A symbolic approach to polynomial optimization over basic closed semialgebraic sets

Gabriela Jeronimo

Departamento de Matemática, FCEN, Universidad de Buenos Aires IMAS (CONICET–UBA), Argentina

January 14, 2014

$$E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$$

basic closed semialgebraic set defined by $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$,

@▶ ∢ ≞▶

$$E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$$

basic closed semialgebraic set defined by $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$,

 $g \in \mathbb{Z}[x_1, \ldots, x_n]$ such that the function $x \mapsto g(x)$ attains a minimum value g_{\min} on E,

$$E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$$

basic closed semialgebraic set defined by $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$,

 $g \in \mathbb{Z}[x_1, \ldots, x_n]$ such that the function $x \mapsto g(x)$ attains a minimum value g_{\min} on E,

$$E_{\min} = \{x \in E \mid g(x) = g_{\min}\}.$$

$$E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$$

basic closed semialgebraic set defined by $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$,

 $g \in \mathbb{Z}[x_1, \ldots, x_n]$ such that the function $x \mapsto g(x)$ attains a minimum value g_{\min} on E,

$$E_{\min} = \{x \in E \mid g(x) = g_{\min}\}.$$

Aim:

If deg(f_i), deg(g) ≤ d and H(f_i), H(g) ≤ H, obtain explicit bounds δ > 0 and b > 0 depending on n, m, d, H such that, if g_{min} ≠ 0, then deg(g_{min}) ≤ δ and |g_{min}| ≥ b.

$$E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$$

basic closed semialgebraic set defined by $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$,

 $g \in \mathbb{Z}[x_1, \ldots, x_n]$ such that the function $x \mapsto g(x)$ attains a minimum value g_{\min} on E,

$$E_{\min} = \{x \in E \mid g(x) = g_{\min}\}.$$

Aim:

- If deg(f_i), deg(g) $\leq d$ and $H(f_i)$, $H(g) \leq H$, obtain explicit bounds $\delta > 0$ and b > 0 depending on n, m, d, H such that, if $g_{\min} \neq 0$, then deg(g_{\min}) $\leq \delta$ and $|g_{\min}| \geq b$.
- Compute at least one point in E_{min}.

$$E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$$

basic closed semialgebraic set defined by $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$,

 $g \in \mathbb{Z}[x_1, \ldots, x_n]$ such that the function $x \mapsto g(x)$ attains a minimum value g_{\min} on E,

$$E_{\min} = \{x \in E \mid g(x) = g_{\min}\}.$$

Aim:

- If deg(f_i), deg(g) $\leq d$ and $H(f_i)$, $H(g) \leq H$, obtain explicit bounds $\delta > 0$ and b > 0 depending on n, m, d, H such that, if $g_{\min} \neq 0$, then deg(g_{\min}) $\leq \delta$ and $|g_{\min}| \geq b$.
- Compute at least one point in E_{min}.

Assumption: E_{\min} has a compact connected component.

Related work

Gabriela Jeronimo Polynomial optimization

3

Э

∢@▶ ∢≣▶

• Upper bounds for the degree of the minimum Nie-Ranestad (2009), if the set of critical points is zero-dimensional.

- Upper bounds for the degree of the minimum Nie-Ranestad (2009), if the set of critical points is zero-dimensional.
- Lower bounds for the minimum

Emiris-Mourrain-Tsigaridas (2010), separation among isolated points; J.-Perrucci (2010), for the standard simplex.

- Upper bounds for the degree of the minimum Nie-Ranestad (2009), if the set of critical points is zero-dimensional.
- Lower bounds for the minimum

Emiris-Mourrain-Tsigaridas (2010), separation among isolated points; J.-Perrucci (2010), for the standard simplex.

• Numerical or symbolic-numerical computation methods

Lasserre (2001), Parrilo-Sturmfels (2003), Nie-Demmel-Sturmfels (2006), Schweighofer (2006); Greuet-Guo-Safey El Din-Zhi (2012), among others. Certificates of positivity, SDP, moments.

- Upper bounds for the degree of the minimum Nie-Ranestad (2009), if the set of critical points is zero-dimensional.
- Lower bounds for the minimum

Emiris-Mourrain-Tsigaridas (2010), separation among isolated points; J.-Perrucci (2010), for the standard simplex.

• Numerical or symbolic-numerical computation methods

Lasserre (2001), Parrilo-Sturmfels (2003), Nie-Demmel-Sturmfels (2006), Schweighofer (2006); Greuet-Guo-Safey El Din-Zhi (2012), among others. Certificates of positivity, SDP, moments.

- Symbolic computation methods
 - Quantifier elimination over the reals, Basu-Pollack-Roy (1996).
 - Safey El Din (2008), computation of generalized critical values.

Lagrange multipliers: If g attains a minimum on $E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_m(x) = 0\}$ at x^* , (under certain assumptions on g, f_1, \ldots, f_m) there exists $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ such that

 $\nabla g(x^*) = \lambda_1 \nabla f_1(x^*) + \cdots + \lambda_m \nabla f_m(x^*)$

Lagrange multipliers: If g attains a minimum on $E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_m(x) = 0\}$ at x^* , (under certain assumptions on g, f_1, \ldots, f_m) there exists $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ such that

 $\nabla g(x^*) = \lambda_1 \nabla f_1(x^*) + \dots + \lambda_m \nabla f_m(x^*)$

Karush-Kuhn-Tucker: Extension to inequality constraints.

Lagrange multipliers: If g attains a minimum on $E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_m(x) = 0\}$ at x^* , (under certain assumptions on g, f_1, \ldots, f_m) there exists $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ such that

 $\nabla g(x^*) = \lambda_1 \nabla f_1(x^*) + \cdots + \lambda_m \nabla f_m(x^*)$

Karush-Kuhn-Tucker: Extension to inequality constraints.

Difficulties:

- Infinitely many minimizing points.
- Degenerate systems.

$$\hat{g}(x) = a_{00} + \sum_{j=1}^{n} a_{0j} x_j^d$$
, $\hat{f}_i(x) = a_{i0} + \sum_{j=1}^{n} a_{ij} x_j^d$ for $1 \le i \le m$.

 $d \in \mathbb{Z}_{>0}$ an even upper bound for the degrees of g and f_i , $(a_{ij}) \in (\mathbb{Z}_{>0})^{(m+1) \times (n+1)}$ with each submatrix having maximal rank.

$$\hat{g}(x) = a_{00} + \sum_{j=1}^{n} a_{0j} x_j^d$$
, $\hat{f}_i(x) = a_{i0} + \sum_{j=1}^{n} a_{ij} x_j^d$ for $1 \le i \le m$.

