Checkerboard discrepancies

Mihalis Kolountzakis

University of Crete

Singapore, January 2014

Joint work with Alex Iosevich and Ioannis Parissis

Mihalis Kolountzakis (U. of Crete)

Checkerboard discrepancies

Singapore, January 2014 1 / 24

A question

- Imagine the plane as an infinite checkerboard
- Can it be colored black and white so that <u>any line segment</u> has almost the same black as white length?
- Can the excess of one color over the other be bounded by a constant?

2 / 24

What we're really interested in

Mihalis Kolountzakis (U. of Crete)

What we're really interested in

... mostly interested in her hair.

Mihalis Kolountzakis (U. of Crete)

Checkerboard discrepancies

Singapore, January 2014 3 / 24

Digital Halftoning

Gray scale value and the halftone screen

Each square represents a cell in the screen. Each dot represents a spot of ink or laser printer toner.

- Replace continuous grey with a distribution of black and white dots.
- This is how most printers work.

Error committed by halftoning (discrepancy)

- f_c on right takes values in [0, 1].
- f on left is binary.
- For region Ω the *discrepancy* is

$$D(\Omega) = \left| \int_{\Omega} f - \int_{\Omega} f_c \right|$$

Discrepancy of a family of regions

- Take $f_c = \frac{1}{2}$ everywhere
- Fix binary approximation f
- For Ω in a family F of regions how large can the discrepancy be?

 $D(\mathcal{F}) = \sup_{\Omega \in \mathcal{F}} D(\Omega)$

• For instance:

 Ω can be all translates of a disk of fixed radius

Discrepancy of a family of regions

- Take $f_c = \frac{1}{2}$ everywhere
- Fix binary approximation f
- For Ω in a family *F* of regions how large can the discrepancy be?

 $D(\mathcal{F}) = \sup_{\Omega \in \mathcal{F}} D(\Omega)$

For instance:

 Ω can be all translates of a disk of fixed radius

• Lower bounds:

No matter what f is the discrepancy of a family will be large.

• Upper bounds:

There is (also: find) f with discrepancy as small as possible.

 f_c

• How well can a point distribution approach uniformity?

- How well can a point distribution approach uniformity?
- $\mathcal{P} = N$ points in $[0,1]^2$
- If Q is any aligned rectangle with $n = |\mathcal{P} \cap Q|$ how large must $|n - |Q| \cdot N|$ be?
- $\sim \log N$ is the answer here (W. Schmidt).

- How well can a point distribution approach uniformity?
- $\mathcal{P} = N$ points in $[0,1]^2$
- If Q is any aligned rectangle with $n = |\mathcal{P} \cap Q|$ how large must $|n - |Q| \cdot N|$ be?
- $\sim \log N$ is the answer here (W. Schmidt).

Other families:

• Anchored rectangles: Same as translating aligned rectangles

- How well can a point distribution approach uniformity?
- $\mathcal{P} = N$ points in $[0,1]^2$
- If Q is any aligned rectangle with $n = |\mathcal{P} \cap Q|$ how large must $|n - |Q| \cdot N|$ be?
- $\sim \log N$ is the answer here (W. Schmidt).

Other families:

- Anchored rectangles: Same as translating aligned rectangles
- Rotating rectangles: $\sim N^{1/4}$ up to logarithms

- How well can a point distribution approach uniformity?
- $\mathcal{P} = N$ points in $[0,1]^2$
- If Q is any aligned rectangle with $n = |\mathcal{P} \cap Q|$ how large must $|n - |Q| \cdot N|$ be?
- $\sim \log N$ is the answer here (W. Schmidt).

Other families:

- Anchored rectangles: Same as translating aligned rectangles
- Rotating rectangles: $\sim N^{1/4}$ up to logarithms
- Disks: $\sim N^{1/4}$ up to logarithms

Mihalis Kolountzakis (U. of Crete)

A needle on a checkerboard

- The *N* × *N* checkerboard is colored black & white.
- How large is the discrepancy of line segments?
 How much does the white part differ from the black?
- Any length, any placement.

A needle on a checkerboard

- The *N* × *N* checkerboard is colored black & white.
- How large is the discrepancy of line segments?
 How much does the white part differ from the black?
- Any length, any placement.

Upper bound:

- **Random coloring**: Discrepancy is $O(\sqrt{N \log N})$.
- Quasi-Random coloring: Discrepancy of length L is $O(L^{\frac{1}{2}+\epsilon})$, any $\epsilon > 0$, for $L \ge 1$.

