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What is the problem?

Why do you care?



Coin exchange Problems

We wish to know, using USA coins (pennies, nickels, dimes and
quarters)

1 How many ways are there to give change for b cents?

2 What is the smallest number of coins necessary to do so?

3 What is largest quantity b which cannot be expressed using
these coins?



Holes Gaps and the Frobenius Problem

Let a = (a1, . . . , an)T ∈ Zn
>0 with gcd(ai ) = 1. The values of

coins!

We study sga := {b : b = a1x1 + a2x2 + . . . anxn, xi ∈ Z+}
Deciding whether b ∈ sga is an NP-complete problem.
Counting solutions is #P-complete.

We say b is a gap or a hole cannot be represented as a
non-negative integral combination of the ai ’s.

Classical Frobenius problem: Find the largest number b which
is a hole.

When n is not fixed this is an NP-hard problem Ramirez
Alfonsin (1996).

For fixed n the Frobenius number can be computed in
polynomial time Kannan (1992) Barvinok and Woods (2003).



Generalization!!

M. Beck and S. Robins (2004): introduced the < k-
Frobenius number: The largest right-hand number b
representable in no more than k − 1 ways as a non-linear
combination of the entries a1, a2, . . . , an.

They gave formulas for n = 2 of the < k-Frobenius number,
but for general n and k only bounds on the < k-Frobenius
number are available (work by Aliev, Henk, Fushansky,
etc).

For sga := {b : b = a1x1 + a2x2 + . . . anxn, xi ∈ Z+} we can
ask

For which b is there a unique way to give change?

For which b are there at most k ways to give change?

For which b are there at least k ways to give change?

Observation: If one knows the solution of the ≥ k problem
one can also solve the < k problem and vice versa!!



The Question for General Semigroups

Let A ∈ Zd×n and b ∈ Zd . Tthink of A as fixed and b is a
parameter.

We study parametric family of linear Diophantine problems
Ax = b, x ≥ 0, x ∈ Zn (*).

Let PA(b) = {x : x ∈ R, Ax = b, x ≥ 0} be the convex
polyhedron of real solutions of Problem (*)

Let IPA(b) = PA(b) ∩ Zn.

Let sg(A) be the finitely generated semigroup all non-negative
integer combinations of the columns of A,

sg(A) = {b : Ax = b, for some x ∈ Zn, xi ≥ 0}.

Let cone(A) the cone generated by A, i.e., the set of all
non-negative real combinations of columns of A.



Finite generation of lattice points in Cones

(Gordan’s lemma) Given a matrix A, let cone(A) and sg(A) be
the cone and affine semigroup generated by A.
Moreover cone(A) ∩ Zd is finitely generated in terms of sg(A) in
the sense that there exist finitely many z1, . . . , zu ∈ ΠA ∩ Zd

+ such
that cone(A) =

⋃u
i=1 zi + sg(A);

Those elements z1, . . . , zu are the famous Hilbert bases



Fact sg(A) is not always equal to cone(A) ∩ Zd , but it is
always contained in it.

A hole a lattice point that is in cone(A) but not in sg(A)!

Surprisingly, the set of holes may be finite or infinite.

There is a finite description of the holes in terms of finitely
many generators.

Theorem (Hemmecke-Takemura-Yoshida)

There exists an algorithm that computes for an integral matrix A a
finite explicit representation for the set H of holes of the semigroup
Q generated by the columns of A, that is, the algorithm computes
(finitely many) vectors hi ∈ Zn and monoids Mi , each given by a
finite set of generators in Zn, i ∈ I , such that

H =
⋃
i∈I

({hi}+ Mi ) .



Example of holes

Let

A =

(
1 1 1 1
0 2 3 4

)
The cone has infinitely many holes H, but it is a finitely generated
set!!

H = {(1, 1)ᵀ + α · (1, 0)ᵀ : α ∈ Z+},
where Z+ denote the set of nonnegative integers.

(0,0)



QUESTIONS!!! the fundamental problems of k-feasibility

Let IPA(b) = {x : Ax = b, x ≥ 0, x ∈ Zn} and k ≥ 1 an integer.

Are there at least k distinct solutions for IPA(b)? If yes, we
say that the problem is ≥ k-feasible.

Are there exactly k distinct solutions for IPA(b)? If yes, we
say that the problem is = k-feasible.

Are there less than k distinct solutions for IPA(b)? If yes, we
say that the problem is < k-feasible.

Let sg≥k(A) (respectively sg=k(A) and sg<k(A)) be the set of
right-hand side vectors b ∈ cone(A) ∩ Zd that make IPA(b)
≥ k-feasible (respectively = k-feasible, < k-feasible).