 $d \in \mathbb{Z}_{>0}$ an even upper bound for the degrees of g and f_i , $(a_{ij}) \in (\mathbb{Z}_{>0})^{(m+1) \times (n+1)}$ with each submatrix having maximal rank.

$$g(x) \rightsquigarrow \qquad G(t, x) = g(x) + t \ \hat{g}(x)$$

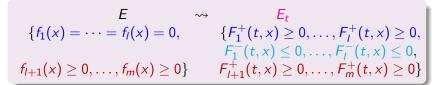
$$f_i(x) \rightsquigarrow \begin{cases} F_i^+(t, x) = f_i(x) + t \ \hat{f}_i(x) \\ F_i^-(t, x) = f_i(x) - t \ \hat{f}_i(x) \end{cases}$$

$$\hat{g}(x) = a_{00} + \sum_{j=1}^{n} a_{0j} x_j^d$$
, $\hat{f}_i(x) = a_{i0} + \sum_{j=1}^{n} a_{ij} x_j^d$ for $1 \le i \le m$.

 $d \in \mathbb{Z}_{>0}$ an even upper bound for the degrees of g and f_i , $(a_{ij}) \in (\mathbb{Z}_{>0})^{(m+1)\times(n+1)}$ with each submatrix having maximal rank.

$$g(x) \rightsquigarrow \qquad G(t, x) = g(x) + t \hat{g}(x)$$

$$f_i(x) \rightsquigarrow \begin{cases} F_i^+(t, x) = f_i(x) + t \hat{f}_i(x) \\ F_i^-(t, x) = f_i(x) - t \hat{f}_i(x) \end{cases}$$

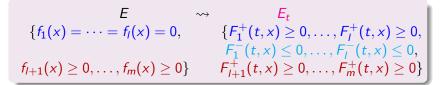


$$\hat{g}(x) = a_{00} + \sum_{j=1}^{n} a_{0j} x_j^d$$
, $\hat{f}_i(x) = a_{i0} + \sum_{j=1}^{n} a_{ij} x_j^d$ for $1 \le i \le m$.

 $d \in \mathbb{Z}_{>0}$ an even upper bound for the degrees of g and f_i , $(a_{ij}) \in (\mathbb{Z}_{>0})^{(m+1) \times (n+1)}$ with each submatrix having maximal rank.

$$g(x) \rightsquigarrow \qquad G(t, x) = g(x) + t \ \hat{g}(x)$$

$$f_i(x) \rightsquigarrow \begin{cases} F_i^+(t, x) = f_i(x) + t \ \hat{f}_i(x) \\ F_i^-(t, x) = f_i(x) - t \ \hat{f}_i(x) \end{cases}$$



Since $\hat{f}_i(x) > 0$ for every $1 \le i \le m$: $E_0 = E$ and $E_{t_1} \subset E_{t_2}$ if $0 \le t_1 \le t_2$.

General strategy

Minimize $G_t = g(x) + t \ \hat{g}(x)$ on E_t for generic t and let $t \to 0$.

▲圖▶ ▲臣▶ ▲臣▶

3

General strategy

Minimize $G_t = g(x) + t \hat{g}(x)$ on E_t for generic t and let $t \to 0$.

For t small enough, minimizers of G_t on E_t are solutions to a system

$$F_{S,\sigma}: \left\{ F_{i_1}^{\sigma_{i_1}}(t,x) = 0, \dots, F_{i_s}^{\sigma_{i_s}}(t,x) = 0 \right\}$$
$$G_{S,\sigma}: \left\{ \nabla_x G(t,x) = \sum_{1 \le j \le s} \lambda_j \nabla_x F_{i_j}^{\sigma_{i_j}}(t,x) \right\}$$

for some (S, σ) such that

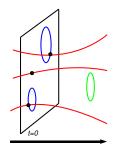
•
$$S = \{i_1, \ldots, i_s\} \subset \{1, \ldots, m\}$$
 with $s \le n$, and
• $\sigma \in \{+, -\}^S$ with $\sigma_i = +$ for $l + 1 \le i \le m$.

@▶ ∢ ∍▶

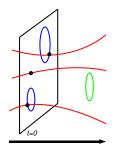
• For generic t, the system $(F_{S,\sigma}, G_{S,\sigma})$ has finitely many solutions.

_ 17

- For generic t, the system $(F_{S,\sigma}, G_{S,\sigma})$ has finitely many solutions.
- Let V_{S,σ} be the union of the irreducible components of the variety defined by (F_{S,σ}, G_{S,σ}) not included in {t = t₀} for any t₀.



- For generic t, the system $(F_{S,\sigma}, G_{S,\sigma})$ has finitely many solutions.
- Let $V_{S,\sigma}$ be the union of the irreducible components of the variety defined by $(F_{S,\sigma}, G_{S,\sigma})$ not included in $\{t = t_0\}$ for any t_0 .



Proposition

Let C be a compact connected component of

$$E = \{f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \ldots, f_m(x) \ge 0\}.$$

Then, there exist $x^* \in C$, $S \subset \{1, ..., m\}$ with $0 \le |S| \le n$, and $\sigma \in \{+, -\}^S$ with $\sigma_i = +$ for $l + 1 \le i \le m$, such that

 $x^* \in \pi_x(V_{S,\sigma} \cap \{t = 0\}) \text{ and } g(x^*) = \min\{g(x) \mid x \in C\}.$

□ ▶ 《 三 ▶ 《

문⊁ 문

• Construct a family of univariate polynomials $Q_{S,\sigma} \in \mathbb{Z}[u]$ having among their roots the minimum values $g_{\min,C}$ that gtakes on the compact connected components C of E.

- Construct a family of univariate polynomials $Q_{S,\sigma} \in \mathbb{Z}[u]$ having among their roots the minimum values $g_{\min,C}$ that gtakes on the compact connected components C of E.
- Obtain upper bounds for the degrees of the polynomials Q_{S,σ}.
 → upper bound for deg(g_{min,C})

- Construct a family of univariate polynomials $Q_{S,\sigma} \in \mathbb{Z}[u]$ having among their roots the minimum values $g_{\min,C}$ that gtakes on the compact connected components C of E.
- Obtain upper bounds for the degrees of the polynomials Q_{S,σ}.
 → upper bound for deg(g_{min,C})
- Obtain upper bounds for the absolute values of the coefficients of Q_{S,σ} and deduce a lower bound for the absolute values of their roots. → lower bound for |g_{min,C}|

- Construct a family of univariate polynomials $Q_{S,\sigma} \in \mathbb{Z}[u]$ having among their roots the minimum values $g_{\min,C}$ that gtakes on the compact connected components C of E.
- Obtain upper bounds for the degrees of the polynomials Q_{5,σ}.
 → upper bound for deg(g_{min,C})
- Obtain upper bounds for the absolute values of the coefficients of Q_{S,σ} and deduce a lower bound for the absolute values of their roots. → lower bound for |g_{min,C}|

Basic result:

Let $Q(u) = \sum_{j=0}^{D} c_j u^j \in \mathbb{Z}[u] \setminus \{0\}$ and $M \in \mathbb{Z}$ such that $|c_j| < M$ for $0 \le j \le D$. If $u_0 \in \mathbb{C} \setminus \{0\}$ is a root of Q, then $|u_0| \ge M^{-1}$.

