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Lattices, Monoid Generators, and Growth Series
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Cyclotomic Lattices

[ — Z[GQWi/m] ~ Zcp(m)

M — all m*™ roots of unity (suitably identified in ch(m))

h., — coordinator polynomial of Z[e2™/™]

Theorem (Klgve—Parker 1999) The coordinator polynomial of Z[e?™%/P],
where p is prime, equals hy,(z) = 2P~ + P72 4. 4+ 1.

Conjectures (Parker 1999)

(1) hp(x) = g(:c)% for a palindromic polynomial g of degree ¢(y/m).

- —1
(2) hop(z) = 35, %, (2* + 2P~ 7F) 25:0 (1;) 1 oop—1,05t

(3) hus(z) = (14 2°) + 7 (z + z7) 4+ 28 (z* + 2°) + 79 (z°® + 2°) 4 1302
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Root Lattices

Theorem (Conway-Sloane, Bacher—de la Harpe—Venkov 1997)
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Capturing Growth Series

Cs Cs = Pp,
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Capturing Growth Series

Cg C4 — PDQ
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Coordinator Polynomials of Root Lattices

Theorem (Conway-Sloane, Bacher—de la Harpe—Venkov, 1997)

ha (z) = f:(Z)Qx’f
hp,(r) = Z

Theorem (Ardila—MB—Hosten—Pfeifle-Seashore) The coordinator polynomi-
als of the growth series of root lattices of type A, C, D are the h-polynomials
of any unimodular triangulation of the respective polytopes P4, ,Pc,,Pp,,.
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Cyclotomic Polytopes

For two polytopes P C R% and Q C R%, each containing the origin in its
interior, we define the direct sum P o ) := conv (P X 0g4,,04, X Q). For a
prime p, we define the cyclotomic polytope

Cpo =CpoCpo---0Cy .

p&—1 times
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Cyclotomic Polytopes

For two polytopes P C R% and Q C R%, each containing the origin in its
interior, we define the direct sum P o ) := conv (P X 0g4,,04, X Q). For a
prime p, we define the cyclotomic polytope

Cpo =CpoCpo---0Cy .
TV

p&—1 times

For two polytopes P = conv (v1,vs...,0s) and @ = conv (wy, wa, . .., W)
we define their tensor product

PRQ :=conv(vy@w; : 1<i<s, 1<j5<1t).

Our construction implies for m = mymsy, where mq, ms > 1 are relatively
prime, that the cyclotomic polytope C,, is equal to C,,; ® Cyp,.

For general m, . — C\/m . C\/m 5.6 C\/m

- times

N
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Coordinator Polynomials of Cyclotomic Lattices

Conjectures (Parker 1999)

(1) hp(x) = g(x)% for a palindromic polynomial g of degree ©(y/m).
PY (ko op1-k\ sk (p p—1,.271

(2) hap(x) = 20,2, (2" + ) 2 =0 (g) +20 e

(3) his(z) = (14 2%) + 7 (x+27) +28 (2* + 2°) + 79 (2 + z°) + 1302

Theorem (MB—Hosten) If m is divisible by at most two odd primes then the
boundary of the cyclotomic polytope C,,, admits a unimodular triangulation.
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Open Problems

» Describe the face structure of C,,, e.g., in the case m = pq.

» Is C,,, normal for all m?

» S. Sullivant computed that the dual of C15 is not a lattice polytope, i.e.,
Ci05 Is not reflexive. If we knew that Cig5 is normal, a theorem of Hibi
would imply that the coordinator polynomial hig5 is not palindromic,
and hence that Parker’s Conjecture (1) is not true in general.
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