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Problem

Let the domain Ω ⊂ Cn be the intersection of the domains Ω1 and Ω2.
Given any holomorphic functions f in Ω, is it possible to find holomorphic
function f1 in Ω1 and holomorphic function f2 in Ω2 satisfying
f = f1 + f2?

This is known as separation of singularities problem for holomorphic
functions.

In the above problem one can consider the case of intersection of k
domains

or the case of holomorphic functions belonging to different classes as
well.

The problem can also be formulated for compact sets.
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Separation of singularities problem for n = 1

Let D = D1 ∩ D2 be domains in the complex plane C.

The following theorem (whose particular case was proved by H.
Poincarè in 1892) is due to N. Aronsajn, 1935. V. Havin gave a
simple proof of it in 1958.

Theorem 1. Any function f holomorphic in D = D1 ∩ D2 can be
represented as f1 + f2, where fi are holomorphic functions in Di,
i = 1, 2.

Let U(a, r) be the disk of radius r centered at a ∈ C.

A curve Γ ⊂ C is called Ahlfors-regular, if for any a ∈ C and any
radius r > 0 the inequality l(Γ ∩ U(a, r)) ≤ Cr holds, where l-is the
length of the curve and the constant C does not depend on r and a.
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Separation of singularities problem for n = 1

A function f holomorphic in D is said to be of class Ep(D)

if there exists a sequence of rectifiable Jordan curves {Γn} in D,
tending to the boundary ∂D in the sense that Γn eventually
surrounds each compact subdomain of D,
such that ∫

Γn

|f(z)|p|dz| ≤M <∞

Bounded domains with Ahlfors-regular boundaries are Smirnov
domains. On these domains the spaces Ep(D) are closures of
polynomials in Lp(∂D).
Theorem 2. If the domain D = D1 ∩ · · · ∩ Dk be bounded domains
with Ahlfors-regular domains, then any function f ∈ Ep(D),
1 < p <∞, can be represented as

f = f1 + f2 + · · ·+ fk,

where fi ∈ Ep(Di), i = 1, 2, . . . , k.
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Proof

Any function f ∈ Ep(D), p ≥ 1, can be represented by its Cauchy
integral formula.

We decompose the boundary ∂D into k parts Mj , where Mj ⊂ ∂Dj ,
j = 1, . . . , k.

Then

1

2πi

∫
∂D

f(z)

ζ − z
dζ =

k∑
j=1

1

2πi

∫
∂Dj

Fj(z)

ζ − z
dζ,

where

Fj(ζ) =

{
f(ζ), if ζ ∈Mj

0, ζ ∈ ∂Dj \Mj ,

for every j = 1, . . . , k.

Each of the Cauchy integrals above belongs to the space Ep(Dj),
j = 1, . . . , k (G.David, 1984).
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Remark

For 0 < p <∞, let Hp(D) be the space of holomorphic functions f such
that |f(z)|p has a harmonic majorant in D. Here D is an arbitrary domain
in the complex plane.

The following theorem is due to G. Tumarkin and S. Khavinson
(1958).

Theorem 2′. Let D be a finitely connected domain whose boundary
consists of disjoint Jordan curves C1, C2,..., Ck. Let D be the
intersection of the domains Dm, with boundary Cm, m = 1, 2, .., k.
Then every f ∈ Hp(D) can be represented as in Theorem 2, where
fm ∈ Hp(Dm), m = 1, 2, .., k.

D. Khavinson has kindly informed the author that this theorem can
be generalized to the case of the intersection of the finite number of
multiply connected domains.
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Separation of singularities problem for n > 1

Theorem 1 is not valid for n > 1.