Mihalis Kolountzakis (U. of Crete)

Discrepancy lower bound for needle of length L: $\gtrsim \sqrt{L}$

• Enough for lines spanning the $N \times N$ board.

 $\gtrsim \sqrt{N}$

• Fourier analytic proof

A Fourier lemma for the checkerboard function

• The checkerboard function: $f : \mathbb{R}^2 \to \{0, \pm 1\}$:

$$f \equiv 0 \text{ off } [0, N]^2,$$

and

$$f \equiv \pm 1$$
 in cell $[i, i+1) \times [j, j+1)$, $i, j = 0, 1, \dots, N-1$.

• Lemma: If A is sufficiently large and a sufficiently small constants

$$\int_{\frac{a}{N}\leq |\xi|\leq A}\left|\widehat{f}(\xi)\right|^2d\xi\geq \frac{1}{3}N^2=\frac{1}{3}\|f\|_2^2.$$

A Fourier lemma for the checkerboard function

• The checkerboard function: $f : \mathbb{R}^2 \to \{0, \pm 1\}$:

$$f \equiv 0 ext{ off } [0, N]^2,$$

and

- $f \equiv \pm 1$ in cell $[i, i+1) \times [j, j+1)$, $i, j = 0, 1, \dots, N-1$.
- Lemma: If A is sufficiently large and a sufficiently small constants

$$\int_{\frac{a}{N}\leq |\xi|\leq A} \left|\widehat{f}(\xi)\right|^2 d\xi \geq \frac{1}{3}N^2 = \frac{1}{3}\|f\|_2^2.$$

• Intuitevely: Can discard

wavelengths
$$\gtrsim$$
 N and \lesssim 1

and still keep a constant fraction of the energy

Mihalis Kolountzakis (U. of Crete)

Proof of the lower bound \sqrt{N}

• Project *f* onto line *L* through origin:

$$\pi_L f(t) = \int_{\mathbb{R}} f(tu + su^{\perp}) \, du$$

• Then $\widehat{\pi_L f}(\xi) = \widehat{f}(\xi u)$

$$N^2 = \int f^2 = \int \left|\widehat{f}\right|^2$$

$$\begin{split} N^2 &= \int f^2 = \int \left| \widehat{f} \right|^2 \\ &\sim \int_{|\xi| < A} \left| \widehat{f}(\xi) \right|^2 \text{ (by Lemma)} \end{split}$$

$$\begin{split} N^2 &= \int f^2 = \int \left| \widehat{f} \right|^2 \\ &\sim \int_{|\xi| < A} \left| \widehat{f}(\xi) \right|^2 \text{ (by Lemma)} \\ &\leq A \int_{u \in S^1} \int_{|t| < A} \left| \widehat{f}(tu) \right|^2 dt \, du \text{ (polar coord's, } |t| < A) \end{split}$$

$$N^{2} = \int f^{2} = \int \left| \widehat{f} \right|^{2}$$

$$\sim \int_{|\xi| < A} \left| \widehat{f}(\xi) \right|^{2} \text{ (by Lemma)}$$

$$\leq A \int_{u \in S^{1}} \int_{|t| < A} \left| \widehat{f}(tu) \right|^{2} dt \, du \text{ (polar coord's, } |t| < A)$$

$$\leq A \int_{u \in S^{1}} \int_{\mathbb{R}} \left| \widehat{f}(tu) \right|^{2} dt \, du$$

$$N^{2} = \int f^{2} = \int \left|\widehat{f}\right|^{2}$$

$$\sim \int_{|\xi| < A} \left|\widehat{f}(\xi)\right|^{2} \text{ (by Lemma)}$$

$$\leq A \int_{u \in S^{1}} \int_{|t| < A} \left|\widehat{f}(tu)\right|^{2} dt \, du \text{ (polar coord's, } |t| < A)$$

$$\leq A \int_{u \in S^{1}} \int_{\mathbb{R}} \left|\widehat{f}(tu)\right|^{2} dt \, du$$

$$= A \int_{u \in S^{1}} \int_{\mathbb{R}} |\pi_{L}f(t)|^{2} \, dt \, du \text{ (Parseval)}$$

$$N^{2} = \int f^{2} = \int \left| \widehat{f} \right|^{2}$$

$$\sim \int_{|\xi| < A} \left| \widehat{f}(\xi) \right|^{2} \text{ (by Lemma)}$$

$$\leq A \int_{u \in S^{1}} \int_{|t| < A} \left| \widehat{f}(tu) \right|^{2} dt \, du \text{ (polar coord's, } |t| < A)$$

