Lattice coverings and Delaunay polytopes

Mathieu Dutour Sikirić
Rudjer Bošković Institute, Croatia

January 16, 2014

I. Lattices coverings

Lattice coverings

- A lattice $L \subset \mathbb{R}^{n}$ is a set of the form $L=\mathbb{Z} v_{1}+\cdots+\mathbb{Z} v_{n}$.
- A covering is a family of balls $B_{n}\left(x_{i}, r\right), i \in I$ of the same radius r and center x_{i} such that any $x \in \mathbb{R}^{n}$ belongs to at least one ball.

- If L is a lattice, the lattice covering is the covering defined by taking the minimal value of $\alpha>0$ such that $L+B_{n}(0, \alpha)$ is a covering.

Empty sphere and Delaunay polytopes

- Def: A sphere $S(c, r)$ of center c and radius r in an n-dimensional lattice L is said to be an empty sphere if:
(i) $\|v-c\| \geq r$ for all $v \in L$,
(ii) the set $S(c, r) \cap L$ contains $n+1$ affinely independent points.
- Def: A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c, r)$.

- Delaunay polytopes define a tessellation of the Euclidean space \mathbb{R}^{n}

Lattice covering

- For a lattice L we define the covering radius $\mu(L)$ to be the smallest r such that the family of balls $v+B_{n}(0, r)$ for $v \in L$ cover \mathbb{R}^{n}.

- The covering density has the expression

$$
\Theta(L)=\frac{\mu(L)^{n} \operatorname{vol}\left(B_{n}(0,1)\right)}{\operatorname{det}(L)} \geq 1
$$

with

- $\mu(L)$ being the largest radius of Delaunay polytopes
- or

$$
\mu(L)=\max _{x \in \mathbb{R}^{n}} \min _{y \in L}\|x-y\|
$$

Covering minimization and maximization

- For a given lattice L the only general method for computing $\Theta(L)$ is to compute all Delaunay polytopes.
- The minimization problem is the problem of minimizing $\Theta(L)$ over all lattices L.
The following is known:
- For $n \leq 5$ the dual root lattice A_{n}^{*} is the best lattice covering.
- For $n=6$ there is a conjecturally best lattice covering discovered in F. Vallentin PhD thesis.
- The Leech lattice Λ_{24} is conjectured to be optimal.
- The function Θ is unbounded from above but we will develop a theory for describing the local covering maxima.
The following is known:
- There is no local covering maxima for $n \leq 5$
- For $n=6$ there is exactly one covering maxima: E_{6}
- For $n=7$ there are exactly two covering maxima: E_{7} and $E R_{7}$ (Erdahl \& Rybnikov lattice)
- There is an infinite series $D S_{n}$ generalizing E_{6} and E_{7}.

II. Gram matrix formalism

Gram matrix and lattices

- Denote by S^{n} the vector space of real symmetric $n \times n$ matrices and $S_{>0}^{n}$ the convex cone of real symmetric positive definite $n \times n$ matrices.
- Take a basis $\left(v_{1}, \ldots, v_{n}\right)$ of a lattice L and associate to it the Gram matrix $G_{v}=\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{1 \leq i, j \leq n} \in S_{>0}^{n}$.
- Example: take the hexagonal lattice generated by $v_{1}=(1,0)$ and $v_{2}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

Isometric lattices

- Take a basis $\left(v_{1}, \ldots, v_{n}\right)$ of a lattice L with $v_{i}=\left(v_{i, 1}, \ldots, v_{i, n}\right) \in \mathbb{R}^{n}$ and write the matrix

$$
V=\left(\begin{array}{ccc}
v_{1,1} & \ldots & v_{n, 1} \\
\vdots & \ddots & \vdots \\
v_{1, n} & \ldots & v_{n, n}
\end{array}\right)
$$

and $G_{v}=V^{\top} V$.
The matrix G_{V} is defined by $\frac{n(n+1)}{2}$ variables as opposed to n^{2} for the basis V.