Example 1. Consider the bidisk Ur,ρ = {(z1, z2) : |z1| < r, |z2| < ρ}.
Define the domains Ω = U1,1, Ω1 = U1,2, Ω2 = U2,1. Then
Ω = Ω1 ∩ Ω2.
Hence the holomorphic function

f(z1, z2) =
1

(1− z1)(1− z2)
=

∞∑
n,m=0

zm1 z
n
2 ,

holomorphic in Ω, is not representable as a sum of holomorphic
functions f1 and f2, defined in the domains Ω1 and Ω2, respectively.
Actually, if f = f1 + f2, where the function

fj(z1, z2) =

∞∑
n,m=0

a(j)
m,nz

m
1 z

n
2

is holomorphic in Ωj , j = 1, 2, then we choose ε > 0 in a such a way
that (1− ε)(2− ε) > 1.
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Separation of singularities problem for n > 1

The function f1(z) is holomorphic in the closed bidisk U1−ε,2−ε,
therefore, by Cauchy inequalities we have

|a(1)
m,n| ≤

C1

(1− ε)m(2− ε)n
.

Similarly,

|a(2)
m,n| ≤

C2

(2− ε)m(1− ε)n
.

Hence,

1 = |a(1)
n,n + a(2)

n,n| ≤ |a(1)
n,n|+ |a(2)

n,n| ≤
C1 + C2

((1− ε)(2− ε))n
.

But the right hand-side of the last equality tends to 0 while n −→∞.
Contradiction.
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Separation of singularities problem for n > 1

However, sometimes, one can consider the problem of separation of
singularities for holomorphic functions even in the case of several complex
variables.

Consider the analytic polyhedron
D = {z ∈ Ω : |Fj(z)| < 1, j = 1, 2, . . . , N}, where {Fj} are
functions holomorphic in Ω ⊇ D.

Here
Fj(z)− Fj(ζ) =< Pj(ζ, z), ζ − z >,

< α, β >=< α1β1 + · · ·+ αnβn >, where Pj = (P 1
j , . . . , P

n
j ) are

holomorphic vector functions in variables ζ, z ∈ Ω.

The following theorem is due to A. Weyl (1935).
Theorem 3. Any function, holomorphic in the polyhedron D can be
written as a sum of functions fJ , holomorphic in larger domains
DJ = {z ∈ Ω : |Fj(z)| < 1, j ∈ J}, where |J | = n. Here we use the
notation |(a1, . . . , ak)| = a1 + · · ·+ ak.
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Separation of singularities problem for n > 1

Another variation of separation of singularities of holomorphic
functions is the classical result of P. Cousin (1895).

Theorem 4. Let D ⊂ Cn be a domain satisfying 0 ∈ D. For ε > 0,
consider the domains Ω1 = {z ∈ D : =z1 > −ε} and
Ω2 = {z ∈ D : =z1 < ε}. If S = {z ∈ D : =z1 = 0} is a real
hypersurface in D, then every function f holomorphic in the domain
Ω1 ∩ Ω2 can be expressed in S as a difference f = f1 − f2, where the
function fi is holomorphic in the domain Ωi, i = 1, 2.

K.Oka in 1953 improved significantly the previous result as follows:

Theorem 5. Every function f holomorphic in a neighborhood of the
set S from Theorem 4 can be expressed as f = f+ − f−, where f±
are functions holomorphic in a neighborhood of closures of the
domains D± = {z ∈ D : ±=z1 > 0}.
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Separation of singularities problem for n > 1

A domain D ⊂ Cn is called linearly convex, if for every point z0 ∈ ∂D
there exists a complex, (n− 1)-dimensional hyperplane
{a1z1 + · · ·+ anzn + β = 0} passing through the point z0 and does
not intersect the domain D.

A compactum M ⊂ Cn is called linearly convex if there exists a
sequence of linearly convex domains containing M and approximating
it from the exterior.

Let E ⊂ Cn containing the origin. We define its conjugate set to be

Ẽ = {w : w1z1 + · · ·+ wnzn 6= 1, ∀z ∈ E}.

In a number of questions the conjugate set in several complex
variables plays the same role as the exterior (complement) of the
planar set in the case of n = 1. For example, if E is an open set, then
its conjugate set Ẽ is compact.