Let
$$P(u, x) = u - g(x)$$
.

 Let P(u, x) = u - g(x). For $S \subset \{1, ..., m\}$ with $|S| \le n$ and $\sigma \in \{+, -\}^S$ with $\sigma_i = +$ for $l + 1 \le i \le m$, the values that g takes on the common solutions of $(F_{S,\sigma}, G_{S\sigma})$ for generic t are roots of

 $R_{S,\sigma}(t,u) = \text{Resultant}_{x,\lambda}(P, F_{S,\sigma}, G_{S,\sigma}) \in \mathbb{Z}[t][u]$

Let P(u, x) = u - g(x). For $S \subset \{1, ..., m\}$ with $|S| \le n$ and $\sigma \in \{+, -\}^S$ with $\sigma_i = +$ for $l + 1 \le i \le m$, the values that g takes on the common solutions of $(F_{S,\sigma}, G_{S\sigma})$ for generic t are roots of

$$R_{S,\sigma}(t,u) = \text{Resultant}_{x,\lambda}(P,F_{S,\sigma},G_{S,\sigma}) \in \mathbb{Z}[t][u]$$

Let $\nu_{S,\sigma}$ be the largest power of t dividing $R_{S,\sigma}(t,u)$ and

$$Q_{S,\sigma}(u) = (t^{-\nu_{S,\sigma}} R_{S,\sigma}(t,u))|_{t=0} \in \mathbb{Z}[u]$$

Let P(u, x) = u - g(x). For $S \subset \{1, ..., m\}$ with $|S| \le n$ and $\sigma \in \{+, -\}^S$ with $\sigma_i = +$ for $l + 1 \le i \le m$, the values that g takes on the common solutions of $(F_{S,\sigma}, G_{S\sigma})$ for generic t are roots of

$$R_{S,\sigma}(t,u) = \text{Resultant}_{x,\lambda}(P,F_{S,\sigma},G_{S,\sigma}) \in \mathbb{Z}[t][u]$$

Let $\nu_{S,\sigma}$ be the largest power of t dividing $R_{S,\sigma}(t,u)$ and

$$Q_{S,\sigma}(u) = (t^{-\nu_{S,\sigma}} R_{S,\sigma}(t,u))|_{t=0} \in \mathbb{Z}[u]$$

For every $x^* \in \pi_x(V_{S,\sigma} \cap \{t = 0\})$, we have $Q_{S,\sigma}(g(x^*)) = 0$.

Let P(u, x) = u - g(x). For $S \subset \{1, ..., m\}$ with $|S| \le n$ and $\sigma \in \{+, -\}^S$ with $\sigma_i = +$ for $l + 1 \le i \le m$, the values that g takes on the common solutions of $(F_{S,\sigma}, G_{S\sigma})$ for generic t are roots of

$$R_{S,\sigma}(t,u) = \mathsf{Resultant}_{x,\lambda}(P, F_{S,\sigma}, G_{S,\sigma}) \in \mathbb{Z}[t][u]$$

Let $\nu_{S,\sigma}$ be the largest power of t dividing $R_{S,\sigma}(t,u)$ and

$$Q_{S,\sigma}(u) = (t^{-\nu_{S,\sigma}} R_{S,\sigma}(t,u))|_{t=0} \in \mathbb{Z}[u]$$

For every $x^* \in \pi_x(V_{S,\sigma} \cap \{t = 0\})$, we have $Q_{S,\sigma}(g(x^*)) = 0$.

For each compact connected component *C* of *E*, there exists (S, σ) such that $g_{\min,C}$ is a root of $Q_{S,\sigma}$.

To estimate the degree and coefficients size of $Q_{S,\sigma}$, we apply

- classical Bézout-type upper bounds for the degree of multihomogeneos resultants,
- upper bounds for heights of sparse resultants (Sombra, 2004).

To estimate the degree and coefficients size of $Q_{S,\sigma}$, we apply

- classical Bézout-type upper bounds for the degree of multihomogeneos resultants,
- upper bounds for heights of sparse resultants (Sombra, 2004).

Theorem (J.-Perrucci-Tsigaridas)

Let $E = \{f_1(x) = \dots f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$ be defined in \mathbb{R}^n by $f_1, \dots, f_m \in \mathbb{Z}[x_1, \dots, x_n]$ and let $g \in \mathbb{Z}[x_1, \dots, x_n]$. If deg (f_i) , deg $(g) \le d$ for an even positive integer d, and $H(f_i)$, $H(g) \le H$, the minimum value that g takes over a compact connected component C of E is a real algebraic number $g_{\min,C}$ such that, if it is nonzero,

$$\begin{split} & \deg(g_{\min,C}) \leq 2^{n-1}d^n \quad \text{and} \quad |g_{\min,C}| \geq (2^{4-\frac{n}{2}}\mathcal{H}d^n)^{-n2^nd^n} \\ & \text{where } \mathcal{H} := \max(H, 2n+2m). \end{split}$$

- The upper bound for the degree remains valid in the case where C is a non-compact connected component of E, provided that g attains a minimum $g_{\min,C}$ on C.
- If, in addition, the set C_{min} = {x ∈ C | g(x) = g_{min,C}} has a compact connected component, the lower bound for |g_{min,C}| also holds.

- The upper bound for the degree remains valid in the case where C is a non-compact connected component of E, provided that g attains a minimum $g_{\min,C}$ on C.
- If, in addition, the set C_{min} = {x ∈ C | g(x) = g_{min,C}} has a compact connected component, the lower bound for |g_{min,C}| also holds.

In both cases, the bounds follow from the previous result applied to a set which is constructed from *E* by adding a new constraint of type $M - \sum_{i=1}^{n} x_i^2 \ge 0$ for a suitable $M \in \mathbb{R}_{>0}$.