$$\leq A \int_{u \in S^{1}} \int_{\mathbb{R}} \left| \widehat{f}(tu) \right|^{2} dt \, du$$

$$= A \int_{u \in S^{1}} \int_{\mathbb{R}} |\pi_{L} f(t)|^{2} \, dt \, du \text{ (Parseval)}$$

$$\lesssim A M^{2} N \text{ (since diam supp } f \sim N)$$

Define $M = \sup_{L,t} |\pi_L f(t)|$. Must show $M \gtrsim \sqrt{N}$.

$$\begin{split} N^{2} &= \int f^{2} = \int \left| \widehat{f} \right|^{2} \\ &\sim \int_{|\xi| < A} \left| \widehat{f}(\xi) \right|^{2} \text{ (by Lemma)} \\ &\leq A \int_{u \in S^{1}} \int_{|t| < A} \left| \widehat{f}(tu) \right|^{2} dt \, du \text{ (polar coord's, } |t| < A) \\ &\leq A \int_{u \in S^{1}} \int_{\mathbb{R}} \left| \widehat{f}(tu) \right|^{2} dt \, du \\ &= A \int_{u \in S^{1}} \int_{\mathbb{R}} |\pi_{L} f(t)|^{2} \, dt \, du \text{ (Parseval)} \\ &\lesssim A M^{2} N \text{ (since diam supp } f \sim N) \end{split}$$

Hence $M^2 \gtrsim N$

Circular arcs with large discrepancy

• For any curve C discrepancy is

• We show there is a circle C of radius

$$\frac{1}{5}N \le R \le \frac{1}{4}N$$

 $\int_C f$

such that

$$\left|\int_{C} f\right| \gtrsim \sqrt{N}$$

Circular arcs with large discrepancy

• For any curve C discrepancy is

• We show there is a circle C of radius

$$\frac{1}{5}N \le R \le \frac{1}{4}N$$

 $\int_{C} f$

such that

$$\left|\int_{C} f\right| \gtrsim \sqrt{N}$$

• Our circles are free to translate and dilate

- σ_t is arc-length measure on circle of center 0, radius t.
- We have $\widehat{\sigma_t}(\xi) = t \widehat{\sigma_1}(t \cdot \xi)$

Fourier transform of circle measure

- σ_t is arc-length measure on circle of center 0, radius t.
- We have $\widehat{\sigma_t}(\xi) = t \widehat{\sigma_1}(t \cdot \xi)$
- Asymptotics:

$$\widehat{\sigma_1}(\xi) = \frac{2}{r^{1/2}} \cos\left(2\pi r - \frac{\pi}{4}\right) + O\left(\frac{1}{r^{3/2}}\right),$$

where $r = |\xi| \to \infty$.

- σ_t is arc-length measure on circle of center 0, radius t.
- We have $\widehat{\sigma_t}(\xi) = t \widehat{\sigma_1}(t \cdot \xi)$
- Asymptotics:

$$\widehat{\sigma_1}(\xi) = \frac{2}{r^{1/2}} \cos\left(2\pi r - \frac{\pi}{4}\right) + O\left(\frac{1}{r^{3/2}}\right),$$

where $r = |\xi| \to \infty$.

• Fourier Lemma: If $c_0 > 0, c_1 > 1$ then there is $c_2 > 0$ such that

$$\int_x^{c_1x} |\widehat{\sigma_1}(\xi)|^2 \, d\xi \geq c_2.$$
 (for $x > c_0$)

• C(x, t) is the circle of center x, radius t. Discrepancy function: $D_t(x) = \int_{C(x,t)} f = f * \sigma_t(x)$.

- C(x, t) is the circle of center x, radius t. Discrepancy function: $D_t(x) = \int_{C(x,t)} f = f * \sigma_t(x)$.
- Parseval:

$$\int_{\mathbb{R}^2} |D_t(x)|^2 dx = \int_{\mathbb{R}^2} \left| \widehat{D_t}(\xi) \right|^2 d\xi = \int_{\mathbb{R}^2} \left| \widehat{f}(\xi) \right|^2 |\widehat{\sigma_t}(\xi)|^2 d\xi$$

- C(x, t) is the circle of center x, radius t. Discrepancy function: $D_t(x) = \int_{C(x,t)} f = f * \sigma_t(x)$.
- Parseval:

$$\int_{\mathbb{R}^2} |D_t(x)|^2 dx = \int_{\mathbb{R}^2} \left| \widehat{D_t}(\xi) \right|^2 d\xi = \int_{\mathbb{R}^2} \left| \widehat{f}(\xi) \right|^2 |\widehat{\sigma_t}(\xi)|^2 d\xi$$

• We bound from below the L^2 norm

$$\int_{lpha N}^{eta N} \int_{\mathbb{R}^2} \left| D_t(x)
ight|^2 dx \, dt \gtrsim N^4$$

where $\alpha = \frac{1}{5}, \beta = \frac{1}{4}$.