In what follows I will consider linearly convex domains which can be
approximated from the inside by regular, linearly convex domains.
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In what follows I will consider linearly convex domains which can be
approximated from the inside by regular, linearly convex domains.

Lev Aizenberg (Bar-Ilan University) Separation June, 2013 11 / 21



Separation of singularities problem for n > 1

The domain D = {z ∈ Cn : Φ(z, z̄) < 0} is called regular if its
defining function Φ is C(2), gradΦ(z, z̄) 6= 0, whenever z ∈ ∂D and
there exists a ball Jr = {z ∈ Cn : |z| < r} so that on the set D \ Jr
the expression z1Φ′z1 + · · ·+ znΦ′zn does not obtain negative values.

For such domains, the following result is shown by A in 1967.

Theorem 6. Any holomorphic function f in the domain
D = D1 ∩ D2, that can be approximated from within by regular
linearly convex domains, is written as in Theorem 2 for k = 2, where
fi is holomorphic in Di, i = 1, 2 if and only if the compactum of
holomorphy H(D̃1 ∪ D̃2) for the union D̃1 ∪ D̃2 satisfies
H(D̃1 ∪ D̃2) = D̃.
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Separation of singularities problem for n > 1

The results of Theorem 6 were generalized in the work of V.Trutnev
(1973) to the case of strictly linearly convex domains.

These are domains, whose intersection with any complex line is
connected and simply connected, whenever it is not empty (they are
also called C-convex).

Theorem 7. Let D = D1 · · · ∩ . . .Dk be strictly linearly convex
domain. Any function f holomorphic in D is written as in Theorem 2,
fj are holomorphic functions in Dj , j = 1, 2 . . . , k if and only if

H(D̃1 ∪ · · · ∪ D̃k) = D̃.

Similar results to Theorem 6 and Theorem 7 are valid for compact
sets also. Besides the material quoted above there were many other
results related to separation of singularities of holomorphic functions
in many complex variables (see B. Mityagin and G. Henkin, Russian
Mathematical Surveys, 1971, 26:4, 99-164, and the related literature
therein).
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Separation of singularities problem for n > 1

We now turn to the phenomena for separation of singularities not for
all holomorphic functions but for certain classes of holomorphic
functions.

In this direction we recall a result, due to G. Henkin (1997).

Theorem 8. Let D = {z ∈ Cn : %(z, z̄) < 0} be a domain, whose
defining function % is strictly prurisubharmonic function in a domain
Ω ⊇ D. let Uj , j = 1, 2, 3, . . . , k be open sets so that
D ⊂ U1 ∪ · · · ∪ Uk. Then every bounded, holomorphic in D function
f can be written as in Theorem 2, where every function fj is
holomorphic and bounded in a neighborhood of the set
D \ (∂D ∩ Uj). Furthermore, if f is continuous in D, then all the
functions fj are continuous in D.
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Separation of singularities problem for n > 1

Let now D ⊂ Cn be bounded domain with smooth boundary.

Then, we say that f ∈ Hp(Ω), p ≥ 1, if and only if

lim sup
ε−→0

∫
∂Ω

|f(ζ − ενζ)|pdσζ <∞,

where νζ-is the unit vector on the exterior normal to ∂D at the point
ζ, and dσζ is a surface element.

The next result, A (2013), along with Theorem 2 are the main new
results.

Theorem 9. Consider the domain D = D1 ∩ · · · ∩ Dk, where all of
the domains are strictly pseudoconvex with C(3) boundary. Then
every f ∈ Hp(D), 1 < p <∞, is written as in Theorem 2, with
fj ∈ Hp(Dj), j = 1, 2, . . . , k.
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Proof

If D is a strictly pseudoconvex domain of the type
D = {z ∈ Ω : %(z, z̄) < 0}, where % is a strictly prurisubharmonic
function in the domain Ω ⊃ D,

then for some neighborhood U(D) there exists a smooth function
Φ(ζ, z), (ζ, z) ∈ U(D)× U(D) such that Φ is holomorphic with
respect to z ∈ U(D).

