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Lattices, Monoid Generators, and Growth Series
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Cyclotomic Lattices

L = Z[e2πi/m] ∼= Zϕ(m)

M – all mth roots of unity (suitably identified in Rϕ(m))

hm – coordinator polynomial of Z[e2πi/m]

Theorem (Kløve–Parker 1999) The coordinator polynomial of Z[e2πi/p] ,
where p is prime, equals hp(x) = xp−1 + xp−2 + · · ·+ 1 .

Conjectures (Parker 1999)

(1) hm(x) = g(x)
m√
m for a palindromic polynomial g of degree ϕ(

√
m).

(2) h2p(x) =
∑p−3

2
k=0

(
xk + xp−1−k

)∑k
j=0

(
p
j

)
+ 2p−1x

p−1
2

(3) h15(x) =
(
1 + x8

)
+7

(
x+ x7

)
+28

(
x2 + x6

)
+79

(
x3 + x5

)
+130x4
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Root Lattices

Theorem (Conway–Sloane, Bacher–de la Harpe–Venkov 1997)

hAn(x) =

n∑
k=0

(
n

k

)2

xk

hBn(x) =

n∑
k=0

[(
2n+ 1

2k

)
− 2k

(
n

k

)]
xk

hCn(x) =

n∑
k=0

(
2n

2k

)
xk

hDn(x) =

n∑
k=0

[(
2n

2k

)
− 2k(n− k)

n− 1

(
n

k

)]
xk
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Capturing Growth Series
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C4 = PD2
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Capturing Growth Series
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Coordinator Polynomials of Root Lattices

Theorem (Conway–Sloane, Bacher–de la Harpe–Venkov, 1997)

hAn(x) =

n∑
k=0

(
n

k

)2

xk

hBn(x) =

n∑
k=0

[(
2n+ 1

2k

)
− 2k

(
n

k

)]
xk

hCn(x) =

n∑
k=0

(
2n

2k

)
xk

hDn(x) =

n∑
k=0

[(
2n

2k

)
− 2k(n− k)

n− 1

(
n

k

)]
xk

Theorem (Ardila–MB–Hoşten–Pfeifle–Seashore) The coordinator polynomi-
als of the growth series of root lattices of type A,C,D are the h-polynomials
of any unimodular triangulation of the respective polytopes PAn,PCn,PDn.
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Cyclotomic Polytopes

For two polytopes P ⊂ Rd1 and Q ⊂ Rd2, each containing the origin in its
interior, we define the direct sum P ◦Q := conv (P × 0d2,0d1 ×Q). For a
prime p, we define the cyclotomic polytope

Cpα = Cp ◦ Cp ◦ · · · ◦ Cp︸ ︷︷ ︸
pα−1 times

.
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Cyclotomic Polytopes

For two polytopes P ⊂ Rd1 and Q ⊂ Rd2, each containing the origin in its
interior, we define the direct sum P ◦Q := conv (P × 0d2,0d1 ×Q). For a
prime p, we define the cyclotomic polytope

Cpα = Cp ◦ Cp ◦ · · · ◦ Cp︸ ︷︷ ︸
pα−1 times

.

For two polytopes P = conv (v1, v2 . . . , vs) and Q = conv (w1, w2, . . . , wt)
we define their tensor product

P ⊗Q := conv (vi ⊗ wj : 1 ≤ i ≤ s, 1 ≤ j ≤ t) .

Our construction implies for m = m1m2, where m1,m2 > 1 are relatively
prime, that the cyclotomic polytope Cm is equal to Cm1 ⊗ Cm2.

For general m,
Cm = C√m ◦ C√m ◦ · · · ◦ C√m︸ ︷︷ ︸

m√
m

times
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Coordinator Polynomials of Cyclotomic Lattices

Conjectures (Parker 1999)

(1) hm(x) = g(x)
m√
m for a palindromic polynomial g of degree ϕ(

√
m).

(2) h2p(x) =
∑p−3

2
k=0

(
xk + xp−1−k

)∑k
j=0

(
p
j

)
+ 2p−1x

p−1
2

(3) h15(x) =
(
1 + x8

)
+7

(
x+ x7

)
+28

(
x2 + x6

)
+79

(
x3 + x5

)
+130x4

Theorem (MB–Hoşten) If m is divisible by at most two odd primes then the
boundary of the cyclotomic polytope Cm admits a unimodular triangulation.
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Open Problems

I Describe the face structure of Cm, e.g., in the case m = pq.

I Is Cm normal for all m?

I S. Sullivant computed that the dual of C105 is not a lattice polytope, i.e.,
C105 is not reflexive. If we knew that C105 is normal, a theorem of Hibi
would imply that the coordinator polynomial h105 is not palindromic,
and hence that Parker’s Conjecture (1) is not true in general.
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