- C(x, t) is the circle of center x, radius t. Discrepancy function: $D_t(x) = \int_{C(x,t)} f = f * \sigma_t(x)$.
- Parseval:

$$\int_{\mathbb{R}^2} |D_t(x)|^2 dx = \int_{\mathbb{R}^2} \left| \widehat{D_t}(\xi) \right|^2 d\xi = \int_{\mathbb{R}^2} \left| \widehat{f}(\xi) \right|^2 |\widehat{\sigma_t}(\xi)|^2 d\xi$$

• We bound from below the L^2 norm

$$\int_{\alpha N}^{\beta N} \int_{\mathbb{R}^2} |D_t(x)|^2 \, dx \, dt \gtrsim N^4$$

where $\alpha = \frac{1}{5}, \beta = \frac{1}{4}$.

• Since diam supp $D_t(\cdot) \lesssim N$ it follows that

$$\sup_{x,t}|D_t(x)|^2\gtrsim N$$

$$\int_{\alpha N}^{\beta N} \int_{\mathbb{R}^2} |D_t(x)|^2 \, dx \, dt = \int_{\alpha N}^{\beta N} \int_{\mathbb{R}^2} \left| \widehat{D_t}(\xi) \right|^2 d\xi \, dt$$

$$\int_{\alpha N}^{\beta N} \int_{\mathbb{R}^2} |D_t(x)|^2 dx dt = \int_{\alpha N}^{\beta N} \int_{\mathbb{R}^2} \left| \widehat{D_t}(\xi) \right|^2 d\xi dt$$
$$\geq \int_{\alpha N}^{\beta N} \int_{\frac{a}{N} \le |\xi| \le A} \left| \widehat{D_t}(\xi) \right|^2 d\xi dt$$

$$\int_{\alpha N}^{\beta N} \int_{\mathbb{R}^{2}} |D_{t}(x)|^{2} dx dt = \int_{\alpha N}^{\beta N} \int_{\mathbb{R}^{2}} \left|\widehat{D_{t}}(\xi)\right|^{2} d\xi dt$$
$$\geq \int_{\alpha N}^{\beta N} \int_{\frac{a}{N} \leq |\xi| \leq A} \left|\widehat{D_{t}}(\xi)\right|^{2} d\xi dt$$
$$= \int_{\frac{a}{N} \leq |\xi| \leq A} \left|\widehat{f}(\xi)\right|^{2} \int_{\alpha N}^{\beta N} |\widehat{\sigma_{t}}(\xi)|^{2} dt d\xi$$

$$\begin{split} \int_{\alpha N}^{\beta N} \int_{\mathbb{R}^2} |D_t(x)|^2 \, dx \, dt &= \int_{\alpha N}^{\beta N} \int_{\mathbb{R}^2} \left| \widehat{D_t}(\xi) \right|^2 d\xi \, dt \\ &\geq \int_{\alpha N}^{\beta N} \int_{\frac{a}{N} \le |\xi| \le A} \left| \widehat{D_t}(\xi) \right|^2 d\xi \, dt \\ &= \int_{\frac{a}{N} \le |\xi| \le A} \left| \widehat{f}(\xi) \right|^2 \int_{\alpha N}^{\beta N} |\widehat{\sigma_t}(\xi)|^2 \, dt \, d\xi \\ &= \int_{\frac{a}{N} \le |\xi| \le A} \left| \widehat{f}(\xi) \right|^2 \int_{\alpha N}^{\beta N} t^2 |\widehat{\sigma_1}(t\xi)|^2 \, dt \, d\xi \end{split}$$

