points of V.

Gabriela Jeronimo Polynomial optimization



Geometric resolution of critical points

Assume S = {1,...,s} with s < nand 0 = {+}°. Recall that
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Geometric resolution of critical points

Assume S = {1,...,s} with s < nand 0 = {+}°. Recall that

o G(t,x)=tg(x)+(1—1t)a(x)
o Fi(t,x)=tfi(x)+(1—t)fi(x), 1<i<s,
o Gi(t,\x) = gG > A,gf =

1<i<s
=tgi(A\x)+(1—-1)g(\ x),

d of; A 98 o .
gj:a*f-_ Z )\iax- a”dgj:a*f-_ Z )‘iax-'lgffn-
II<i<s J J1<i<s J
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Geometric resolution of critical points

Assume S = {1,...,s} with s < nand 0 = {+}°. Recall that

° G(t,x) =tg(x)+(1-1)&(x)
o Fi(t,x)=tfi(x)+(1—t)fi(x), 1<i<s,
° Gt Ax) =52 - 3 Ng=
1<i<s
ztgy(/\,x)+(1—t)§j(/\,x),

d of; A 98 o .
gj:aif-_ Z )\iax- a”dgj:a*f-_ Z )‘iax-'lgffn-
II<i<s J J1<i<s J

Vs o = union of irreducible components of
V(Fi,...,Fs, Gi,...,Gp) not included in {t = ty} for any to.
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Geometric resolution of critical points

Assume S = {1,...,s} with s < nand 0 = {+}°. Recall that

° G(t,x) =tg(x)+(1-1)2(x)

o Fi(t,x)=tfi(x)+(1—t)fi(x), 1<i<s,
o Gi(t,\x) = gG > A,gf -
1<i<s

— tgi(Ax) + (1 - (A ),

d of; A 98 o .
gj:(?if-_ Z )\iax- a”dgj:a*f-_ Z )‘iax-'lgffn-
II<i<s J J1<i<s J

Vs o = union of irreducible components of
V(Fi,...,Fs, Gi,...,Gp) not included in {t = ty} for any to.

Compute a geometric resolution of 7, (Vs , N {t =1}) going from
t=0tot=1.
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@ Compute a geometric resolution of V(ﬁ, o Fs 81,---,8n)-
?/' = ajp +21<J'§na’lj(Td(Xj) —+ 1) fOI’ 1 S i S S
g = Tc/l(xj)<30j = Di<i<s a,-j)\,-) for1<j<n
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@ Compute a geometric resolution of V(ﬁ, o Fs 81,---,8n)-

fi= a0+ Y1jcnas(Tal) + 1) for 1< i<s
g = Tc/l(xj)<30j = Di<i<s aij)‘i) for1<j<n

@ By a symbolic Newton-Hensel lifting ([GiLeSa2001]) obtain a
geometric resolution of Vs, C V(F1,...,Fs,Gy,..., Gp).
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@ Compute a geometric resolution of V(ﬁ, o Fs 81,---,8n)-

fi= a0+ Y1jcnas(Tal) + 1) for 1< i<s
g = Tc/l(xj)<30j = Di<i<s aij)‘i) for1<j<n

@ By a symbolic Newton-Hensel lifting ([GiLeSa2001]) obtain a
geometric resolution of Vs, C V(F1,...,Fs,Gy,..., Gp).

© Let t — 1 to obtain a geometric resolution of a finite set Ps
containing (Vs , N {t =1}).
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@ Compute a geometric resolution of V(zA‘l o Fs 81,---,8n)-

fi= a0+ Y1jcnas(Tal) + 1) for 1< i<s
g = Tc/l(xj)<30j = Di<i<s aij)‘i) for1<j<n

@ By a symbolic Newton-Hensel lifting ([GiLeSa2001]) obtain a
geometric resolution of Vs, C V(F1,...,Fs,Gy,..., Gp).

© Let t — 1 to obtain a geometric resolution of a finite set Ps
containing (Vs , N {t =1}).

Complexity: Oiog(n*D2(L + dn + n®))

o Ds = (1)d*(d —1)"*
@ L = length of a straight-line program encoding fi,...,fs, g
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Thom encoding of real algebraic numbers

For p € Q[u] and & € R such that p(§) = 0, the Thom encoding of
¢ as a root of p is the sequence (sign(p/(¢)), ..., sign(p(deeP)(£))),
where sign : R — {—1,0,1}.
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Thom encoding of real algebraic numbers

For p € Q[u] and & € R such that p(§) = 0, the Thom encoding of
¢ as a root of p is the sequence (sign(p/(¢)), ..., sign(p(deeP)(£))),
where sign : R — {—1,0,1}.

