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@ Imagine the plane as an infinite checkerboard

@ Can it be colored black and white so that any line segment has
almost the same black as white length?

@ Can the excess of one color over the other be bounded by a constant?
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What we're really interested in
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What we're really interested in

mostly interested in her hair.
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Digital Halftoning
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Each square representsa oell in the sereen. Each <ot
represents a spot of ink or laser printer toner.

@ Replace continuous grey with a distribution of black and white dots.

@ This is how most printers work.
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Error committed by halftoning (discrepancy)

@ fc on right takes values in [0, 1].

o f on left is binary.

@ For region  the discrepancy is

AR

D(Q) =
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Discrepancy of a family of regions

f f

o Take f. = % everywhere
@ Fix binary approximation f

@ For Q in a family F of regions
how large can the discrepancy
be?

D(F) = sup D(Q2)
QeF
@ For instance:

Q can be all translates of a disk
of fixed radius
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Discrepancy of a family of regions

f f

o Take f. = % everywhere
@ Fix binary approximation f

@ For Q in a family F of regions
how large can the discrepancy
be?

D(F) = élégD(Q)

@ For instance:
Q can be all translates of a disk
of fixed radius

o Lower bounds:

No matter what f is the discrepancy of a family will be large.
o Upper bounds:

There is (also: find) f with discrepancy as small as possible.
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Classical geometric discrepancy

@ How well can a point
distribution approach
uniformity?
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Classical geometric discrepancy

1
@ How well can a point °
distribution approach o °
uniformity? °
e P = N points in [0,1]? |0 ° o
o If Q is any aligned rectangle
with n = |P N Q| how large J J
must |n — |Q| - N| be? o
@ ~ log N is the answer here (W. .
Schmidt). 0
0 1
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Classical geometric discrepancy

1
@ How well can a point °
distribution approach o °
uniformity? °
e P = N points in [0,1]? |0 ° o
o If Q is any aligned rectangle
with n = |P N Q| how large J J
must |n — |Q| - N| be? o
@ ~ log N is the answer here (W. .
Schmidt). 0
0 1

Other families:
@ Anchored rectangles: Same as translating aligned rectangles
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Classical geometric discrepancy

1
@ How well can a point °
distribution approach o °
uniformity? °
e P = N points in [0,1]? |0 ° o
o If Q is any aligned rectangle
with n = |P N Q| how large J J
must |n — |Q| - N| be? o
@ ~ log N is the answer here (W. .
Schmidt). 0
0 1

Other families:
@ Anchored rectangles: Same as translating aligned rectangles
o Rotating rectangles: ~ N/ up to logarithms
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Classical geometric discrepancy

1
@ How well can a point °
distribution approach o °
uniformity? °
e P = N points in [0,1]? |0 ° o
o If Q is any aligned rectangle
with n = |P N Q| how large J J
must |n — |Q| - N| be? o
@ ~ log N is the answer here (W. .
Schmidt). 0
0 1

Other families:
@ Anchored rectangles: Same as translating aligned rectangles
o Rotating rectangles: ~ N/ up to logarithms
o Disks: ~ N/4 up to logarithms
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A needle on a checkerboard

@ The N x N checkerboard is
colored black & white.

@ How large is the discrepancy of
line segments?

How much does the white part
differ from the black?

@ Any length, any placement.
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A needle on a checkerboard

@ The N x N checkerboard is
colored black & white.

@ How large is the discrepancy of
line segments?

How much does the white part
differ from the black?

@ Any length, any placement.

Upper bound:
e Random coloring: Discrepancy is O(+/Nlog N).

@ Quasi-Random coloring: Discrepancy of length L is O(L%J“), any
€e>0,for L>1.
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Discrepancy lower bound for needle of length L: > /L

@ Enough for lines spanning the
N x N board.