$$\begin{split} \int_{\alpha N}^{\beta N} \int_{\mathbb{R}^{2}} |D_{t}(x)|^{2} dx dt &= \int_{\alpha N}^{\beta N} \int_{\mathbb{R}^{2}} \left| \widehat{D_{t}}(\xi) \right|^{2} d\xi dt \\ &\geq \int_{\alpha N}^{\beta N} \int_{\frac{a}{N} \leq |\xi| \leq A} \left| \widehat{D_{t}}(\xi) \right|^{2} d\xi dt \\ &= \int_{\frac{a}{N} \leq |\xi| \leq A} \left| \widehat{f}(\xi) \right|^{2} \int_{\alpha N}^{\beta N} |\widehat{\sigma_{t}}(\xi)|^{2} dt d\xi \\ &= \int_{\frac{a}{N} \leq |\xi| \leq A} \left| \widehat{f}(\xi) \right|^{2} \int_{\alpha N}^{\beta N} t^{2} |\widehat{\sigma_{1}}(t\xi)|^{2} dt d\xi \\ &\geq \alpha^{2} N^{2} \int_{\frac{a}{N} \leq |\xi| \leq A} \left| \widehat{f}(\xi) \right|^{2} \frac{1}{|\xi|} \int_{\alpha |\xi| N}^{\beta |\xi| N} |\widehat{\sigma_{1}}(u)|^{2} du d\xi \end{split}$$

$$\begin{split} \int_{\alpha N}^{\beta N} \int_{\mathbb{R}^{2}} |D_{t}(x)|^{2} dx dt &= \int_{\alpha N}^{\beta N} \int_{\mathbb{R}^{2}} \left| \widehat{D_{t}}(\xi) \right|^{2} d\xi dt \\ &\geq \int_{\alpha N}^{\beta N} \int_{\frac{a}{N} \leq |\xi| \leq A}^{a} \left| \widehat{D_{t}}(\xi) \right|^{2} d\xi dt \\ &= \int_{\frac{a}{N} \leq |\xi| \leq A}^{a} \left| \widehat{f}(\xi) \right|^{2} \int_{\alpha N}^{\beta N} |\widehat{\sigma_{t}}(\xi)|^{2} dt d\xi \\ &= \int_{\frac{a}{N} \leq |\xi| \leq A}^{a} \left| \widehat{f}(\xi) \right|^{2} \int_{\alpha N}^{\beta N} t^{2} |\widehat{\sigma_{1}}(t\xi)|^{2} dt d\xi \\ &\geq \alpha^{2} N^{2} \int_{\frac{a}{N} \leq |\xi| \leq A}^{a} \left| \widehat{f}(\xi) \right|^{2} \frac{1}{|\xi|} \int_{\alpha |\xi| N}^{\beta |\xi| N} |\widehat{\sigma_{1}}(u)|^{2} du d\xi \\ &\geq C \frac{\alpha^{2} N^{2}}{A} \int_{\frac{a}{N} \leq |\xi| \leq A}^{a} \left| \widehat{f}(\xi) \right|^{2} \end{split}$$

$$\begin{split} \int_{\alpha N}^{\beta N} \int_{\mathbb{R}^{2}} |D_{t}(x)|^{2} dx dt &= \int_{\alpha N}^{\beta N} \int_{\mathbb{R}^{2}} \left| \widehat{D_{t}}(\xi) \right|^{2} d\xi dt \\ &\geq \int_{\alpha N}^{\beta N} \int_{\frac{a}{N} \leq |\xi| \leq A} \left| \widehat{D_{t}}(\xi) \right|^{2} d\xi dt \\ &= \int_{\frac{a}{N} \leq |\xi| \leq A} \left| \widehat{f}(\xi) \right|^{2} \int_{\alpha N}^{\beta N} |\widehat{\sigma_{t}}(\xi)|^{2} dt d\xi \\ &= \int_{\frac{a}{N} \leq |\xi| \leq A} \left| \widehat{f}(\xi) \right|^{2} \int_{\alpha N}^{\beta N} t^{2} |\widehat{\sigma_{1}}(t\xi)|^{2} dt d\xi \\ &\geq \alpha^{2} N^{2} \int_{\frac{a}{N} \leq |\xi| \leq A} \left| \widehat{f}(\xi) \right|^{2} \frac{1}{|\xi|} \int_{\alpha |\xi| N}^{\beta |\xi| N} |\widehat{\sigma_{1}}(u)|^{2} du d\xi \\ &\geq C \frac{\alpha^{2} N^{2}}{A} \int_{\frac{a}{N} \leq |\xi| \leq A} \left| \widehat{f}(\xi) \right|^{2} \end{split}$$

Mihalis Kolountzakis (U. of Crete)

Checkerboard discrepancies

Different norms

- The lower bounds we've shown are for the L^2 norm of the discrepancy.
- They translate to lower bounds for the sup norm.