@ Two different real roots of p have different Thom encodings.
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Thom encoding of real algebraic numbers

For p € Q[u] and & € R such that p(§) = 0, the Thom encoding of
¢ as a root of p is the sequence (sign(p/(¢)), ..., sign(p(deeP)(£))),
where sign : R — {—1,0,1}.

@ Two different real roots of p have different Thom encodings.

@ Given the Thom encodings (711, . ... T1.deg p) and
(21, -, 7 deg p) Of two different real roots &; and &5 of p, it
is possible to decide which is the smallest between &; and &;:
if kg = max{k | T1,k =+ T2,k}v then

o if Tlko+1 = Tlko+1 = 1, we have fl < 52 = Tk < T2,k
o if Tl,ko+1 = Tl ko+1 = —1, we have 51 < 52 = Tl,ky > T2,k
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Sign conditions for univariate polynomials

A realizable sign condition for polynomials hy, ..., h, € R[u] is
o= (01,...,0m) € {<,=,>}" such that

{£ €R| h1(&)010, ..., hpn(§)om0} # 0
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Sign conditions for univariate polynomials

A realizable sign condition for polynomials hy, ..., h, € R[u] is
o= (01,...,0m) € {<,=,>}" such that

{£ €R| h1(&)010, ..., hpn(§)om0} # 0

@ The family of all realizable sign conditions for
hi,..., hm € R[u] with deg(h;) < d can be obtained within
complexity O(md?log® d).
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Sign conditions for univariate polynomials

A realizable sign condition for polynomials hy, ..., h, € R[u] is
o= (01,...,0m) € {<,=,>}" such that

{£ €R| h1(&)010, ..., hpn(§)om0} # 0

@ The family of all realizable sign conditions for
hi,..., hm € Ru] with deg(h;) < d can be obtained within
complexity O(md?log® d).

e Computing the Thom encodings of the real roots of p € R[u]
amounts to computing the realizable sign conditions for
p,p, ..., pldegP) where p vanishes.
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Computing minimizers with Thom encodings

P C C" finite set given by a geometric resolution (p, v1,. .., Vs)

E={xeR"|i(x)="---=Ff(x)=0,f11(x) >0,..., fn(x) > 0}

Gabriela Jeronimo Polynomial optimization



Computing minimizers with Thom encodings

P C C" finite set given by a geometric resolution (p, v1,. .., Vs)

E={xeR"|i(x)="---=Ff(x)=0,f11(x) >0,..., fn(x) > 0}

@ Determine whether P N E # () by computing the list of
realizable sign conditions for fi(v(u)), ..., fm(v(u)) over the
real roots of p, where v = (vy,...,vp).
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Computing minimizers with Thom encodings

P C C" finite set given by a geometric resolution (p, v1,. .., Vs)

E={xeR"|i(x)="---=Ff(x)=0,f11(x) >0,..., fn(x) > 0}

@ Determine whether P N E # () by computing the list of

realizable sign conditions for fi(v(u)), ..., fm(v(u)) over the
real roots of p, where v = (vy,...,vp).
Q@ IfPNE #:
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Computing minimizers with Thom encodings

P C C" finite set given by a geometric resolution (p, v1,. .., Vs)

E={xeR"|i(x)="---=Ff(x)=0,f11(x) >0,..., fn(x) > 0}

@ Determine whether P N E # () by computing the list of

realizable sign conditions for fi(v(u)), ..., fm(v(u)) over the
real roots of p, where v = (vy,...,vp).
Q@ IfPNE #:

o Let h(u) = Resa(p(), u — g(v())),
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Computing minimizers with Thom encodings

P C C" finite set given by a geometric resolution (p, v1,. .., Vs)

E={xeR"|i(x)="---=Ff(x)=0,f11(x) >0,..., fn(x) > 0}

@ Determine whether P N E # () by computing the list of

realizable sign conditions for fi(v(u)), ..., fm(v(u)) over the
real roots of p, where v = (vq,...,v,).
Q@ IfPNE #:

o Let h(u) = Resg(p(@), u — g(())),
o Compute the list of realizable sign conditions for

f(v(u)),..., fm(v(u)), p'(u),...plder=1(y),
W (g(v(u))), ..., ht4eP=1(g(v(u))) over the real roots of p,