Gabriela Jeronimo Polynomial optimization

æ

母▶ ∢ ≣

 $E_{1} = \{f_{1}(x) = \dots = f_{l_{1}}(x) = 0, f_{l_{1}+1}(x) \ge 0, \dots, f_{m_{1}}(x) \ge 0\}$ $E_{2} = \{g_{1}(x) = \dots = g_{l_{2}}(x) = 0, g_{l_{2}+1}(x) \ge 0, \dots, g_{m_{2}}(x) \ge 0\}$ $C_{1} \text{ a compact connected component of } E_{1} \text{ and } C_{2} \text{ an arbitrary connected component of } E_{2} \text{ such that } C_{1} \cap C_{2} = \emptyset.$

$$\begin{split} E_1 &= \{f_1(x) = \cdots = f_{l_1}(x) = 0, f_{l_1+1}(x) \ge 0, \dots, f_{m_1}(x) \ge 0\} \\ E_2 &= \{g_1(x) = \cdots = g_{l_2}(x) = 0, g_{l_2+1}(x) \ge 0, \dots, g_{m_2}(x) \ge 0\} \\ C_1 \text{ a compact connected component of } E_1 \text{ and } C_2 \text{ an arbitrary connected component of } E_2 \text{ such that } C_1 \cap C_2 = \emptyset. \end{split}$$

- $C_1 \times C_2$ is a connected component of $T_1 \times T_2$,
- $D: \mathbb{R}^{2n} \to \mathbb{R}, D(x, y) = \sum_{1 \le k \le n} (x_k y_k)^2$ satisfies $d(C_1, C_2)^2 = \min\{D(x, y) \mid (x, y) \in C_1 \times C_2\},$

•
$$(C_1 \times C_2)_{\min}$$
 is compact.

$$\begin{split} E_1 &= \{f_1(x) = \cdots = f_{l_1}(x) = 0, f_{l_1+1}(x) \ge 0, \dots, f_{m_1}(x) \ge 0\} \\ E_2 &= \{g_1(x) = \cdots = g_{l_2}(x) = 0, g_{l_2+1}(x) \ge 0, \dots, g_{m_2}(x) \ge 0\} \\ C_1 \text{ a compact connected component of } E_1 \text{ and } C_2 \text{ an arbitrary connected component of } E_2 \text{ such that } C_1 \cap C_2 = \emptyset. \end{split}$$

- $C_1 \times C_2$ is a connected component of $T_1 \times T_2$,
- $D: \mathbb{R}^{2n} \to \mathbb{R}, D(x, y) = \sum_{1 \le k \le n} (x_k y_k)^2$ satisfies $d(C_1, C_2)^2 = \min\{D(x, y) \mid (x, y) \in C_1 \times C_2\},$
- $(C_1 \times C_2)_{\min}$ is compact.

Theorem (J.-Perrucci-Tsigaridas)

If $\deg(f_i), \deg(g_j) \leq d$ and $H(f_i), H(g_j) \leq H$, then

$$d(C_1, C_2) \ge (2^{4-n} \mathcal{H} d^{2n})^{-n4^n d^{2n}}$$

where $\mathcal{H} := \max(H, 4n + 2m_1 + 2m_2)$.

Assumption: The set of minimizers E_{\min} of g on E is non-empty and has a compact connected component.

Assumption: The set of minimizers E_{min} of g on E is non-empty and has a compact connected component.

General strategy: adapt the previous techniques to the algorithmic framework.

Assumption: The set of minimizers E_{min} of g on E is non-empty and has a compact connected component.

General strategy: adapt the previous techniques to the algorithmic framework.

• Apply a symbolic deformation based on the Newton-Hensel lifting to compute a finite set of points containing minimizers.

Assumption: The set of minimizers E_{\min} of g on E is non-empty and has a compact connected component.

General strategy: adapt the previous techniques to the algorithmic framework.

- Apply a symbolic deformation based on the Newton-Hensel lifting to compute a finite set of points containing minimizers.
- Compare the values that the function g takes on the computed points using Thom encodings by analyzing sign conditions on suitable families of univariate polynomials.

æ

@▶ ▲ ≧▶

$$g(x) \rightsquigarrow \qquad G(t,x) = t g(x) + (1-t)\hat{g}(x)$$

$$f_i(x) \rightsquigarrow \begin{cases} F_i^+(t,x) = t f_i(x) + (1-t)\hat{f}_i(x) \\ F_i^-(t,x) = t f_i(x) - (1-t) \hat{f}_i(x) \end{cases}$$

 $\hat{g}(x) = a_{00} + \sum_{j=1}^{n} a_{0j} T_d(x_j), \quad \hat{f}_i(x) = a_{i0} + \sum_{j=1}^{n} a_{ij} (T_d(x_j) + 1)$ [$T_d(x)$ = Tchebychev polynomial of degree d.]

$$g(x) \rightsquigarrow \qquad G(t, x) = t g(x) + (1 - t)\hat{g}(x)$$

$$f_i(x) \rightsquigarrow \begin{cases} F_i^+(t, x) = t f_i(x) + (1 - t)\hat{f}_i(x) \\ F_i^-(t, x) = t f_i(x) - (1 - t) \hat{f}_i(x) \end{cases}$$

 $\hat{g}(x) = a_{00} + \sum_{j=1}^{n} a_{0j} T_d(x_j), \quad \hat{f}_i(x) = a_{i0} + \sum_{j=1}^{n} a_{ij} (T_d(x_j) + 1)$ [$T_d(x)$ = Tchebychev polynomial of degree d.]

$$\begin{array}{cccc} E & \rightsquigarrow & E_t \\ \{f_1(x) = \cdots = f_l(x) = 0, & \{F_1^+(t,x) \ge 0, \dots, F_l^+(t,x) \ge 0, \\ f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\} & F_{l+1}^+(t,x) \ge 0, \dots, F_m^+(t,x) \ge 0\} \end{array}$$

$$g(x) \rightsquigarrow \qquad G(t,x) = t g(x) + (1-t)\hat{g}(x)$$

$$f_i(x) \rightsquigarrow \begin{cases} F_i^+(t,x) = t f_i(x) + (1-t)\hat{f}_i(x) \\ F_i^-(t,x) = t f_i(x) - (1-t) \hat{f}_i(x) \end{cases}$$

 $\hat{g}(x) = a_{00} + \sum_{j=1}^{n} a_{0j} T_d(x_j), \quad \hat{f}_i(x) = a_{i0} + \sum_{j=1}^{n} a_{ij} (T_d(x_j) + 1)$ [$T_d(x)$ = Tchebychev polynomial of degree d.]