Furthermore, there exists a positive constant γ so that

2<Φ(ζ, z) ≥ %(ζ)− %(z) + γ|ζ − z|,

where Φ(ζ, z) =< p(ζ, z), ζ − z > and P = (p1, . . . , pn) is a smooth
vector function in U(D)× U(D), holomorphic with respect to
z ∈ U(D).
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Proof

If f ∈ H1(D), then the following Cauchy-Fantappiè integral
representation formula

(proved independently by G. Henkin and Ramirez de Arellano and
known also as Cauchy-Leray integral representation formula)

f(z) =
(n− 1)!

(2πi)n

∫
∂D

f(ζ)
ω′(p(ζ, z)) ∧ ω(ζ)

Φn(ζ, z)
,

where ω(ζ) = dζ1 ∧ . . . dζn,

ω′(p(ζ, z)) =
n∑
j=1

(−1)j−1pjdp1 ∧ · · · ∧ dpj−1 ∧ dpj+1 ∧ · · · ∧ dpn.
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Proof

We now decompose the boundary ∂D into k components
Mj = ∂Dj ∩ ∂D, j = 1, 2, ..., k, corresponding to the parts in
D = D1 ∩ · · · ∩ Dk.

Then the last integral is represented as a sum of integrals of
Cauchy-Leray type over the boundary ∂Dj of functions

Fj(t) =

{
f(t), if t ∈Mj

0, t ∈ ∂Dj \Mj ,

for every j = 1, . . . , k.

Each of these integrals belongs to the class Hp(Dj), j = 1, 2, . . . , k.
This follows from results found by N. Kerzman and E.M. Stein in
1978, where they were stated for domains with C∞ boundaries, but in
the proofs the facts used were that the smoothness of the boundary
was up to degree 3.

Lev Aizenberg (Bar-Ilan University) Separation June, 2013 18 / 21



Proof

We now decompose the boundary ∂D into k components
Mj = ∂Dj ∩ ∂D, j = 1, 2, ..., k, corresponding to the parts in
D = D1 ∩ · · · ∩ Dk.
Then the last integral is represented as a sum of integrals of
Cauchy-Leray type over the boundary ∂Dj of functions

Fj(t) =

{
f(t), if t ∈Mj

0, t ∈ ∂Dj \Mj ,

for every j = 1, . . . , k.

Each of these integrals belongs to the class Hp(Dj), j = 1, 2, . . . , k.
This follows from results found by N. Kerzman and E.M. Stein in
1978, where they were stated for domains with C∞ boundaries, but in
the proofs the facts used were that the smoothness of the boundary
was up to degree 3.

Lev Aizenberg (Bar-Ilan University) Separation June, 2013 18 / 21



Proof

We now decompose the boundary ∂D into k components
Mj = ∂Dj ∩ ∂D, j = 1, 2, ..., k, corresponding to the parts in
D = D1 ∩ · · · ∩ Dk.
Then the last integral is represented as a sum of integrals of
Cauchy-Leray type over the boundary ∂Dj of functions

Fj(t) =

{
f(t), if t ∈Mj

0, t ∈ ∂Dj \Mj ,

for every j = 1, . . . , k.

Each of these integrals belongs to the class Hp(Dj), j = 1, 2, . . . , k.
This follows from results found by N. Kerzman and E.M. Stein in
1978, where they were stated for domains with C∞ boundaries, but in
the proofs the facts used were that the smoothness of the boundary
was up to degree 3.

Lev Aizenberg (Bar-Ilan University) Separation June, 2013 18 / 21



Separation of singularities problem for n > 1

Comparison of Theorems 3-9, implies that for the validity of
separation of singularities theorem for all holomorphic functions in a
domain D ⊂ Cn additional geometric requirements imposed on it are
needed.

If one considers the same problem for a class of holomorphic functions
with reasonable behavior (in some sense) near the boundary ∂D,

then the problem of resolution of singularity has positive answer for
strictly pseudo-convex domains D.

