Affine Semigroups and Parametric Polyhedra with Prescribed Number of Lattice Points

Jesús A. De Loera, UC Davis

Joint work with Iskander Aliev and Quentin Louveaux

IMS-National University of Singapore

December 16, 2013

What is the problem? Why do you care?

Coin exchange Problems

We wish to know, using USA coins (pennies, nickels, dimes and quarters)

- **I How many ways** are there to give change for *b* cents?
- What is the smallest number of coins necessary to do so?
- What is largest quantity b which cannot be expressed using these coins?

Holes Gaps and the Frobenius Problem

- Let a = (a₁,..., a_n)^T ∈ Zⁿ_{>0} with gcd(a_i) = 1. The values of coins!
- We study $\operatorname{sg}_a := \{b : b = a_1x_1 + a_2x_2 + \dots a_nx_n, x_i \in \mathbb{Z}_+\}$
- Deciding whether b ∈ sg_a is an NP-complete problem. Counting solutions is #P-complete.
- We say *b* is a **gap** or a **hole** cannot be represented as a non-negative integral combination of the *a_i*'s.
- *Classical Frobenius problem*: Find the largest number *b* which is a hole.
- When *n* is not fixed this is an NP-hard problem Ramirez Alfonsin (1996).
- For fixed *n* the Frobenius number can be computed in polynomial time Kannan (1992) Barvinok and Woods (2003).

- M. Beck and S. Robins (2004): introduced the < k-Frobenius number: The largest right-hand number b representable in *no more than* k - 1 ways as a non-linear combination of the entries a₁, a₂,..., a_n.
- They gave formulas for n = 2 of the < k-Frobenius number, but for general n and k only bounds on the < k-Frobenius number are available (work by Aliev, Henk, Fushansky, etc).
- For sg_a := $\{b : b = a_1x_1 + a_2x_2 + \dots a_nx_n, x_i \in \mathbb{Z}_+\}$ we can ask
- For which *b* is there a **unique** way to give change?
- For which b are there at most k ways to give change?
- For which b are there at least k ways to give change?
- Observation: If one knows the solution of the
 k problem one can also solve the < k problem and vice versa!!</p>

The Question for General Semigroups

- Let $A \in \mathbb{Z}^{d \times n}$ and $b \in \mathbb{Z}^d$. Tthink of A as fixed and b is a parameter.
- We study parametric family of linear Diophantine problems $Ax = b, x \ge 0, x \in \mathbb{Z}^n$ (*).
- Let P_A(b) = {x : x ∈ ℝ, Ax = b, x ≥ 0} be the convex polyhedron of *real solutions* of Problem (*)

• Let
$$IP_A(b) = P_A(b) \cap \mathbb{Z}^n$$
.

• Let sg(A) be the finitely generated semigroup all non-negative integer combinations of the columns of A,

$$sg(A) = \{b : Ax = b, \text{ for some } x \in \mathbb{Z}^n, x_i \ge 0\}.$$

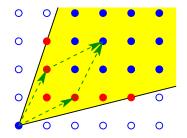
• Let cone(A) the *cone generated by* A, i.e., the set of all non-negative real combinations of columns of A.

Finite generation of lattice points in Cones

(Gordan's lemma) Given a matrix A, let cone(A) and sg(A) be the cone and affine semigroup generated by A.

Moreover cone(A) $\cap \mathbb{Z}^d$ is finitely generated in terms of sg(A) in the sense that there exist finitely many $z_1, \ldots, z_u \in \Pi_A \cap \mathbb{Z}^d_+$ such that cone(A) = $\bigcup_{i=1}^u z_i + \text{sg}(A)$;

Those elements z_1, \ldots, z_u are the famous *Hilbert bases*



- Fact sg(A) is not always equal to cone(A) ∩ Z^d, but it is always contained in it.
- A hole a lattice point that is in cone(A) but not in sg(A)!
- Surprisingly, the set of holes may be finite or infinite.
- There is a finite description of the holes in terms of finitely many generators.