$$\begin{array}{cccc} E & \rightsquigarrow & E_t \\ \{f_1(x) = \cdots = f_l(x) = 0, & \{F_1^+(t,x) \ge 0, \dots, F_l^+(t,x) \ge 0, \\ F_1^-(t,x) \le 0, \dots, F_l^-(t,x) \le 0, \\ f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\} & F_{l+1}^+(t,x) \ge 0, \dots, F_m^+(t,x) \ge 0\} \end{array}$$

• Compute minimizers for $G_t = G(t, \cdot)$ on E_t for generic t.

$$g(x) \rightsquigarrow \qquad G(t,x) = t g(x) + (1-t)\hat{g}(x)$$

$$f_i(x) \rightsquigarrow \begin{cases} F_i^+(t,x) = t f_i(x) + (1-t)\hat{f}_i(x) \\ F_i^-(t,x) = t f_i(x) - (1-t) \hat{f}_i(x) \end{cases}$$

 $\hat{g}(x) = a_{00} + \sum_{j=1}^{n} a_{0j} T_d(x_j), \quad \hat{f}_i(x) = a_{i0} + \sum_{j=1}^{n} a_{ij} (T_d(x_j) + 1)$ [$T_d(x)$ = Tchebychev polynomial of degree d.]

$$\begin{array}{cccc} E & \rightsquigarrow & E_t \\ \{f_1(x) = \dots = f_l(x) = 0, & \{F_1^+(t,x) \ge 0, \dots, F_l^+(t,x) \ge 0, \\ F_1^-(t,x) \le 0, \dots, F_l^-(t,x) \le 0, \\ f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\} & F_{l+1}^+(t,x) \ge 0, \dots, F_m^+(t,x) \ge 0\} \end{array}$$

- Compute minimizers for $G_t = G(t, \cdot)$ on E_t for generic t.
- Let $t \to 1$ to obtain points in E_{\min} .

$$S = \{(S, \sigma) \mid S \subset \{1, \dots, m\}, 0 \le |S| \le n, \text{ and } \sigma \in \{+, -\}^S, \sigma_i = + \text{ for } l+1 \le i \le m\}.$$

 $F_{S,\sigma}, G_{S,\sigma}$ as before.

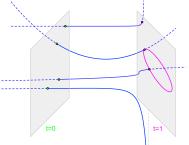
▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

E

$S = \{(S, \sigma) \mid S \subset \{1, \dots, m\}, 0 \le |S| \le n, \text{ and } \sigma \in \{+, -\}^S, \\ \sigma_i = + \text{ for } I + 1 \le i \le m\}.$

 $F_{S,\sigma}, G_{S,\sigma}$ as before.

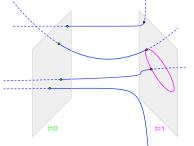
- For generic t, (F_{S,σ}, G_{S,σ}) has finitely many solutions.
- V_{S,σ} = union of the irreducible components of V(F_{S,σ}, G_{S,σ}) not included in {t = t₀}.



$$S = \{(S, \sigma) \mid S \subset \{1, \dots, m\}, 0 \le |S| \le n, \text{ and } \sigma \in \{+, -\}^S, \\ \sigma_i = + \text{ for } I + 1 \le i \le m\}.$$

 $F_{S,\sigma}, G_{S,\sigma}$ as before.

- For generic t, (F_{S,σ}, G_{S,σ}) has finitely many solutions.
- V_{S,σ} = union of the irreducible components of V(F_{S,σ}, G_{S,σ}) not included in {t = t₀}.

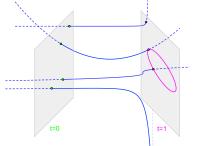


If C is a compact connected component of E_{\min} , there exist $x^* \in C$ and $(S, \sigma) \in S$ such that $x^* \in \pi_X(V_{S,\sigma} \cap \{t = 1\})$.

$$S = \{(S, \sigma) \mid S \subset \{1, \dots, m\}, 0 \le |S| \le n, \text{ and } \sigma \in \{+, -\}^S, \\ \sigma_i = + \text{ for } I + 1 \le i \le m\}.$$

 $F_{S,\sigma}, G_{S,\sigma}$ as before.

- For generic t, (F_{S,σ}, G_{S,σ}) has finitely many solutions.
- V_{S,σ} = union of the irreducible components of V(F_{S,σ}, G_{S,σ}) not included in {t = t₀}.



If *C* is a compact connected component of E_{\min} , there exist $x^* \in C$ and $(S, \sigma) \in S$ such that $x^* \in \pi_x(V_{S,\sigma} \cap \{t = 1\})$.

The set
$$\bigcup_{(S,\sigma)\in\mathcal{S}} \pi_x(V_{S,\sigma} \cap \{t=1\})$$
 is finite and contains a point in every compact connected component of E_{\min} .

Gabriela Jeronimo Polynomial optimization

Basic steps of the algorithm

• For every $(S, \sigma) \in S$, compute a finite set $\mathcal{P}_{S,\sigma}$ containing $\pi_x(V_{S,\sigma} \cap \{t = 1\})$. Subroutine: GeometricResolution

Basic steps of the algorithm

- For every $(S, \sigma) \in S$, compute a finite set $\mathcal{P}_{S,\sigma}$ containing $\pi_x(V_{S,\sigma} \cap \{t = 1\})$. Subroutine: GeometricResolution
- Look for the points of each P_{5,σ} that lie in E and the minimum value that g takes over these points.
 Subroutine: MinimumInGeometricResolution

Basic steps of the algorithm

- For every $(S, \sigma) \in S$, compute a finite set $\mathcal{P}_{S,\sigma}$ containing $\pi_x(V_{S,\sigma} \cap \{t = 1\})$. Subroutine: GeometricResolution
- Look for the points of each P_{5,σ} that lie in E and the minimum value that g takes over these points.
 Subroutine: MinimumInGeometricResolution
- Compare the minimum values that g takes on the sets $\mathcal{P}_{S,\sigma} \cap E$ for different (S,σ) . Subroutine: ComparingMinimums

米部ト 米油ト 米油ト

э

Given a linear form $\ell \in \mathbb{Q}[x_1, \ldots, x_n]$ such that $\ell(z_i) \neq \ell(z_j)$ if $i \neq j$, a *geometric resolution* of V (associated with ℓ) is the family of univariate polynomials (p, v_1, \ldots, v_n) where:

Given a linear form $\ell \in \mathbb{Q}[x_1, \ldots, x_n]$ such that $\ell(z_i) \neq \ell(z_j)$ if $i \neq j$, a *geometric resolution* of V (associated with ℓ) is the family of univariate polynomials (p, v_1, \ldots, v_n) where:

