COMPUTATIONS OF SOME KRONECKER COEFFICIENTS.

WELLEDA BALDONI, MICHELE VERGNE

Let $S\left(\mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \mathbb{C}^{n_{3}}\right)$ be the space of polynomials in $n_{1} n_{2} n_{3}$ variables. This space carries a natural representation of the group $G L\left(n_{1}\right) \times G L\left(n_{2}\right) \times G L\left(n_{3}\right)$. It is an important representation space, in particular for its relation with quantum computing.

Then

$$
S\left(\mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \mathbb{C}^{n_{3}}\right)=\oplus g(\lambda, \mu, \nu) V_{\lambda}^{G L\left(n_{1}\right)} \otimes V_{\mu}^{G L\left(n_{2}\right)} \otimes V_{\nu}^{G L\left(n_{3}\right)}
$$

is a direct sum of the irreducible representations $V_{\lambda}^{G L\left(n_{1}\right)} \otimes V_{\mu}^{G L\left(n_{2}\right)} \otimes$ $V_{\nu}^{G L\left(n_{3}\right)}$ of the group $G L\left(n_{1}\right) \times G L\left(n_{2}\right) \times G L\left(n_{3}\right)$, with multiplicities $g(\lambda, \mu, \nu)$. Coefficients $g(\lambda, \mu, \nu)$ are related with Kronecker coefficients. The function $t \rightarrow g(t \lambda, t \mu, t \nu)$ is a quasi polynomial function of t (here t varies over the non negative integers). This function generalizes the function $t->c(t \lambda, t \mu, t \nu)$ for dilated Clebsch-Gordan coefficients.

We present an algorithm to compute this quasi-polynomial function. Our method is based on the multidimensional residue formulae of Szenes-Vergne for computing the number of integral points in polytopes. It provides an answer for a number of low dimensional cases (including the case of 3 quthrits, that is Kronecker coefficients with 3 rows).

