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What is the problem?
Why do you care?



Coin exchange Problems

We wish to know, using USA coins (pennies, nickels, dimes and
quarters)
©@ How many ways are there to give change for b cents?
@ What is the smallest number of coins necessary to do so?
© What is largest quantity b which cannot be expressed using
these coins?




Holes Gaps and the Frobenius Problem

Let a = (a1,...,an)" € Z7, with gcd(a;) = 1. The values of
coins!

We study sg, :={b: b=aixy +axxo+...anXn, X; € Z}

Deciding whether b € sg, is an NP-complete problem.
Counting solutions is #P-complete.

We say b is a gap or a hole cannot be represented as a
non-negative integral combination of the a;’s.

Classical Frobenius problem: Find the largest number b which
is a hole.

When n is not fixed this is an NP-hard problem

For fixed n the Frobenius number can be computed in
polynomial time



Generalization!!
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M. Beck and S. Robins (2004): introduced the < k-
Frobenius number: The largest right-hand number b
representable in no more than k — 1 ways as a non-linear
combination of the entries a1, as, ..., an.

They gave formulas for n = 2 of the < k-Frobenius number,
but for general n and k only bounds on the < k-Frobenius
number are available (work by Aliev, Henk, Fushansky,
etc).

Forsg,:={b:b=aixi+axxx+...anxn,Xx; € Z4} we can
ask

For which b is there a unique way to give change?
For which b are there at most k ways to give change?
For which b are there at least k ways to give change?

Observation: If one knows the solution of the > k problem
one can also solve the < k problem and vice versa!!



The Question for General Semigroups

o Let Ac Z9%" and b € Z9. Tthink of A as fixed and b is a
parameter.

@ We study parametric family of linear Diophantine problems
Ax =b, x>0, x € Z" (¥).

o Let Pa(b) = {x:x €R, Ax=b, x > 0} be the convex
polyhedron of real solutions of Problem (*)

o Let IPs(b) = Pa(b) N Z".

o Let sg(A) be the finitely generated semigroup all non-negative
integer combinations of the columns of A,

sg(A) = {b: Ax = b, for some x € Z", x; > 0}.

o Let cone(A) the cone generated by A, i.e., the set of all
non-negative real combinations of columns of A.



Finite generation of lattice points in Cones

(Gordan’s lemma) Given a matrix A, let cone(A) and sg(A) be
the cone and affine semigroup generated by A.

Moreover cone(A) N Z9 is finitely generated in terms of sg(A) in
the sense that there exist finitely many z1,...,z, € Mg N Zi such
that cone(A) = Ui zi + sg(A);

Those elements z, ..., z, are the famous Hilbert bases




o Fact sg(A) is not always equal to cone(A) N Z9, but it is
always contained in it.

@ A hole a lattice point that is in cone(A) but not in sg(A)!
@ Surprisingly, the set of holes may be finite or infinite.

@ There is a finite description of the holes in terms of finitely
many generators.

Theorem (Hemmecke-Takemura-Yoshida)

There exists an algorithm that computes for an integral matrix A a
finite explicit representation for the set H of holes of the semigroup
Q generated by the columns of A, that is, the algorithm computes
(finitely many) vectors h; € Z" and monoids M;, each given by a
finite set of generators in Z", i € I, such that

H=J ({hi} +M;).
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Example of holes

Let
1111
A= < 0 2 3 4 )
The cone has infinitely many holes H, but it is a finitely generated
set!!

H={11)T+a- (1,0 acZ,

where Z, denote the set of nonnegative integers.




QUESTIONS!!! the fundamental problems of k-feasibility

Let IPa(b) = {x: Ax=b, x>0, x € Z"} and k > 1 an integer.
@ Are there at least k distinct solutions for IPa(b)? If yes, we
say that the problem is > k-feasible.

@ Are there exactly k distinct solutions for IPa(b)? If yes, we
say that the problem is = k-feasible.

@ Are there less than k distinct solutions for IPa(b)? If yes, we
say that the problem is < k-feasible.

o Let sg-,(A) (respectively sg_,(A) and sg_,(A)) be the set of
right-hand side vectors b € cone(A) N Z9 that make IP(b)
> k-feasible (respectively = k-feasible, < k-feasible).

o Note: sg(A) = sg>1(A) , the holes of cone(A) are sg_;(A).