•
$$p = \prod_{1 \leq i \leq D} (u - \ell(z_i)) \in \mathbb{Q}[u],$$

Given a linear form $\ell \in \mathbb{Q}[x_1, \ldots, x_n]$ such that $\ell(z_i) \neq \ell(z_j)$ if $i \neq j$, a *geometric resolution* of V (associated with ℓ) is the family of univariate polynomials (p, v_1, \ldots, v_n) where:

•
$$p = \prod_{1 \leq i \leq D} (u - \ell(z_i)) \in \mathbb{Q}[u],$$

• $v_1, \ldots, v_n \in \mathbb{Q}[u]$ with deg $(v_j) < D$ for every $1 \le j \le n$ such that

 $V = \big\{ \big(v_1(\xi), \ldots, v_n(\xi) \big) \in \mathbb{C}^n \mid \xi \in \mathbb{C}, \ p(\xi) = 0 \big\}.$

Given a linear form $\ell \in \mathbb{Q}[x_1, \ldots, x_n]$ such that $\ell(z_i) \neq \ell(z_j)$ if $i \neq j$, a *geometric resolution* of V (associated with ℓ) is the family of univariate polynomials (p, v_1, \ldots, v_n) where:

•
$$p = \prod_{1 \leq i \leq D} (u - \ell(z_i)) \in \mathbb{Q}[u],$$

• $v_1, \ldots, v_n \in \mathbb{Q}[u]$ with deg $(v_j) < D$ for every $1 \le j \le n$ such that

 $V = \big\{ \big(v_1(\xi), \ldots, v_n(\xi) \big) \in \mathbb{C}^n \mid \xi \in \mathbb{C}, \ p(\xi) = 0 \big\}.$

The real roots of p correspond to the real points of V.

高 ト イヨ ト イヨ ト

Assume $S = \{1, \ldots, s\}$ with $s \le n$ and $\sigma = \{+\}^S$. Recall that

•
$$G(t,x) = t g(x) + (1-t)\hat{g}(x)$$

•
$$F_i(t,x) = t f_i(x) + (1-t)\hat{f}_i(x), \ 1 \le i \le s,$$

白 ト く ヨ ト く

Assume $S = \{1, \ldots, s\}$ with $s \le n$ and $\sigma = \{+\}^S$. Recall that

•
$$G(t,x) = t g(x) + (1-t)\hat{g}(x)$$

• $F_i(t,x) = t f_i(x) + (1-t)\hat{f}_i(x), \ 1 \le i \le s,$
• $G_j(t,\lambda,x) = \frac{\partial G}{\partial x_j} - \sum_{1 \le i \le s} \lambda_i \frac{\partial F_i}{\partial x_j} =$
 $= t g_j(\lambda, x) + (1-t)\hat{g}_j(\lambda, x),$

$$g_j = \frac{\partial g}{\partial x_j} - \sum_{1 \le i \le s} \lambda_i \frac{\partial f_i}{\partial x_j} \text{ and } \hat{g}_j = \frac{\partial \hat{g}}{\partial x_j} - \sum_{1 \le i \le s} \lambda_i \frac{\partial f_i}{\partial x_j}, \ 1 \le j \le n.$$

Assume $S = \{1, \ldots, s\}$ with $s \le n$ and $\sigma = \{+\}^S$. Recall that

•
$$G(t,x) = t g(x) + (1-t)\hat{g}(x)$$

• $F_i(t,x) = t f_i(x) + (1-t)\hat{f}_i(x), \ 1 \le i \le s,$
• $G_j(t,\lambda,x) = \frac{\partial G}{\partial x_j} - \sum_{1 \le i \le s} \lambda_i \frac{\partial F_i}{\partial x_j} =$
 $= t g_j(\lambda, x) + (1-t)\hat{g}_j(\lambda, x),$

$$\underline{g_j} = \frac{\partial \underline{g}}{\partial x_j} - \sum_{1 \le i \le s} \lambda_i \frac{\partial f_i}{\partial x_j} \text{ and } \hat{g}_j = \frac{\partial \hat{g}}{\partial x_j} - \sum_{1 \le i \le s} \lambda_i \frac{\partial f_i}{\partial x_j}, \ 1 \le j \le n.$$

 $V_{S,\sigma}$ = union of irreducible components of $V(F_1, \ldots, F_s, G_1, \ldots, G_n)$ not included in $\{t = t_0\}$ for any t_0 .

Assume $S = \{1, ..., s\}$ with $s \le n$ and $\sigma = \{+\}^S$. Recall that

•
$$G(t,x) = t g(x) + (1-t)\hat{g}(x)$$

• $F_i(t,x) = t f_i(x) + (1-t)\hat{f}_i(x), \ 1 \le i \le s,$
• $G_j(t,\lambda,x) = \frac{\partial G}{\partial x_j} - \sum_{1 \le i \le s} \lambda_i \frac{\partial F_i}{\partial x_j} =$
 $= t g_j(\lambda,x) + (1-t)\hat{g}_j(\lambda,x),$

$$\underline{g}_j = \frac{\partial g}{\partial x_j} - \sum_{1 \le i \le s} \lambda_i \frac{\partial f_i}{\partial x_j} \text{ and } \hat{g}_j = \frac{\partial \hat{g}}{\partial x_j} - \sum_{1 \le i \le s} \lambda_i \frac{\partial \hat{f}_i}{\partial x_j}, \ 1 \le j \le n.$$

 $V_{S,\sigma}$ = union of irreducible components of $V(F_1, \ldots, F_s, G_1, \ldots, G_n)$ not included in $\{t = t_0\}$ for any t_0 .

Compute a geometric resolution of $\pi_x(V_{S,\sigma} \cap \{t = 1\})$ going from t = 0 to t = 1.