- If $M \in S_{>0}^{n}$, then there exists V such that $M=V^{T} V$ (Gram Schmidt orthonormalization)
- If $M=V_{1}^{T} V_{1}=V_{2}^{T} V_{2}$, then $V_{1}=O V_{2}$ with $O^{T} O=I_{n}$ (i.e. O corresponds to an isometry of \mathbb{R}^{n}).
- Also if L is a lattice of \mathbb{R}^{n} with basis v and u an isometry of \mathbb{R}^{n}, then $G_{\mathrm{v}}=G_{u(\mathrm{v})}$.

Working with Gram matrices

- In practice all computations on lattices of \mathbb{R}^{n} are best done with Gram matrices. For example computing

$$
d(x)=\min _{y \in L}\|x-y\|
$$

is equivalent to minimizing

$$
\min _{y \in \mathbb{Z}^{n}}(v-y)^{T} A(x-y)
$$

for some $v \in \mathbb{R}^{n}$ expressed from x.

- We have the determinant relation

$$
\operatorname{det} L=\sqrt{\operatorname{det} G_{v}}
$$

- In general, Gram matrices are the only information taken into input by programs in lattice theory.
- They give a parameter space for lattices with a natural topology.

Changing basis

- If \mathbf{v} and \mathbf{v}^{\prime} are two basis of a lattice L then $V^{\prime}=V P$ with $P \in G L_{n}(\mathbb{Z})$. This implies

$$
G_{v^{\prime}}=V^{\prime T} V^{\prime}=(V P)^{T} V P=P^{T}\left\{V^{T} V\right\} P=P^{T} G_{v} P
$$

- If $A, B \in S_{>0}^{n}$, they are called arithmetically equivalent if there is at least one $P \in G L_{n}(\mathbb{Z})$ such that

$$
A=P^{T} B P
$$

- Lattices up to isometric equivalence correspond to $S_{>0}^{n}$ up to arithmetic equivalence.
- In practice, Plesken \& Souvignier wrote a program isom for testing arithmetic equivalence and a program autom for computing automorphism group of lattices.

III. The lattice covering problem

Equalities and inequalities

- Take $M=G_{v}$ with $v=\left(v_{1}, \ldots, v_{n}\right)$ a basis of lattice L.
- If $V=\left(w_{1}, \ldots, w_{N}\right)$ with $w_{i} \in \mathbb{Z}^{n}$ are the vertices of a Delaunay polytope of empty sphere $S(c, r)$ then:

$$
\left\|w_{i}-c\right\|=r \text { i.e. } w_{i}^{T} M w_{i}-2 w_{i}^{T} M c+c^{T} M c=r^{2}
$$

- Substracting one obtains

$$
\left\{w_{i}^{T} M w_{i}-w_{j}^{T} M w_{j}\right\}-2\left\{w_{i}^{T}-w_{j}^{T}\right\} M c=0
$$

- Inverting matrices, one obtains $M c=\psi(M)$ with ψ linear and so one gets linear equalities on M.
- Similarly $\|w-c\| \geq r$ translates into a linear inequality on M : Take $V=\left(v_{0}, \ldots, v_{n}\right)$ a simplex $\left(v_{i} \in \mathbb{Z}^{n}\right), w \in \mathbb{Z}^{n}$. If one writes $w=\sum_{i=0}^{n} \lambda_{i} v_{i}$ with $1=\sum_{i=0}^{n} \lambda_{i}$, then one has

$$
\|w-c\| \geq r \Leftrightarrow w^{T} M w-\sum_{i=0}^{n} \lambda_{i} v_{i}^{T} M v_{i} \geq 0
$$

Iso-Delaunay domains

- Take a lattice L and select a basis v_{1}, \ldots, v_{n}.
- We want to assign the Delaunay polytopes of a lattice. Geometrically, this means that

are part of the same iso-Delaunay domain.
- An iso-Delaunay domain is the assignment of Delaunay polytopes of the lattice.