Note: sg(A) = sg≥1(A) , the holes of cone(A) are sg<1(A).



RESULTS



Structure of sg≥k(A) and sg<k(A): Finite Generation

Theorem

(i) There exists a monomial ideal I (A) ⊂ Q[x1, . . . , xn] such that

sg≥k(A) = {Aλ : λ ∈ E (A)} , (1)

where E (A) is the set of exponents of monomials of I (A).

(ii) We can compute (finitely many) vectors hi ∈ Zn and monoids
Mi , each given by a finite set of generators in Zn, i ∈ I , such
that

sg≥k(A) =
⋃
i∈I

({hi}+ Mi ) .

(ii) The set sg<k(A) can be written as a finite union of translates
of the sets {Aλ : λ ∈ S}, where S is a coordinate subspace of
Zn
≥0 union with the holes.



Representation of Lattice Points via Generating Functions

Given the parametric convex polytopes,
P(b) = {x |Ax = b, x ≥ 0},
GOAL: COUNT HOW MANY LATTICE POINTS are inside P(b).

φA(b) = #{(x , y , z)|3x + 5y + 17z = b, x ≥ 0, y ≥ 0, z ≥ 0}



When A = [3, 5, 17], a short formula for φA(n) would be a
generating function

∞∑
n=0

φA(n)tn =
1

(1− t17) (1− t5) (1− t3)
.

From that, one can see that φA(100) = 25, φA(1110) = 2471, etc...

Theorem For a knapsack problem A = [a1, a2, . . . , aM ], the
generating function for φA(n) is

∞∑
n=0

φA(n)tn =
1

(1− ta1) (1− ta2) . . . (1− taM )
.

We can use it to count solutions for the coin problem!!



Computational Complexity

Theorem

Let A ∈ Zd×n. Assuming that n and k are fixed, there is a
polynomial time algorithm to compute a short sum of rational
function G (t) which efficiently represents the formal sum∑

k−feasible tb.
Here by k-feasible we mean that such precise description is
possible for those b which are = k-feasible, ≥ k-feasible, or
< k-feasible. Moreover, from the algebraic formula, one can
perform the following tasks in polynomial time:

1 Count the number of k-feasible vectors (if finite).

2 Extract the lexicographic-smallest b, k-feasible vector.

3 Find the k-feasible vector b that maximizes the dot product
cT b.



In 1993 A. Barvinok gave an algorithm for counting the lattice
points in inside a polyhedron P in polynomial time when the
dimension of P is a constant.
The input of the algorithm is the inequality description of P,
the output is a polynomial-size formula for the multivariate
generating function of all lattice points in P, namely
f (P) =

∑
a∈P∩Zn xa where xa is an abbreviation of

xa1
1 xa2

2 . . . xan
n .

A long polynomial with many many monomials is encoded as
a much shorter sum of rational functions of the form

f (P) =
∑
i∈I

± xui

(1− xc1,i )(1− xc2,i ) . . . (1− xcn−d,i )
. (2)

Barvinok and Woods developed a set of manipulation rules for
using these short rational functions in Boolean
constructions on various sets of lattice points.
They also recover the lattice points inside the image a linear
projection of a convex polytope.



Remark From the results of Barvinok for fixed n, but not
necessarily fixed k, one can decide whether a particular b is
k-feasible in polynomial time, but more strongly

Corollary

Consider the knapsack problem aT x = b associated with
a = (a1, . . . , an)T ∈ Zn

>0 with gcd(a1, . . . , an) = 1. For a fixed
positive integer k and fixed n the k-Frobenius number can be
computed in polynomial time.

Identical results hold for the problem of the form
{x : Ax ≤ b, x ∈ Zn}.



A theorem of Doignon (reproved by Bell and Scarf)

Theorem [Doignon 1973] Let A be a d × n matrix and b a
vector of Rd . If the problem IPA(≤, b) is infeasible, then there
is a subset S of the rows of A of cardinality no more than 2n,
with the property that the smaller integer program IPS(≤, b)
is also infeasible.

This theorem has many applications, including Clarkson’s
probabilistic algorithm for integer linear programming.



We proved a = k-feasibility version of Doignon’s theorem:

Theorem

Given n, k two non-negative integers there exists a universal
constant c(k , n), depending only on k and n, such that for any
d × n integral matrix A, and d-vector b if PA(b){x : Ax ≤ b} has
exactly k integral solutions, then there is a subset S of the rows of
A of cardinality no more than c(k , n), with the property that the
smaller integer program IPS(≤, b) has exactly the same k solutions
as PA(b).

Our initial estimation of the constant c(k , n) is 2n2k but it appears
to be loose!



Better values for dimension c(2, 1), c(3, 1)



Thank you!