Theorem (Hemmecke-Takemura-Yoshida)

There exists an algorithm that computes for an integral matrix A a finite explicit representation for the set H of holes of the semigroup Q generated by the columns of A, that is, the algorithm computes (finitely many) vectors $h_i \in \mathbb{Z}^n$ and monoids M_i , each given by a finite set of generators in \mathbb{Z}^n , $i \in I$, such that

$$H=\bigcup_{i\in I} (\{h_i\}+M_i).$$

Example of holes

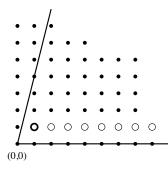
Let

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 4 \end{array}\right)$$

The cone has infinitely many holes H, but it is a finitely generated set!!

$$H = \{ (1,1)^{\mathsf{T}} + \alpha \cdot (1,0)^{\mathsf{T}} : \alpha \in \mathbb{Z}_+ \},\$$

where \mathbb{Z}_+ denote the set of nonnegative integers.



QUESTIONS!!! the fundamental problems of k-feasibility

Let $IP_A(b) = \{x : Ax = b, x \ge 0, x \in \mathbb{Z}^n\}$ and $k \ge 1$ an integer.

- Are there at least k distinct solutions for $IP_A(b)$? If yes, we say that the problem is $\geq k$ -feasible.
- Are there exactly k distinct solutions for $IP_A(b)$? If yes, we say that the problem is = k-feasible.
- Are there *less than* k distinct solutions for $IP_A(b)$? If yes, we say that the problem is < k-feasible.
- Let sg_{≥k}(A) (respectively sg_{=k}(A) and sg_{<k}(A)) be the set of right-hand side vectors b ∈ cone(A) ∩ Z^d that make IP_A(b) ≥ k-feasible (respectively = k-feasible, < k-feasible).
- Note: $sg(A) = sg_{\geq 1}(A)$, the holes of cone(A) are $sg_{<1}(A)$.

RESULTS

Structure of $sg_{\geq k}(A)$ and $sg_{< k}(A)$: Finite Generation

Theorem

(i) There exists a monomial ideal $I(A) \subset \mathbb{Q}[x_1, \dots, x_n]$ such that

$$\operatorname{sg}_{\geq k}(A) = \{A\lambda : \lambda \in E(A)\},$$
 (1)

where E(A) is the set of exponents of monomials of I(A).

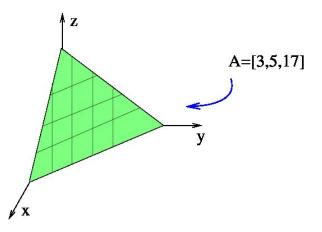
(ii) We can compute (finitely many) vectors $h_i \in \mathbb{Z}^n$ and monoids M_i , each given by a finite set of generators in \mathbb{Z}^n , $i \in I$, such that

$$\operatorname{sg}_{\geq k}(A) = \bigcup_{i \in I} (\{h_i\} + M_i).$$

(ii) The set $\operatorname{sg}_{\langle k}(A)$ can be written as a finite union of translates of the sets $\{A\lambda : \lambda \in S\}$, where S is a coordinate subspace of $\mathbb{Z}_{\geq 0}^n$ union with the holes.

Representation of Lattice Points via Generating Functions

Given the parametric convex polytopes, $P(b) = \{x | Ax = b, x \ge 0\},$ GOAL: COUNT HOW MANY LATTICE POINTS are inside P(b).



$$\phi_A(b) = \#\{(x, y, z) | 3x + 5y + 17z = b, x \ge 0, y \ge 0, z \ge 0\}$$

When A = [3, 5, 17], a short formula for $\phi_A(n)$ would be a generating function

$$\sum_{n=0}^{\infty} \phi_A(n) t^n = \frac{1}{(1-t^{17})(1-t^5)(1-t^3)}.$$

From that, one can see that $\phi_A(100) = 25, \phi_A(1110) = 2471$, etc...