Primitive iso-Delaunay

- If one takes a generic matrix M in $S_{>0}^{n}$, then all its Delaunay are simplices and so no linear equality are implied on M.
- Hence the corresponding iso-Delaunay domain is of dimension $\frac{n(n+1)}{2}$, they are called primitive

Equivalence and enumeration

- The group $\mathrm{GL}_{n}(\mathbb{Z})$ acts on $S_{>0}^{n}$ by arithmetic equivalence and preserve the primitive iso-Delaunay domains.
- Voronoi proved that after this action, there is a finite number of primitive iso-Delaunay domains.
- Bistellar flipping creates one iso-Delaunay from a given iso-Delaunay domain and a facet of the domain. In dim. 2:

- Enumerating primitive iso-Delaunay domains is done classically:
- Find one primitive iso-Delaunay domain.
- Find the adjacent ones and reduce by arithmetic equivalence. The algorithm is graph traversal and iteratively finds all the iso-Delaunay up to equivalence.

The partition of $S_{>0}^{2} \subset \mathbb{R}^{3}$ I

If $q(x, y)=u x^{2}+2 v x y+w y^{2}$ then $q \in S_{>0}^{2}$ if and only if $\mathrm{v}^{2}<\mathrm{uw}$ and $\mathrm{u}>0$.

The partition of $S_{>0}^{2} \subset \mathbb{R}^{3}$ II

We cut by the plane $u+w=1$ and get a circle representation.

The partition of $S_{>0}^{2} \subset \mathbb{R}^{3}$ III

Primitive iso-Delaunay domains in $S_{>0}^{2}$:

IV. SDP
 optimization

Radius of Delaunay polytope

- Fix a primitive iso-Delaunay domain, i.e. a collection of simplexes as Delaunay polytopes D_{1}, \ldots, D_{m}.
- Thm: For every $D_{i}=\operatorname{Conv}\left(0, v_{1}, \ldots, v_{n}\right)$, the radius of the Delaunay polytope is at most 1 if and only if

$$
\left(\begin{array}{ccccc}
4 & \left\langle v_{1}, v_{1}\right\rangle & \left\langle v_{2}, v_{2}\right\rangle & \ldots & \left\langle v_{n}, v_{n}\right\rangle \\
\left\langle v_{1}, v_{1}\right\rangle & \left\langle v_{1}, v_{1}\right\rangle & \left\langle v_{1}, v_{2}\right\rangle & \ldots & \left\langle v_{1}, v_{n}\right\rangle \\
\left\langle v_{2}, v_{2}\right\rangle & \left\langle v_{2}, v_{1}\right\rangle & \left\langle v_{2}, v_{2}\right\rangle & \ldots & \left\langle v_{2}, v_{n}\right\rangle \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\left\langle v_{n}, v_{n}\right\rangle & \left\langle v_{n}, v_{1}\right\rangle & \left\langle v_{n}, v_{2}\right\rangle & \ldots & \left\langle v_{n}, v_{n}\right\rangle
\end{array}\right) \in S_{\geq 0}^{n+1}
$$

by Delaunay, Dolbilin, Ryshkov \& Shtogrin.

- The condition is a semidefinite condition.
- See for more details
- A. Schürmann and F. Vallentin, Computational approaches to lattice packing and covering problems, Discrete \& Computational Geometry 35 (2006) 73-116.
- A. Schürmann, Computational geometry of positive definite quadratic forms, University Lecture Notes, AMS.