RESULTS



Structure of sg-,(A) and sg_,(A): Finite Generation

(i) There exists a monomial ideal I(A) C Q[x1, ..., xn] such that
sg>k(A) = {AX: A e E(A)}, (1)

where E(A) is the set of exponents of monomials of I(A).

(i) We can compute (finitely many) vectors h; € Z" and monoids
M;, each given by a finite set of generators in Z", i € I, such
that

sgx«(A) = [ ({hi} + M)
iel

(i) The set sg_,(A) can be written as a finite union of translates
of the sets {AX : X € S}, where S is a coordinate subspace of
Z%y union with the holes.




Representation of Lattice Points via Generating Functions

Given the parametric convex polytopes,
P(b) = {x|Ax = b, x > 0},
GOAL: COUNT HOW MANY LATTICE POINTS are inside P(b).

oa(b) = #{(x,y, 2)[3x + By + 17z = b, x > 0,y > 0,7 > 0}




When A = [3,5,17], a short formula for ¢4(n) would be a
generating function

oo ; 1
N ([ )

From that, one can see that $4(100) = 25, p4(1110) = 2471, etc...

Theorem For a knapsack problem A = [a;, az,...,ay], the
generating function for ¢a(n) is

00 . 1
HZ:(:)QﬁA(”)t = (1—txn)(1—t2)...(1—twm)

We can use it to count solutions for the coin problem!!



Computational Complexity

Theorem

Let A € Z9%". Assuming that n and k are fixed, there is a
polynomial time algorithm to compute a short sum of rational
function G(t) which efficiently represents the formal sum
Zk—feasible tb

Here by k-feasible we mean that such precise description is
possible for those b which are = k-feasible, > k-feasible, or

< k-feasible. Moreover, from the algebraic formula, one can
perform the following tasks in polynomial time:

@ Count the number of k-feasible vectors (if finite).

@ Extract the lexicographic-smallest b, k-feasible vector.

© Find the k-feasible vector b that maximizes the dot product
cTb.




@ In 1993 A. Barvinok gave an algorithm for counting the lattice
points in inside a polyhedron P in polynomial time when the
dimension of P is a constant.

@ The input of the algorithm is the inequality description of P,
the output is a polynomial-size formula for the multivariate
generating function of all lattice points in P, namely
f(P) = > acpnzn X° where x? is an abbreviation of
XPIX52 L XA

@ A long polynomial with many many monomials is encoded as
a much shorter sum of rational functions of the form

xUi
fP) = ;iu a1 xe) . (A—xe ) 2
@ Barvinok and Woods developed a set of manipulation rules for
using these short rational functions in Boolean
constructions on various sets of lattice points.
@ They also recover the lattice points inside the image a linear
projection of a convex polytope.



@ Remark From the results of Barvinok for fixed n, but not
necessarily fixed k, one can decide whether a particular b is
k-feasible in polynomial time, but more strongly

Consider the knapsack problem a” x = b associated with
a=(a1,...,an)" € 7% with ged(ay, . ..,a,) = 1. For a fixed
positive integer k and fixed n the k-Frobenius number can be

computed in polynomial time.

@ Identical results hold for the problem of the form
{x:Ax < b,x € Z"}.



A theorem of Doignon (reproved by Bell and Scarf)

@ Theorem [Doignon 1973] Let A be a d x n matrix and b a
vector of RY. If the problem /P4(<, b) is infeasible, then there
is a subset S of the rows of A of cardinality no more than 27,
with the property that the smaller integer program IPs(<, b)
is also infeasible.
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@ This theorem has many applications, including Clarkson's
probabilistic algorithm for integer linear programming.



We proved a = k-feasibility version of Doignon’s theorem:

Theorem

Given n, k two non-negative integers there exists a universal
constant c(k, n), depending only on k and n, such that for any

d x n integral matrix A, and d-vector b if Pa(b){x : Ax < b} has
exactly k integral solutions, then there is a subset S of the rows of
A of cardinality no more than c(k, n), with the property that the
smaller integer program IPs(<, b) has exactly the same k solutions
as Pa(b).
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Our initial estimation of the constant c(k, n) is 272k but it appears
to be loose!



Better values for dimension ¢(2,1), ¢(3,1)




Thank you!