Theorem For a knapsack problem $A = [a_1, a_2, ..., a_M]$, the generating function for $\phi_A(n)$ is

$$\sum_{n=0}^{\infty} \phi_A(n) t^n = \frac{1}{(1-t^{a_1})(1-t^{a_2})\dots(1-t^{a_M})}.$$

We can use it to count solutions for the coin problem!!

Theorem

Let $A \in \mathbb{Z}^{d \times n}$. Assuming that n and k are fixed, there is a polynomial time algorithm to compute a short sum of rational function G(t) which efficiently represents the formal sum $\sum_{k-\text{feasible}} t^b$. Here by k-feasible we mean that such precise description is possible for those b which are = k-feasible, \geq k-feasible, or < k-feasible. Moreover, from the algebraic formula, one can perform the following tasks in polynomial time:

- Count the number of k-feasible vectors (if finite).
- 2 Extract the lexicographic-smallest b, k-feasible vector.
- Find the k-feasible vector b that maximizes the dot product c^Tb.

- In 1993 A. Barvinok gave an algorithm for counting the lattice points in inside a polyhedron *P* in polynomial time when the dimension of *P* is a constant.
- The input of the algorithm is the inequality description of P, the output is a polynomial-size formula for the multivariate generating function of all lattice points in P, namely
 f(P) = ∑_{a∈P∩Zⁿ} x^a where x^a is an abbreviation of
 x₁^{a₁}x₂<sup>a₂</sub>...x_n^{a_n}.
 </sup>
- A long polynomial with many many monomials is encoded as a much shorter sum of rational functions of the form

$$f(P) = \sum_{i \in I} \pm \frac{x^{u_i}}{(1 - x^{c_{1,i}})(1 - x^{c_{2,i}}) \dots (1 - x^{c_{n-d,i}})}.$$
 (2)

- Barvinok and Woods developed a set of manipulation rules for using these short rational functions in Boolean constructions on various sets of lattice points.
- They also recover the lattice points inside the image a **linear projection** of a convex polytope.

 Remark From the results of Barvinok for fixed n, but not necessarily fixed k, one can decide whether a particular b is k-feasible in polynomial time, but more strongly

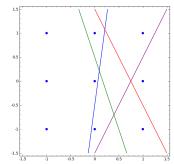
Corollary

Consider the knapsack problem $a^T x = b$ associated with $a = (a_1, \ldots, a_n)^T \in \mathbb{Z}_{>0}^n$ with $gcd(a_1, \ldots, a_n) = 1$. For a fixed positive integer k and fixed n the k-Frobenius number can be computed in polynomial time.

• Identical results hold for the problem of the form $\{x : Ax \leq b, x \in \mathbb{Z}^n\}.$

A theorem of Doignon (reproved by Bell and Scarf)

Theorem [Doignon 1973] Let A be a d × n matrix and b a vector of ℝ^d. If the problem IP_A(≤, b) is infeasible, then there is a subset S of the rows of A of cardinality no more than 2ⁿ, with the property that the smaller integer program IP_S(≤, b) is also infeasible.



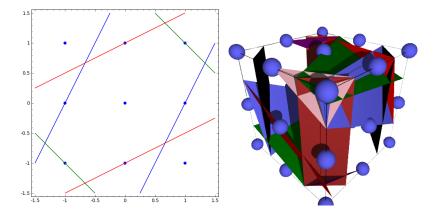
 This theorem has many applications, including Clarkson's probabilistic algorithm for integer linear programming. We proved a = k-feasibility version of Doignon's theorem:

Theorem

Given n, k two non-negative integers there exists a universal constant c(k, n), depending only on k and n, such that for any $d \times n$ integral matrix A, and d-vector b if $P_A(b)\{x : Ax \le b\}$ has exactly k integral solutions, then there is a subset S of the rows of A of cardinality no more than c(k, n), with the property that the smaller integer program $IP_S(\le, b)$ has exactly the same k solutions as $P_A(b)$.

Our initial estimation of the constant c(k, n) is $2^n 2^k$ but it appears to be loose!

Better values for dimension c(2, 1), c(3, 1)



Thank you!