SDP optimization problem

- Fix a primitive iso-Delaunay domain, i.e. a collection of simplexes as Delaunay polytopes D_{1}, \ldots, D_{m}.
- Thm (Minkowski): The function $-\log \operatorname{det}(M)$ is strictly convex on $S_{>0}^{n}$.
- Solve the problem
- M in the iso-Delaunay domain (linear inequalities),
- the Delaunay D_{i} have radius at most 1 (semidefinite condition),
- minimize $-\log \operatorname{det}(M)$ (strictly convex).
- Thm: Given an iso-Delaunay domain $L T$, there exist a unique lattice, which minimize the covering density over $L T$.
- The above problem is solved by the interior point methods implemented in MAXDET by Vandenberghe, Boyd \& Wu. Unicity comes from the strict convexity of the objective function.

Solving the minimum covering problem

- The lattice covering problem is to find a lattice covering of minimal density.
- The solution of the SDP problem by interior point methods does not give exact solutions but approximate solutions available at any precision.
- The exact solution is expressible with algebraic integers once one knows which inequations are satisfied with equality.
- The method for solving the lattice covering problem in dimension n is thus:
- Enumerate all iso-Delaunay domains $L T$ up to equivalence
- solve the SDP on all the domains
- Take the one(s) of minimum covering density
- Pb : 222 primitive iso-Delaunay domains in dimension 5 (Baranovski, Ryshkov, Engel \& Grishukhin) and at least 200 millions in dimension 6 (Engel).
This is not practical at all

V . iso-Delaunay
domains of
$S_{>0}^{n}$-spaces

$S_{>0}^{n}$-spaces

- A $S_{>0}^{n}$-space is a vector space $\mathcal{S P}$ of S^{n}, which intersect $S_{>0}^{n}$.
- We want to describe the Delaunay decomposition of matrices $M \in S_{>0}^{n} \cap \mathcal{S P}$.
- Motivations:
- The enumeration of iso-Delaunay is done up to dimension 5 but certainly not for higher dimension.
- We hope to find some good covering by selecting judicious $\mathcal{S P}$. This is a search for best but unproven to be optimal coverings.
- A iso-Delaunay in $\mathcal{S P}$ is an open convex polyhedral set included in $S_{>0}^{n} \cap \mathcal{S P}$, for which every element has the same Delaunay decomposition.
- Typical choice of a space $\mathcal{S P}$ are the space of forms invariant under a finite integral matrix group G. In that case finiteness of the set of iso-Delaunay up to equivalence is proved.
- Dimension of the space $\mathcal{S P}$ is typically no larger than 4.

Lifted Delaunay decomposition

- The Delaunay polytopes of a lattice L correspond to the facets of the convex cone $\mathcal{C}(L)$ with vertex-set:

$$
\left\{\left(x,\|x\|^{2}\right) \text { with } x \in L\right\} \subset \mathbb{R}^{n+1}
$$

- H. Edelsbrunner, N.R. Shah, Incremental Topological Flipping Works for Regular Triangulations, Algorithmica 15 (1996) 223-241.

Generalized bistellar flips

- The "glued" Delaunay form a Delaunay decomposition for a matrix M in the ($\mathcal{S P}, L$)-iso-Delaunay satisfying to $f(M)=0$.
- The flipping break those Delaunays in a different way.
- Two triangulations of \mathbb{Z}^{2} correspond in the lifting to:

- The polytope represented is called the repartitioning polytope. It has two partitions into Delaunay polytopes.
- The lower facets correspond to one tesselation, the upper facets to the other tesselation.

Enumeration technique

- Find a primitive $(\mathcal{S P}, L)$-iso-Delaunay domain, insert it to the list as undone.
- Iterate
- For every undone primitive ($\mathcal{S P}, L$)-iso-Delaunay domain, compute the facets.
- Eliminate redundant inequalities.
- For every non-redundant inequality realize the flipping, i.e. compute the adjacent primitive ($\mathcal{S P}, L$)-iso-Delaunay domain. If it is new, then add to the list as undone.
- See for full details
- M. Dutour Sikirić, F. Vallentin and A. Schürmann, A generalization of Voronoi's reduction theory and applications, Duke Math. J. 142 (2008), 127-164.