It is shown in the following example that Theorem 9 is false for
domains from Example 1.
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Separation of singularities problem for n > 1

Example 2. Let U1,1 = U2,1 ∩ U1,2 be the domains from Example 1.

If

f(z) =
∞∑

m,n=0

am,nz
m
1 z

n
2 ,

then f ∈ H2(Ur,ρ) if and only if

∞∑
m,n=0

|am,n|2r2mρ2n <∞.

Let f = f1 + f2, f ∈ H2(U1,1), f1 ∈ H2(U2,1), f2 ∈ H2(U1,2).
Consider particular

f(z) =
∞∑

m,n=0

zm1 z
n
2

mn
, fj(z) =

∞∑
m,n=0

a(j)
m,nz

m
1 z

n
2 , j = 1, 2.
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Separation of singularities problem for n > 1

Then, on the diagonal m = n one has that

∞∑
m=0

|a(1)
m,m|222m <∞.

Therefore lim
m−→0

|a(1)
m,m|2m = 0,

which means that there exists a constant C1 > 0 so that
|a(1)
m,m|2m < C1.

Similarly, there exists a constant C2 > 0 so that |a(2)
m,m|2m < C2.

Thus, for all m one has that

1

m2
< |a(1)

m,m|+ |a(2)
m,m| <

C1 + C2

2m
,

contradiction.

Lev Aizenberg (Bar-Ilan University) Separation June, 2013 21 / 21



Separation of singularities problem for n > 1

Then, on the diagonal m = n one has that

∞∑
m=0

|a(1)
m,m|222m <∞.

Therefore lim
m−→0

|a(1)
m,m|2m = 0,

which means that there exists a constant C1 > 0 so that
|a(1)
m,m|2m < C1.

Similarly, there exists a constant C2 > 0 so that |a(2)
m,m|2m < C2.

Thus, for all m one has that

1

m2
< |a(1)

m,m|+ |a(2)
m,m| <

C1 + C2

2m
,

contradiction.

Lev Aizenberg (Bar-Ilan University) Separation June, 2013 21 / 21



Separation of singularities problem for n > 1

Then, on the diagonal m = n one has that

∞∑
m=0

|a(1)
m,m|222m <∞.

Therefore lim
m−→0

|a(1)
m,m|2m = 0,

which means that there exists a constant C1 > 0 so that
|a(1)
m,m|2m < C1.

Similarly, there exists a constant C2 > 0 so that |a(2)
m,m|2m < C2.

Thus, for all m one has that

1

m2
< |a(1)

m,m|+ |a(2)
m,m| <

C1 + C2

2m
,

contradiction.

Lev Aizenberg (Bar-Ilan University) Separation June, 2013 21 / 21



Separation of singularities problem for n > 1

Then, on the diagonal m = n one has that

∞∑
m=0

|a(1)
m,m|222m <∞.

Therefore lim
m−→0

|a(1)
m,m|2m = 0,

which means that there exists a constant C1 > 0 so that
|a(1)
m,m|2m < C1.

Similarly, there exists a constant C2 > 0 so that |a(2)
m,m|2m < C2.

Thus, for all m one has that

1

m2
< |a(1)

m,m|+ |a(2)
m,m| <

C1 + C2

2m
,

contradiction.

Lev Aizenberg (Bar-Ilan University) Separation June, 2013 21 / 21



Separation of singularities problem for n > 1

Then, on the diagonal m = n one has that

∞∑
m=0

|a(1)
m,m|222m <∞.

Therefore lim
m−→0

|a(1)
m,m|2m = 0,

which means that there exists a constant C1 > 0 so that
|a(1)
m,m|2m < C1.

Similarly, there exists a constant C2 > 0 so that |a(2)
m,m|2m < C2.

Thus, for all m one has that

1

m2
< |a(1)

m,m|+ |a(2)
m,m| <

C1 + C2

2m
,

contradiction.

Lev Aizenberg (Bar-Ilan University) Separation June, 2013 21 / 21


