Growth Series of Cyclotomic and Root Lattices

Federico Ardila (San Francisco State University)
Matthias Beck (San Francisco State University)
Serkan Hoșten (San Francisco State University)
Julian Pfeifle (Universitat Politècnica de Catalunya)
Kim Seashore (University of California Berkeley)

Polyhedra, Lattices, Algebra, and Moments
IMS Singapore
January 2014

Lattices, Monoid Generators, and Growth Series

Cyclotomic Lattices

$\mathcal{L}=\mathbb{Z}\left[e^{2 \pi i / m}\right] \cong \mathbb{Z}^{\varphi(m)}$
M - all $m^{\text {th }}$ roots of unity (suitably identified in $\mathbb{R}^{\varphi(m)}$)
h_{m} - coordinator polynomial of $\mathbb{Z}\left[e^{2 \pi i / m}\right]$

Theorem (Kløve-Parker 1999) The coordinator polynomial of $\mathbb{Z}\left[e^{2 \pi i / p}\right]$, where p is prime, equals $h_{p}(x)=x^{p-1}+x^{p-2}+\cdots+1$.

Conjectures (Parker 1999)
(1) $h_{m}(x)=g(x)^{\frac{m}{\sqrt{m}}}$ for a palindromic polynomial g of degree $\varphi(\sqrt{m})$.
(2) $h_{2 p}(x)=\sum_{k=0}^{\frac{p-3}{2}}\left(x^{k}+x^{p-1-k}\right) \sum_{j=0}^{k}\binom{p}{j}+2^{p-1} x^{\frac{p-1}{2}}$
(3) $h_{15}(x)=\left(1+x^{8}\right)+7\left(x+x^{7}\right)+28\left(x^{2}+x^{6}\right)+79\left(x^{3}+x^{5}\right)+130 x^{4}$

Root Lattices

Theorem (Conway-Sloane, Bacher-de la Harpe-Venkov 1997)

$$
\begin{aligned}
h_{A_{n}}(x) & =\sum_{k=0}^{n}\binom{n}{k}^{2} x^{k} \\
h_{B_{n}}(x) & =\sum_{k=0}^{n}\left[\binom{2 n+1}{2 k}-2 k\binom{n}{k}\right] x^{k} \\
h_{C_{n}}(x) & =\sum_{k=0}^{n}\binom{2 n}{2 k} x^{k} \\
h_{D_{n}}(x) & =\sum_{k=0}^{n}\left[\binom{2 n}{2 k}-\frac{2 k(n-k)}{n-1}\binom{n}{k}\right] x^{k}
\end{aligned}
$$

Capturing Growth Series

$\mathcal{C}_{4}=\mathcal{P}_{D_{2}}$

- -

\bullet

$$
\bullet
$$

Capturing Growth Series

Coordinator Polynomials of Root Lattices

Theorem (Conway-Sloane, Bacher-de la Harpe-Venkov, 1997)

$$
\begin{aligned}
& h_{A_{n}}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2} x^{k} \\
& h_{B_{n}}(x)=\sum_{k=0}^{n}\left[\binom{2 n+1}{2 k}-2 k\binom{n}{k}\right] x^{k} \\
& h_{C_{n}}(x)=\sum_{k=0}^{n}\binom{2 n}{2 k} x^{k} \\
& h_{D_{n}}(x)=\sum_{k=0}^{n}\left[\binom{2 n}{2 k}-\frac{2 k(n-k)}{n-1}\binom{n}{k}\right] x^{k}
\end{aligned}
$$

Theorem (Ardila-MB-Hoșten-Pfeifle-Seashore) The coordinator polynomials of the growth series of root lattices of type A, C, D are the h-polynomials of any unimodular triangulation of the respective polytopes $\mathcal{P}_{A_{n}}, \mathcal{P}_{C_{n}}, \mathcal{P}_{D_{n}}$.

Cyclotomic Polytopes

For two polytopes $P \subset \mathbb{R}^{d_{1}}$ and $Q \subset \mathbb{R}^{d_{2}}$, each containing the origin in its interior, we define the direct sum $P \circ Q:=\operatorname{conv}\left(P \times \mathbf{0}_{d_{2}}, \mathbf{0}_{d_{1}} \times Q\right)$. For a prime p, we define the cyclotomic polytope

$$
\mathcal{C}_{p^{\alpha}}=\underbrace{\mathcal{C}_{p} \circ \mathcal{C}_{p} \circ \cdots \circ \mathcal{C}_{p}}_{p^{\alpha-1} \text { times }}
$$

Cyclotomic Polytopes

For two polytopes $P \subset \mathbb{R}^{d_{1}}$ and $Q \subset \mathbb{R}^{d_{2}}$, each containing the origin in its interior, we define the direct sum $P \circ Q:=\operatorname{conv}\left(P \times \mathbf{0}_{d_{2}}, \mathbf{0}_{d_{1}} \times Q\right)$. For a prime p, we define the cyclotomic polytope

$$
\mathcal{C}_{p^{\alpha}}=\underbrace{\mathcal{C}_{p} \circ \mathcal{C}_{p} \circ \cdots \circ \mathcal{C}_{p}}_{p^{\alpha-1} \text { times }} .
$$

For two polytopes $P=\operatorname{conv}\left(v_{1}, v_{2} \ldots, v_{s}\right)$ and $Q=\operatorname{conv}\left(w_{1}, w_{2}, \ldots, w_{t}\right)$ we define their tensor product

$$
P \otimes Q:=\operatorname{conv}\left(v_{i} \otimes w_{j}: 1 \leq i \leq s, 1 \leq j \leq t\right)
$$

Our construction implies for $m=m_{1} m_{2}$, where $m_{1}, m_{2}>1$ are relatively prime, that the cyclotomic polytope \mathcal{C}_{m} is equal to $\mathcal{C}_{m_{1}} \otimes \mathcal{C}_{m_{2}}$.

For general m,

$$
\mathcal{C}_{m}=\underbrace{\mathcal{C}_{\sqrt{m}} \circ \mathcal{C}_{\sqrt{m}} \circ \cdots \circ \mathcal{C}_{\sqrt{m}}}_{\frac{m}{\sqrt{m}} \text { times }}
$$

Coordinator Polynomials of Cyclotomic Lattices

Conjectures (Parker 1999)
(1) $h_{m}(x)=g(x)^{\frac{m}{\sqrt{m}}}$ for a palindromic polynomial g of degree $\varphi(\sqrt{m})$.
(2) $h_{2 p}(x)=\sum_{k=0}^{\frac{p-3}{2}}\left(x^{k}+x^{p-1-k}\right) \sum_{j=0}^{k}\binom{p}{j}+2^{p-1} x^{\frac{p-1}{2}}$
(3) $h_{15}(x)=\left(1+x^{8}\right)+7\left(x+x^{7}\right)+28\left(x^{2}+x^{6}\right)+79\left(x^{3}+x^{5}\right)+130 x^{4}$

Theorem (MB-Hoșten) If m is divisible by at most two odd primes then the boundary of the cyclotomic polytope \mathcal{C}_{m} admits a unimodular triangulation.

Open Problems

- Describe the face structure of \mathcal{C}_{m}, e.g., in the case $m=p q$.
- Is \mathcal{C}_{m} normal for all m ?
- S. Sullivant computed that the dual of \mathcal{C}_{105} is not a lattice polytope, i.e., \mathcal{C}_{105} is not reflexive. If we knew that \mathcal{C}_{105} is normal, a theorem of Hibi would imply that the coordinator polynomial h_{105} is not palindromic, and hence that Parker's Conjecture (1) is not true in general.