Best known lattice coverings

\mathbf{d}	lattice / covering density $\boldsymbol{\Theta}$		
1	$\mathbb{Z}^{1} 1$	13	$\mathrm{~L}_{13}^{c}$ (DSV) 7.762108
2	$\mathrm{~A}_{2}^{*}$ (Kershner) 1.209199	14	$\mathrm{~L}_{14}^{c}$ (DSV) 8.825210
3	$\mathrm{~A}_{3}^{*}$ (Bambah) 1.463505	15	$\mathrm{~L}_{15}^{c}$ (DSV) 11.004951
4	$\mathrm{~A}_{4}^{*}$ (Delaunay \& Ryshkov) 1.765529	16	$\mathrm{~A}_{16}^{*}$ (DSV) 15.310927
5	$\mathrm{~A}_{5}^{*}$ (Ryshkov \& Baranovski) 2.124286	17	$\mathrm{~A}_{17}^{9}$ (DSV) 12.357468
6	$\mathrm{~L}_{6}^{c}$ (Vallentin) 2.464801	18	$\mathrm{~A}_{18}^{*} 21.840949$
7	$\mathrm{~L}_{7}^{c}$ (Schürmann \& Vallentin) 2.900024	19	$\mathrm{~A}_{19}^{10}$ (DSV) 21.229200
8	$\mathrm{~L}_{8}^{c}$ (Schürmann \& Vallentin) 3.142202	20	$\mathrm{~A}_{20}^{7}$ (DSV) 20.366828
9	$\mathrm{~L}_{9}^{c}$ (DSV) 4.268575	21	$\mathrm{~A}_{21}^{11}$ (DSV) 27.773140
10	$\mathrm{~L}_{10}^{c}$ (DSV) 5.154463	22	Λ_{22}^{*} (Smith) ≤ 27.8839
11	$\mathrm{~L}_{11}^{c}$ (DSV) 5.505591	23	Λ_{23}^{*} (Smith, MDS) 15.3218
12	$\mathrm{~L}_{12}^{c}$ (DSV) 7.465518	24	Leech 7.903536

- For $n \leq 5$ the results are definitive.
- The lattices A_{n}^{r} for r dividing $n+1$ are the Coxeter lattices.

They are often good coverings and they are used for perturbations.

- For dimensions 10 and 12 we use laminations over Coxeter lattices of dimension 9 and 11.
- Leech lattice is conjecturally optimal (it is local optimal Schürmann \& Vallentin)

VI. Quadratic functions and the Erdahl cone

The Erdahl cone

- Denote by $E_{2}(n)$ the vector space of degree 2 polynomial functions on \mathbb{R}^{n}. We write $f \in E_{2}(n)$ in the form

$$
f(x)=a_{f}+b_{f} \cdot x+Q_{f}[x]
$$

with $a_{f} \in \mathbb{R}, b_{f} \in \mathbb{R}^{n}$ and Q_{f} a $n \times n$ symmetric matrix

- The Erdahl cone is defined as

$$
\operatorname{Erdahl}(n)=\left\{f \in E_{2}(n) \text { such that } f(x) \geq 0 \text { for } x \in \mathbb{Z}^{n}\right\}
$$

- It is a convex cone, which is non-polyhedral since defined by an infinity of inequalities.
- The group acting on $\operatorname{Erdahl}(n)$ is $\mathrm{AGL}_{n}(\mathbb{Z})$, i.e. the group of affine integral transformations

$$
x \mapsto b+P x \text { for } b \in \mathbb{Z}^{n} \text { and } P \in \mathrm{GL}_{n}(\mathbb{Z})
$$

Scalar product

- Def: If $f, g \in E_{2}(n)$, then:

$$
\langle f, g\rangle=a_{f} a_{g}+\left\langle b_{f}, b_{g}\right\rangle+\left\langle Q_{f}, Q_{g}\right\rangle
$$