Different norms

- The lower bounds we've shown are for the L^2 norm of the discrepancy.
- They translate to lower bounds for the sup norm.
- Other norms are possible and often studied in classical discrepancy
- The L^p norm Line discrepancy: two parameters, angle u and x-intercept

$$\Delta(f,p) = \left(\frac{1}{N}\int_{S^1}\int |\Delta(u,x)|^p\,dx\,du\right)^{1/p}$$

Circle discrepancy: 3 parameters, center x and radius t

$$D(f,p) = \left(\frac{1}{N^3} \int_{N/5}^{N/4} \int |D_t(x)|^p \, dx \, dt\right)^{1/p}$$

• Essentially increasing in p

• For the coloring *f* shown

• For the coloring *f* shown

$$\Delta(f,1) \sim \log N$$

• Line of angle θ has discrepancy

• For the coloring *f* shown

$$\Delta(f,1) \sim \log N$$

 $\bullet\,$ Line of angle $\theta\,$ has discrepancy

• L¹ discrepancy is

$$\int_0^{\pi/2} \min\left\{\frac{1}{\sin\theta}, N\right\} d\theta \sim \log N$$

• For the coloring f shown

$$\Delta(f,1) \sim \log N$$

 $\bullet\,$ Line of angle $\theta\,$ has discrepancy

• L¹ discrepancy is

$$\int_0^{\pi/2} \min\left\{\frac{1}{\sin\theta}, N\right\} d\theta \sim \log N$$

• No lower bound is known but log *N* is probably the correct order.

• Can we guarantee a circle of large discrepancy with fixed radius?

• Can we guarantee a circle of large discrepancy with <u>fixed</u> radius? • Instead of lower bounding $\int_{\alpha N}^{\beta N} \int_{|x| \le N} |D_t(x)|^2 dx dt$ we now bound

$$\int_{|x| \lesssim N} |D_t(x)|^2 + |D_{2t}(x)|^2 dx \quad \text{(fixed } t \sim N\text{)}$$

• Can we guarantee a circle of large discrepancy with <u>fixed</u> radius? • Instead of lower bounding $\int_{\alpha N}^{\beta N} \int_{|x| \le N} |D_t(x)|^2 dx dt$ we now bound

$$\int_{|x|\lesssim N} |D_t(x)|^2 + |D_{2t}(x)|^2 dx$$
 (fixed $t \sim N$)

• Asymptotic information for $\widehat{\sigma_1}(\xi)$ again:

$$|\widehat{\sigma_1}(\xi)|^2+|\widehat{\sigma_1}(2\xi)|^2\gtrsim rac{1}{|\xi|}, \hspace{1em} ({ t large } \ \xi)$$

• Can we guarantee a circle of large discrepancy with <u>fixed</u> radius? • Instead of lower bounding $\int_{\alpha N}^{\beta N} \int_{|x| \le N} |D_t(x)|^2 dx dt$ we now bound

$$\int_{|x|\lesssim N} |D_t(x)|^2 + |D_{2t}(x)|^2 dx$$
 (fixed $t \sim N$)

• Asymptotic information for $\widehat{\sigma_1}(\xi)$ again:

$$|\widehat{\sigma_1}(\xi)|^2+|\widehat{\sigma_1}(2\xi)|^2\gtrsim rac{1}{|\xi|},\quad ({ t large }\ \xi)$$

• Working as in the case of variable t we get

$$\int_{|x|\lesssim N} |D_t(x)|^2 + |D_{2t}(x)|^2 dx \gtrsim N^2 t$$

• So for any $t \lesssim N$ there exists x such that

$$|D_t(x)|\gtrsim \sqrt{t}$$
 or $|D_{2t}(x)|\gtrsim \sqrt{t}$

Circle discrepancy: fixing the radius completely

• Fix radius *t* ~ *N* and a coloring *f*. Then there is a circle *C* of radius *t* with

$$\left|\int_{C} f\right| \gtrsim \sqrt{t}$$

• Still not a circle contained fully in the $N \times N$ square.