• Compute a geometric resolution of $V(\hat{f}_1, \ldots, \hat{f}_s, \hat{g}_1, \ldots, \hat{g}_n)$.

$$\hat{f}_i = a_{i0} + \sum_{1 \le j \le n} a_{ij} (T_d(x_j) + 1) \text{ for } 1 \le i \le s$$

$$\hat{g}_j = T'_d(x_j) \Big(a_{0j} - \sum_{1 \le i \le s} a_{ij} \lambda_i \Big) \text{ for } 1 \le j \le n$$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

• Compute a geometric resolution of $V(\hat{f}_1, \ldots, \hat{f}_s, \hat{g}_1, \ldots, \hat{g}_n)$.

$$\hat{f}_i = a_{i0} + \sum_{1 \le j \le n} a_{ij} (T_d(x_j) + 1) \text{ for } 1 \le i \le s$$

$$\hat{g}_j = T'_d(x_j) \Big(a_{0j} - \sum_{1 \le i \le s} a_{ij} \lambda_i \Big) \text{ for } 1 \le j \le n$$

 By a symbolic Newton-Hensel lifting ([GiLeSa2001]) obtain a geometric resolution of V_{S,σ} ⊂ V(F₁,..., F_s, G₁,..., G_n). • Compute a geometric resolution of $V(\hat{f}_1, \ldots, \hat{f}_s, \hat{g}_1, \ldots, \hat{g}_n)$.

$$\hat{f}_i = a_{i0} + \sum_{1 \le j \le n} a_{ij} (T_d(x_j) + 1) \text{ for } 1 \le i \le s$$

$$\hat{g}_j = T'_d(x_j) \Big(a_{0j} - \sum_{1 \le i \le s} a_{ij} \lambda_i \Big) \text{ for } 1 \le j \le n$$

- Let $t \to 1$ to obtain a geometric resolution of a finite set $\mathcal{P}_{S,\sigma}$ containing $\pi_x(V_{S,\sigma} \cap \{t = 1\})$.

• Compute a geometric resolution of $V(\hat{f}_1, \ldots, \hat{f}_s, \hat{g}_1, \ldots, \hat{g}_n)$.

$$\hat{f}_i = a_{i0} + \sum_{1 \le j \le n} a_{ij} (T_d(x_j) + 1) \text{ for } 1 \le i \le s$$

$$\hat{g}_j = T'_d(x_j) \Big(a_{0j} - \sum_{1 \le i \le s} a_{ij} \lambda_i \Big) \text{ for } 1 \le j \le n$$

- By a symbolic Newton-Hensel lifting ([GiLeSa2001]) obtain a geometric resolution of V_{S,σ} ⊂ V(F₁,..., F_s, G₁,..., G_n).
- Let $t \to 1$ to obtain a geometric resolution of a finite set $\mathcal{P}_{S,\sigma}$ containing $\pi_x(V_{S,\sigma} \cap \{t = 1\})$.

Complexity:
$$O_{log}(n^3D_s^2(L+dn+n^3))$$

•
$$D_s = \binom{n}{s} d^s (d-1)^{n-s}$$

• L =length of a straight-line program encoding f_1, \ldots, f_s, g

For $p \in \mathbb{Q}[u]$ and $\xi \in \mathbb{R}$ such that $p(\xi) = 0$, the Thom encoding of ξ as a root of p is the sequence $(\operatorname{sign}(p'(\xi)), \ldots, \operatorname{sign}(p^{(\deg p)}(\xi)))$, where $\operatorname{sign} : \mathbb{R} \to \{-1, 0, 1\}$.

For $p \in \mathbb{Q}[u]$ and $\xi \in \mathbb{R}$ such that $p(\xi) = 0$, the Thom encoding of ξ as a root of p is the sequence $(\operatorname{sign}(p'(\xi)), \ldots, \operatorname{sign}(p^{(\deg p)}(\xi)))$, where $\operatorname{sign} : \mathbb{R} \to \{-1, 0, 1\}$.

• Two different real roots of *p* have different Thom encodings.

For $p \in \mathbb{Q}[u]$ and $\xi \in \mathbb{R}$ such that $p(\xi) = 0$, the Thom encoding of ξ as a root of p is the sequence $(\operatorname{sign}(p'(\xi)), \ldots, \operatorname{sign}(p^{(\deg p)}(\xi)))$, where $\operatorname{sign} : \mathbb{R} \to \{-1, 0, 1\}$.

- Two different real roots of *p* have different Thom encodings.
- Given the Thom encodings $(\tau_{1,1}, \ldots, \tau_{1,\deg p})$ and $(\tau_{2,1}, \ldots, \tau_{2,\deg p})$ of two different real roots ξ_1 and ξ_2 of p, it is possible to decide which is the smallest between ξ_1 and ξ_2 : if $k_0 = \max\{k \mid \tau_{1,k} \neq \tau_{2,k}\}$, then
 - if $\tau_{1,k_0+1} = \tau_{1,k_0+1} = 1$, we have $\xi_1 < \xi_2 \iff \tau_{1,k_0} < \tau_{2,k_0}$
 - if $\tau_{1,k_0+1} = \tau_{1,k_0+1} = -1$, we have $\xi_1 < \xi_2 \iff \tau_{1,k_0} > \tau_{2,k_0}$

向 ト イヨ ト イヨト

Sign conditions for univariate polynomials

A realizable sign condition for polynomials $h_1, \ldots, h_m \in \mathbb{R}[u]$ is $\sigma = (\sigma_1, \ldots, \sigma_m) \in \{<, =, >\}^m$ such that

 $\{\xi \in \mathbb{R} \mid h_1(\xi)\sigma_1 0, \ldots, h_m(\xi)\sigma_m 0\} \neq \emptyset$

A realizable sign condition for polynomials $h_1, \ldots, h_m \in \mathbb{R}[u]$ is $\sigma = (\sigma_1, \ldots, \sigma_m) \in \{<, =, >\}^m$ such that

$$\{\xi \in \mathbb{R} \mid h_1(\xi)\sigma_1 0, \ldots, h_m(\xi)\sigma_m 0\} \neq \emptyset$$

• The family of all realizable sign conditions for $h_1, \ldots, h_m \in \mathbb{R}[u]$ with $\deg(h_i) \leq d$ can be obtained within complexity $O(md^2 \log^3 d)$.

A realizable sign condition for polynomials $h_1, \ldots, h_m \in \mathbb{R}[u]$ is $\sigma = (\sigma_1, \ldots, \sigma_m) \in \{<, =, >\}^m$ such that

$$\{\xi \in \mathbb{R} \mid h_1(\xi)\sigma_1 0, \ldots, h_m(\xi)\sigma_m 0\} \neq \emptyset$$

- The family of all realizable sign conditions for $h_1, \ldots, h_m \in \mathbb{R}[u]$ with $\deg(h_i) \leq d$ can be obtained within complexity $O(md^2 \log^3 d)$.
- Computing the Thom encodings of the real roots of $p \in \mathbb{R}[u]$ amounts to computing the realizable sign conditions for $p, p', \ldots, p^{(\deg p)}$ where p vanishes.