- Def: For $v \in \mathbb{Z}^{n}$, define $e v_{v}(x)=(1+v \cdot x)^{2}$.
- We have

$$
\left\langle f, e v_{v}\right\rangle=f(v)
$$

- Thus finding the rays of $\operatorname{Erdahl}(n)$ is a dual description problem with an infinity of inequalities and infinite group acting on it.
- If $f \in \operatorname{Erdahl}(n)$ then Q_{f} is positive semidefinite.
- Def: We also define
$E r d a h l_{>0}(n)=\left\{f \in \operatorname{Erdahl}(n): Q_{f}\right.$ positive definite $\}$

Relation with Delaunay polytope

- If D is a Delaunay polytope of a lattice $L=\mathbb{Z} v_{1}+\cdots+\mathbb{Z} v_{n}$ of empty sphere $S(c, r)$ then we define the function

$$
\begin{aligned}
f_{D, v}: \mathbb{Z}^{n} & \rightarrow \mathbb{R} \\
x=\left(x_{1}, \ldots, x_{n}\right) & \mapsto\left\|\sum_{i=1}^{n} x_{i} v_{i}-c\right\|^{2}-r^{2}
\end{aligned}
$$

Clearly $f_{D, v} \in \operatorname{Erdahl}_{>0}(n)$.

- The perfection rank of a Delaunay polytope is the dimension of the face it defines in $\operatorname{Erdahl}(n)$.
- Def: If $f \in \operatorname{Erdahl}(n)$ then

$$
Z(f)=\left\{v \in \mathbb{Z}^{n}: f(v)=0\right\}
$$

- Thm: If $f \in \operatorname{Erdahl}(n)$ then there exist a lattice L_{f} and a lattice L^{\prime} containing a Delaunay polytope D_{f} such that

$$
Z(f)=D_{f}+L_{f}
$$

- We have $\operatorname{dim} L^{\prime}+\operatorname{dim} L_{f} \leq n$. In case of equality $Z(f)$ is called a Delaunay polyhedra.

Perfect Delaunay polytopes/polyhedra

- Def: If D is a n-dimensional Delaunay polyhedra then we define

$$
\operatorname{Dom}_{\mathbf{v}} \quad D=\sum_{v \mathbf{v} \in D} \mathbb{R}_{+} e v_{v}
$$

- We have $\left\langle f_{D, \mathbf{v}}, \operatorname{Dom}_{\mathbf{v}} \quad D\right\rangle=0$.
- Def: D is perfect if Dom D is of dimension $\binom{n+2}{2}-1$ that is if the perfection rank is 1 .
- This implies that f_{D} generates an extreme ray of $\operatorname{Erdahl}(n)$ and f_{D} is rational.
- A perfect n-dimensional Delaunay polytope has at least $\binom{n+2}{2}-1$ vertices. There is only one way to embed it as a Delaunay polytope of a lattice.
- Perfect Delaunay polytopes are remarkable and rare objects.

VII. Covering maxima, pessima and their characterization

Eutacticity

- If $f \in E \operatorname{Erdah}>_{>0}(n)$ then define μ_{f} and c_{f} such that

$$
f(x)=Q_{f}\left[x-c_{f}\right]-\mu_{f}
$$

Then define

$$
u_{f}(x)=\left(1+c_{f} \cdot x\right)^{2}+\frac{\mu_{f}}{n} Q_{f}^{-1}[x]
$$

- Def: $f \in \operatorname{Erdahl}_{>0}(n)$ is eutactic if u_{f} is in the relative interior of Dom f.
- Def: Take a Delaunay polytope P for a quadratic form Q of center c_{P} and square radius $\mu_{P} . P$ is called eutactic if there are $\alpha_{v}>0$ so that

$$
\left\{\begin{aligned}
1 & =\sum_{v \in \mathrm{vert} P} \alpha_{v} \\
0 & =\sum_{v \in \operatorname{vert} P} \alpha_{v}\left(v-c_{P}\right) \\
\frac{\mu_{P}}{n} Q^{-1} & =\sum_{v \in \operatorname{vert} P} \alpha_{v}\left(v-c_{P}\right)\left(v-c_{P}\right)^{T}
\end{aligned}\right.
$$