Circle discrepancy: fixing the radius completely

• Fix radius $t \sim N$ and a coloring f. Then there is a circle C of radius t with

$$\left|\int_{C} f\right| \gtrsim \sqrt{t}$$

- Still not a circle contained fully in the $N \times N$ square.
- Parseval gives for $D_t(x) = f * \sigma_t(x)$

$$\int_{\mathbb{R}^2} |D_t(x)|^2 dx = \int_{\mathbb{R}^2} \left| \widehat{f}(\xi) \right|^2 |\widehat{\sigma_t}(\xi)|^2 d\xi$$

so we'd love for $\widehat{\sigma_t}(\xi)$ not to vanish, but it does ...

Circle discrepancy: fixing the radius completely

• Fix radius $t \sim N$ and a coloring f. Then there is a circle C of radius t with

$$\left|\int_{C} f\right| \gtrsim \sqrt{t}$$

- Still not a circle contained fully in the $N \times N$ square.
- Parseval gives for $D_t(x) = f * \sigma_t(x)$

$$\int_{\mathbb{R}^2} |D_t(x)|^2 dx = \int_{\mathbb{R}^2} \left| \widehat{f}(\xi) \right|^2 |\widehat{\sigma}_t(\xi)|^2 d\xi$$

so we'd love for $\widehat{\sigma_t}(\xi)$ not to vanish, but it does ...

- Plan is
 - throw away neighborhood of the roots of $\widehat{\sigma_t}$
 - show $\int \left| \hat{f} \right|^2$ has not lost much.

Ignoring where $\widehat{\sigma}_1(\xi)$ is small

Asymptotics for $\widehat{\sigma_1}(\xi)$ tell us

- Root circles are spaced roughly by $\frac{1}{2}$
- Staying constant distance w from them guarantees $|\widehat{\sigma_1}(\xi)|^2 \gtrsim \frac{1}{|\xi|}$

Mihalis Kolountzakis (U. of Crete)

A corresponding Poincaré type inequality

- Let Z be the region crossed out (annuli).
- Then for $g \in C^1(\mathbb{R}^2)$ we have

$$\int |g|^2 \lesssim \int_{Z^c} |g|^2 + w^2 \int |\nabla g|^2$$

A corresponding Poincaré type inequality

- Let Z be the region crossed out (annuli).
- Then for $g \in C^1(\mathbb{R}^2)$ we have

$$\int |g|^2 \lesssim \int_{Z^c} |g|^2 + w^2 \int |\nabla g|^2$$

- Consequence of the bounded geometry
- Integrate along the radius.
 Essentially the one-dimensional

$$\int_{1/2}^{1} \left| g \right|^2 \lesssim \int_{0}^{1/2} \left| g \right|^2 + \int_{0}^{1} \left| g' \right|^2$$

$$\int_{\mathbb{R}^2} |D_t(x)|^2 dx = \int_{\mathbb{R}^2} \left| \widehat{f}(\xi) \right|^2 |\widehat{\sigma_t}(\xi)|^2 d\xi = \int_{\mathbb{R}^2} \left| \widehat{f}(\frac{u}{t}) \right|^2 |\widehat{\sigma_1}(u)|^2 du$$

$$\int_{\mathbb{R}^2} |D_t(x)|^2 dx = \int_{\mathbb{R}^2} \left| \widehat{f}(\xi) \right|^2 |\widehat{\sigma_t}(\xi)|^2 d\xi = \int_{\mathbb{R}^2} \left| \widehat{f}(\frac{u}{t}) \right|^2 |\widehat{\sigma_1}(u)|^2 du$$
$$\geq \int_{Z^c} \left| \widehat{f}(\frac{u}{t}) \right|^2 \frac{du}{|u|} = t \int_{t^{-1}Z^c} \left| \widehat{f}(\xi) \right|^2 \frac{d\xi}{|\xi|}$$

$$\begin{split} \int_{\mathbb{R}^2} |D_t(x)|^2 \, dx &= \int_{\mathbb{R}^2} \left| \widehat{f}(\xi) \right|^2 |\widehat{\sigma_t}(\xi)|^2 \, d\xi = \int_{\mathbb{R}^2} \left| \widehat{f}(\frac{u}{t}) \right|^2 |\widehat{\sigma_1}(u)|^2 \, du \\ &\geq \int_{Z^c} \left| \widehat{f}(\frac{u}{t}) \right|^2 \frac{du}{|u|} = t \int_{t^{-1}Z^c} \left| \widehat{f}(\xi) \right|^2 \frac{d\xi}{|\xi|} \\ &\geq t \int_{t^{-1}Z^c \cap \{|\xi| < A\}} \left| \widehat{f}(\xi) \right|^2 \frac{d\xi}{|\xi|} \end{split}$$