 $\mathcal{P} \subset \mathbb{C}^n$ finite set given by a geometric resolution (p, v_1, \dots, v_n)

$$E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$$

 $\mathcal{P} \subset \mathbb{C}^n$ finite set given by a geometric resolution (p, v_1, \ldots, v_n)

$$E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$$

Obtaining the list of realizable sign conditions for f₁(v(u)),..., f_m(v(u)) over the real roots of p, where v = (v₁,..., v_n).

$$E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$$

- Obtaining the list of realizable sign conditions for f₁(v(u)),..., f_m(v(u)) over the real roots of p, where v = (v₁,..., v_n).
- **2** If $\mathcal{P} \cap E \neq \emptyset$:

$$E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$$

- Obtaining the list of realizable sign conditions for f₁(v(u)),..., f_m(v(u)) over the real roots of p, where v = (v₁,..., v_n).
- **2** If $\mathcal{P} \cap E \neq \emptyset$:
 - Let $h(u) = \operatorname{Res}_{\tilde{u}}(p(\tilde{u}), u g(v(\tilde{u}))),$

$$E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$$

- Obtaining the list of realizable sign conditions for f₁(v(u)),..., f_m(v(u)) over the real roots of p, where v = (v₁,..., v_n).
- **2** If $\mathcal{P} \cap E \neq \emptyset$:
 - Let $h(u) = \operatorname{Res}_{\tilde{u}}(p(\tilde{u}), u g(v(\tilde{u}))),$
 - Compute the list of realizable sign conditions for $f_1(v(u)), \ldots, f_m(v(u)), p'(u), \ldots p^{(\deg p-1)}(u), h'(g(v(u))), \ldots, h^{(\deg p-1)}(g(v(u)))$ over the real roots of p,

$$E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$$

- Obtaining the list of realizable sign conditions for f₁(v(u)),..., f_m(v(u)) over the real roots of p, where v = (v₁,..., v_n).
- **2** If $\mathcal{P} \cap E \neq \emptyset$:
 - Let $h(u) = \operatorname{Res}_{\tilde{u}}(p(\tilde{u}), u g(v(\tilde{u}))),$
 - Compute the list of realizable sign conditions for $f_1(v(u)), \ldots, f_m(v(u)), p'(u), \ldots p^{(\deg p-1)}(u),$ $h'(g(v(u))), \ldots, h^{(\deg p-1)}(g(v(u)))$ over the real roots of p,
 - Go through this list to find the Thom encodings of minimizers for g on $\mathcal{P} \cap E$.

() Compute a geometric resolution (p, v_1, \ldots, v_n) of $\mathcal{P}_1 \cup \mathcal{P}_2$

 $\textbf{ Or must a geometric resolution } (p, v_1, \ldots, v_n) \text{ of } \mathcal{P}_1 \cup \mathcal{P}_2$

2 Let $h(u) = \operatorname{Res}_{\tilde{u}}(p(\tilde{u}), u - g(v(\tilde{u}))),$

() Compute a geometric resolution (p, v_1, \ldots, v_n) of $\mathcal{P}_1 \cup \mathcal{P}_2$

- 2 Let $h(u) = \operatorname{Res}_{\tilde{u}}(p(\tilde{u}), u g(v(\tilde{u}))),$
- Some compute the list of realizable sign conditions for $p_1(u), p'_1(u), \dots, p_1^{(\deg(p_1)-1)}, p_2(u), p'_2(u), \dots, p_2^{(\deg(p_2)-1)},$ $h'(g(v(u))), \dots, h^{(\deg p-1)}(g(v(u)))$ over the real roots of p,

- **(**) Compute a geometric resolution (p, v_1, \ldots, v_n) of $\mathcal{P}_1 \cup \mathcal{P}_2$
- 2 Let $h(u) = \operatorname{Res}_{\tilde{u}}(p(\tilde{u}), u g(v(\tilde{u}))),$
- Compute the list of realizable sign conditions for $p_1(u), p'_1(u), \ldots, p_1^{(\deg(p_1)-1)}, p_2(u), p'_2(u), \ldots, p_2^{(\deg(p_2)-1)}, h'(g(v(u))), \ldots, h^{(\deg p-1)}(g(v(u)))$ over the real roots of p,
- Go through this list to find the Thom encodings of the minimizers for g on P₁ ∪ P₂.

< □ > < □ > < □ > < □ > < □ > .

æ

- $E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$
- g ∈ Q[x₁,...,x_n] attaining a minimum value at E in a set E_{min} ≠ Ø with at least one compact connected component.

イロト イポト イヨト イヨト

э

- $E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$
- g ∈ Q[x₁,...,x_n] attaining a minimum value at E in a set E_{min} ≠ Ø with at least one compact connected component.

There is a probabilistic procedure that computes a finite family $\{((p_i, v_{i,1}, \ldots, v_{i,n}), \tau_i)\}_{i \in \mathcal{I}}$ where, for every $i \in \mathcal{I}$,

- $(p_i, v_{i,1}, \ldots, v_{i,n})$ is a geometric resolution and
- τ_i is the Thom encoding of a real root ξ_i of p_i ,

such that $\{(v_{i,1}(\xi_i), \ldots, v_{i,n}(\xi_i))\}_{i \in \mathcal{I}} \subset E_{\min}$ and intersects all its compact connected components.

(4 同) ト 4 ヨ ト 4 ヨ ト

э

- $E = \{x \in \mathbb{R}^n \mid f_1(x) = \cdots = f_l(x) = 0, f_{l+1}(x) \ge 0, \dots, f_m(x) \ge 0\}$
- g ∈ Q[x₁,...,x_n] attaining a minimum value at E in a set E_{min} ≠ Ø with at least one compact connected component.

There is a probabilistic procedure that computes a finite family $\{((p_i, v_{i,1}, \ldots, v_{i,n}), \tau_i)\}_{i \in \mathcal{I}}$ where, for every $i \in \mathcal{I}$,

- $(p_i, v_{i,1}, \ldots, v_{i,n})$ is a geometric resolution and
- τ_i is the Thom encoding of a real root ξ_i of p_i ,

such that $\{(v_{i,1}(\xi_i), \ldots, v_{i,n}(\xi_i))\}_{i \in \mathcal{I}} \subset E_{\min}$ and intersects all its compact connected components.

Complexity: $O_{log}((n^3(L+dn+n^3)D^2+(m+D)D^2)\Upsilon)$

- $d \ge \deg(f_i), \deg(g)$ an even integer,
- L = length of an slp encoding f_1, \ldots, f_m, g ,

•
$$D = \max_{0 \le s \le \min\{n,m\}} {n \choose s} d^s (d-1)^{n-s}$$
, and $\Upsilon \le \sum_{0 \le s \le \min\{n,m\}} {m \choose s} 2^s$.

イロト イポト イヨト イヨト

Thank you for your attention!