Covering maxima

- A given lattice L is called a covering maxima if for any lattice L^{\prime} near L we have $\Theta\left(L^{\prime}\right)<\Theta(L)$.
- Thm: For a lattice L the following are equivalent:
- L is a covering maxima
- Every Delaunay polytope of maximal circumradius of L is perfect and eutactic.
- The following are covering maxima:

name	\# vertices	\# orbits Delaunay polytopes
E_{6}	27	1
E_{7}	56	2
ER_{7}	35	4
O_{10}	160	6
BW_{16}	512	4
O_{23}	94208	5
Λ_{23}	47104	709

- Thm: For any $n \geq 6$ there exist one lattice $L\left(D S_{n}\right)$ which is a covering maxima.
There is only one perfect Delaunay polytope $P\left(D S_{n}\right)$ of maximal radius in $L\left(D S_{n}\right)$.

The infinite series

- For n even $P\left(D S_{n}\right)$ is defined as the lamination over D_{n-1} of
- one vertex
- the half cube $\frac{1}{2} H_{n-1}$
- the cross polytope $C P_{n-1}$

For $n=6$, it is E_{6}.

- For n odd as the lamination over D_{n-1} of
- the cross polytope $C P_{n-1}$
- the half cube $\frac{1}{2} H_{n-1}$
- the cross polytope $C P_{n-1}$

For $n=7$, it is E_{7}.

- Conj: The lattice $D S_{n}$ has the following properties:
- $L\left(D S_{n}\right)$ has the maximum covering density among all n-dim. covering maxima
- Among all perfect Delaunay polytopes, $P\left(D S_{n}\right)$ has
- maximum number of vertices
- maximum volume

If true this would imply Minkowski conjecture by results of

- U. Shapira and B. Weiss, Stable Lattices and the Diagonal Group, preprint

Pessimum and Morse function property

- For a lattice L let us denote $D_{\text {crit }}(L)$ the space of direction d of deformation of L such that Θ increases in the direction d.
- Def: A lattice L is said to be a covering pessimum if the space $D_{\text {crit }}$ is of measures 0 .
- Thm: If the Delaunay polytopes of maximum circumradius of a lattice L are eutactic and are not simplices then L is a pessimum.

name	\# vertices	\# orbits Delaunay polytopes
\mathbb{Z}^{n}	2^{n}	1
D_{4}	8	1
$\mathrm{D}_{n}(n \geq 5)$	2^{n-1}	2
E_{6}^{*}	9	1
E_{7}^{*}	16	1
E_{8}^{*}	16	2
$\mathrm{~K}_{12}$	81	4

- Thm: The covering density function $Q \mapsto \Theta(Q)$ is a topological Morse function if and only if $n \leq 3$.

VIII. Enumeration of perfect Delaunay polytopes

Perfect Delaunay polytope

- There is a finite number of them in each dimension n. Known results:

dim.	perfect Delaunay	authors
1	$[0,1]$ in \mathbb{Z}	
2	\emptyset	
3	\emptyset	
4	\emptyset	
5	\emptyset	(Deza, Laurent \& Grishukhin)
6	2_{21} in E_{6}	(Deza \& Dutour)
7	3_{21} in E_{7}	
	and $E R_{7}$ in $L\left(E R_{7}\right)$	(Dutour Sikirić)
8	≥ 27	(Dutour Sikirić \& Rybnikov)
9	≥ 100000	(Dutour Sikirić)

- Thm: There exist perfect Delaunay polytopes D such that $\mathbb{Z} D \neq \mathbb{Z}^{n}$ (dimension $n \geq 13$, Rybnikov \& Dutour Sikirić).
- Thm: There exist lattices with several perfect Delaunay polytopes (dimension 15 and 23, Rybnikov \& Dutour Sikirić).
- Thm: For $n \geq 6$ there exist a perfect Delaunay polytope with exactly $\binom{n+2}{2}-1$ vertices (Erdahl \& Rybnikov) $E R_{n}$.