$$\begin{split} \int_{\mathbb{R}^2} |D_t(x)|^2 \, dx &= \int_{\mathbb{R}^2} \left| \widehat{f}(\xi) \right|^2 |\widehat{\sigma_t}(\xi)|^2 \, d\xi = \int_{\mathbb{R}^2} \left| \widehat{f}(\frac{u}{t}) \right|^2 |\widehat{\sigma_1}(u)|^2 \, du \\ &\geq \int_{Z^c} \left| \widehat{f}(\frac{u}{t}) \right|^2 \frac{du}{|u|} = t \int_{t^{-1}Z^c} \left| \widehat{f}(\xi) \right|^2 \frac{d\xi}{|\xi|} \\ &\geq t \int_{t^{-1}Z^c \cap \{|\xi| < A\}} \left| \widehat{f}(\xi) \right|^2 \frac{d\xi}{|\xi|} \\ &\geq \frac{t}{A} \int_{t^{-1}Z^c \cap \{|\xi| < A\}} \left| \widehat{f}(\xi) \right|^2 d\xi \end{split}$$

$$\begin{split} \int_{\mathbb{R}^2} |D_t(x)|^2 \, dx &= \int_{\mathbb{R}^2} \left| \widehat{f}(\xi) \right|^2 |\widehat{\sigma_t}(\xi)|^2 \, d\xi = \int_{\mathbb{R}^2} \left| \widehat{f}(\frac{u}{t}) \right|^2 |\widehat{\sigma_1}(u)|^2 \, du \\ &\geq \int_{Z^c} \left| \widehat{f}(\frac{u}{t}) \right|^2 \frac{du}{|u|} = t \int_{t^{-1}Z^c} \left| \widehat{f}(\xi) \right|^2 \frac{d\xi}{|\xi|} \\ &\geq t \int_{t^{-1}Z^c \cap \{|\xi| < A\}} \left| \widehat{f}(\xi) \right|^2 \frac{d\xi}{|\xi|} \\ &\geq \frac{t}{A} \int_{t^{-1}Z^c \cap \{|\xi| < A\}} \left| \widehat{f}(\xi) \right|^2 d\xi \\ &\gtrsim t \left(\int_{\mathbb{R}^2} \left| \widehat{f}(\xi) \right|^2 d\xi - \frac{w^2}{t^2} \int_{\mathbb{R}^2} \left| \nabla \widehat{f}(\xi) \right|^2 d\xi \right) \end{split}$$

$$\begin{split} \int_{\mathbb{R}^2} |D_t(x)|^2 \, dx &= \int_{\mathbb{R}^2} \left| \widehat{f}(\xi) \right|^2 |\widehat{\sigma_t}(\xi)|^2 \, d\xi = \int_{\mathbb{R}^2} \left| \widehat{f}(\frac{u}{t}) \right|^2 |\widehat{\sigma_1}(u)|^2 \, du \\ &\geq \int_{Z^c} \left| \widehat{f}(\frac{u}{t}) \right|^2 \frac{du}{|u|} = t \int_{t^{-1}Z^c} \left| \widehat{f}(\xi) \right|^2 \frac{d\xi}{|\xi|} \\ &\geq t \int_{t^{-1}Z^c \cap \{|\xi| < A\}} \left| \widehat{f}(\xi) \right|^2 \frac{d\xi}{|\xi|} \\ &\geq \frac{t}{A} \int_{t^{-1}Z^c \cap \{|\xi| < A\}} \left| \widehat{f}(\xi) \right|^2 \, d\xi \\ &\gtrsim t \left(\int_{\mathbb{R}^2} \left| \widehat{f}(\xi) \right|^2 \, d\xi - \frac{w^2}{t^2} \int_{\mathbb{R}^2} \left| \nabla \widehat{f}(\xi) \right|^2 \, d\xi \right) \\ &\text{But } \int \left| \nabla \widehat{f}(\xi) \right|^2 \, d\xi = \||x| f(x)\|_2^2 \lesssim N^4 \text{ and } \int \left| \widehat{f}(\xi) \right|^2 \, d\xi = \|f\|_2^2 = N^2. \\ &\text{Since } t \sim N, \text{ choose } w \text{ a small constant to get} \end{split}$$

$$\frac{1}{N^2}\int \left|D_t(x)\right|^2 dx\gtrsim t$$

Thank you for your attention.