Gabriela Jeronimo Polynomial optimization



Computing minimizers with Thom encodings

P C C" finite set given by a geometric resolution (p, v1,. .., Vs)

E={xeR"|i(x)="---=Ff(x)=0,f11(x) >0,..., fn(x) > 0}

@ Determine whether P N E # () by computing the list of

realizable sign conditions for fi(v(u)), ..., fm(v(u)) over the
real roots of p, where v = (vq,...,v,).
Q@ IfPNE #:

o Let h(u) = Resy(p(t), u — g(v())),

o Compute the list of realizable sign conditions for
f(v(u)),..., fm(v(u)), p'(u),...plder=1(y),
H(g(v(v))),..., h4€P=1)(g(v(u))) over the real roots of p,

e Go through this list to find the Thom encodings of minimizers
forgon PNE.
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Comparing values of g

P1,P> C C” finite sets given by geometric resolutions associated
to the same linear form.
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Comparing values of g

P1,P> C C” finite sets given by geometric resolutions associated
to the same linear form.

@ Compute a geometric resolution (p, vi, ..., vy) of P1 U P,
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Comparing values of g

P1,P> C C” finite sets given by geometric resolutions associated
to the same linear form.

@ Compute a geometric resolution (p, vi, ..., vy) of P1 U P,
@ Let h(u) = Resy(p(D), u — g(v(@))),
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Comparing values of g

P1,P> C C” finite sets given by geometric resolutions associated
to the same linear form.

@ Compute a geometric resolution (p, vi, ..., vy) of P1 U P,
@ Let h(u) = Resy(p(D), u — g(v(@))),
© Compute the list of realizable sign conditions for

p1(u), py(u), .., pIB P po(u), ph(u), ... pSeEP) 7Y,

H(g(v(u))),..., hdeP=1)(g(v(u))) over the real roots of p,
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Comparing values of g

P1,P> C C” finite sets given by geometric resolutions associated
to the same linear form.

@ Compute a geometric resolution (p, vi, ..., vy) of P1 U P,
@ Let h(u) = Resy(p(D), u — g(v(@))),

© Compute the list of realizable sign conditions for

pr(u), p(u), ... PP (), py(u), ..., piIeEP )

H(g(v(u))),..., hdeP=1)(g(v(u))) over the real roots of p,

@ Go through this list to find the Thom encodings of the
minimizers for g on Py U Ps.
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Theorem (J.-Perrucci)
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Theorem (J.-Perrucci)

0 E={xeR"|A(x)=---=1h(x)=0,f1(x) >0,...,m(x) >0}
@ g €Qlxy, ..., x,] attaining a minimum value at E in a set E, # ()
with at least one compact connected component.
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Theorem (J.-Perrucci)

0 E={xeR"|A(x)=---=1h(x)=0,f1(x) >0,...,m(x) >0}
@ g €Qlxy, ..., x,] attaining a minimum value at E in a set E, # ()
with at least one compact connected component.

There is a probabilistic procedure that computes a finite family
{((pi,vig, -, v,'7,,),7-,')}l.€I where, for every i € T,
@ (pi,Vi1,--.,Vin)is a geometric resolution and

@ 7; is the Thom encoding of a real root &; of p;,

such that {(vi1(&), .-, vi,n(&))}iez C Emin and intersects all its
compact connected components.
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Theorem (J.-Perrucci)

0 E={xeR"|A(x)=---=1h(x)=0,f1(x) >0,...,m(x) >0}
@ g €Qlxy, ..., x,] attaining a minimum value at E in a set E, # ()
with at least one compact connected component.

There is a probabilistic procedure that computes a finite family
{((pi,vig, -, v,'7,,),7-,')}l.€I where, for every i € T,

@ (pi,Vi1,--.,Vin)is a geometric resolution and

@ 7; is the Thom encoding of a real root &; of p;,
such that {(vi1(&), .-, vi,n(&))}iez C Emin and intersects all its
compact connected components.
Complexity: Olog ((n*(L + dn + n®)D? 4+ (m + D)D?)T)

@ d > deg(f;),deg(g) an even integer,

@ [ = length of an slp encoding fi,..., fn, g,

°oD= max (VFd-1rcadT< Y (7).

: s
0<s<min{n,m} 0<s<min{n,m}
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Thank you for your attention!
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