Extreme rays of Erdahl(n)

- Def: If $f \in \operatorname{Erdahl}_{>0}(n)$ then we define

$$
\text { Dom } f=\sum_{v \in Z(f)} \mathbb{R}_{+} e v_{v}
$$

- We have $\langle f$, Dom $f\rangle=0$.
- Thm (Erdahl): The extreme rays of $\operatorname{Erdahl}(n)$ are:
(a) The constant function 1.
(b) The functions

$$
\left(a_{1} x_{1}+\cdots+a_{n} x_{n}+\beta\right)^{2}
$$

with $\left(a_{1}, \ldots, a_{n}\right)$ not collinear to an integral vector.
(c) The functions f such that $Z(f)$ is a perfect Delaunay polyhedra.

- Note that if $f \in \operatorname{Erdah} /(n)$ with $Z(f)$ a Delaunay polyhedra, then there exist a lattice L^{\prime} of dimension $k \leq n$, a Delaunay polytope D of L^{\prime}, a basis \mathbf{v}^{\prime} of L^{\prime} and a function $\phi \in A G L_{n}(\mathbb{Z})$ such that

$$
f \circ \phi\left(x_{1}, \ldots, x_{n}\right)=f_{D, \mathbf{v}^{\prime}}\left(x_{1}, \ldots, x_{k}\right)
$$

Delaunay polyhedra retract

- For a function $f \in \operatorname{Erdahl}(n)$ a proper decomposition is a pair (g, h) with $f=g+h, g \in \operatorname{Erdahl}(n)$ and $h(x) \geq 0$ for $x \in \mathbb{R}^{n}$.
- Lem: For a proper decomposition we have

$$
\operatorname{Vect} Z(f)+\operatorname{Ker} Q_{f} \subset \operatorname{Ker} Q_{h}
$$

and there exist a proper decomposition with equality.

- Fix an integral complement L^{\prime} of Vect $Z(f)+\operatorname{Ker} Q_{f}$. A proper decomposition is called extremal if $\left.\operatorname{det} Q_{h}\right|_{L^{\prime}}$ is maximal among all proper decompositions.
- Thm: For $f \in \operatorname{Erdahl}(n)$, there exist a unique extremal decomposition. For it we have that $Z(g)$ is a Delaunay polyhedra.
- Conj: The decomposition depends continuously on $f \in \operatorname{Erdahl}(n)$.
- On the other hand in a neighborhood of $f \in \operatorname{Erdah} /(n)$ we can have an infinity of Delaunay polyhedra.

Enumeration of perfect Delaunay polyhedra

- From a given n-dimensional Delaunay polyhedron P of form f we can define the local cone

$$
\operatorname{Loc}(f)=\left\{g \in E_{2}(n) \text { s.t. } g(x) \geq 0 \text { for } x \in Z(f)\right\}
$$

We set the define the degeneracy $d(P)=\operatorname{dim} L_{f}$.

- Thm: For a Delaunay polyhedron P let $\left(P_{i}\right)_{i \in I}$ the set of Delaunay polyhedra of degeneracy $d(P)-1$ and perfection rank $r(P)-1$. P_{i} and P_{j} are adjacent if $P_{i} \cap P_{j}$ is of perfection rank $r(P)-2$. The obtained graph is connected.
- Thm: In a fixed dimension n there exist an algorithm for enumerating the perfect Delaunay polytopes of dimension n. The algorithm is iterative. It relies on dual description. If the degeneracy rank is $d>0$ then we find a sub Delaunay polyhedron of degeneracy $d-1$, finds its facets and do the liftings. This requires knowing the facets of CUT_{n+1}.
- Thm: In dimension 7 there is only 3_{21} and $E R_{7}$.