>N

@ Fourier analytic proof
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A Fourier lemma for the checkerboard function

o The checkerboard function: f : R? — {0,+1}:
= 0 off [0, N]?,
and
f=xlincell [i,i+1)x[,j+1), i,j=0,1,....,N—1.

e Lemma: If A is sufficiently large and a sufficiently small constants

~ 2 1 1
| Jfo] de=gme =iz
2<[¢[<A
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A Fourier lemma for the checkerboard function

o The checkerboard function: f : R? — {0,+1}:
f = 0 off [0, N]?,
and
f=xlincell [i,i+1)x[,j+1), i,j=0,1,....,N—1.

e Lemma: If A is sufficiently large and a sufficiently small constants

~ 2 1 1
| Jfo] de=gme =iz
2<[¢[<A

o Intuitevely: Can discard
wavelengths 2 N and <1

and still keep a constant fraction of the energy
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Proof of the lower bound v/N

@ Project f onto line L through origin:
L F(E) = / F(tu + su) du
R

o Then m f(&) = f(£u)
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Proof of the lower bound v/N, continued

Define M = sup, , |7 f(t)|. Must show M 2 VN.

M:/ﬂ:/m2
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Proof of the lower bound v/N, continued

Define M = sup, , |7 f(t)|. Must show M 2 VN.

[ JI

N/ ‘f ‘ (by Lemma)
lgl<A
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Proof of the lower bound v/N, continued

Define M = sup, , |7 f(t)|. Must show M 2 VN.

2
M:/ﬂ:/M
N/ ‘f ‘ (by Lemma)
l§]<A

2
< A/ / f(tu)‘ dt du (polar coord’s, |t| < A)
ueSt J|t|<A
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Proof of the lower bound v/N, continued

Define M = sup, , |7 f(t)|. Must show M 2 VN.

2
M:/ﬂ:/M
N/ ‘f ‘ (by Lemma)
l§]<A

2
< A/ / f(tu)‘ dt du (polar coord’s, |t| < A)
ueSt J|t|<A

~ 2
gA/“ /Vum‘mm
ueSt JR
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Proof of the lower bound v/N, continued

Define M = sup, , |7 f(t)|. Must show M 2 VN.

2
M:/ﬂ:/M
N/ ‘f ‘ (by Lemma)
l§]<A

2
< A/ / f(tu)‘ dt du (polar coord’s, |t| < A)
ueSt J|t|<A

~ 2
A/ /‘f(tu) dt du
ueSt

= / /|7rLf t)|> dt du (Parseval)
ueS?!

IN
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Proof of the lower bound v/N, continued

Define M = sup, , |7 f(t)|. Must show M 2 VN.

2
M:/ﬂ:/M
N/ ‘f ‘ (by Lemma)
l§]<A

2
< A/ / f(tu)‘ dt du (polar coord’s, |t| < A)
ueSt J|t|<A

~ 2
gA/“ /Vum‘mm
ueSt JR

:A/ /|77Lf(t)]2 dt du (Parseval)
ueSt JR

< AMPN  (since diamsupp f ~ N)
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Proof of the lower bound v/N, continued

Define M = sup, , |7 f(t)|. Must show M 2 VN.

2
M:/ﬂ:/M
N/ ‘f ‘ (by Lemma)
l§]<A

2
< A/ / f(tu)‘ dt du (polar coord’s, |t| < A)
ueSt J|t|<A

~ 2
gA/“ /Vum‘mm
ueSt JR

:A/ /|77Lf(t)]2 dt du (Parseval)
ueSt JR

< AMPN  (since diamsupp f ~ N)

Hence M2 > N
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Circular arcs with large discrepancy
@ For any curve C discrepancy is
|
C
@ We show there is a circle C of radius \ /

lNgRglN
5 4

such that

/Cf‘,%\/ﬁ
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Circular arcs with large discrepancy
@ For any curve C discrepancy is
|
C
@ We show there is a circle C of radius \ /

lNgRglN
5 4

such that

/Cf‘zm

@ This does not give a whole circle contained in the N x N square with
large discrepancy, only an arc.

@ Our circles are free to translate and dilate
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Fourier transform of circle measure

@ o: is arc-length measure on circle of center 0, radius t.
e We have 7;(&) = toi(t - €)
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Fourier transform of circle measure

@ o: is arc-length measure on circle of center 0, radius t.
e We have 7;(&) = toi(t - €)
o Asymptotics:

— 2 T 1
O'l(é) = ﬂCOS (27Tr — Z) + O <r3/2> ,

where r = || — 0.
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Fourier transform of circle measure

@ o: is arc-length measure on circle of center 0, radius t.
e We have 7;(&) = toi(t - €)
o Asymptotics:

— 2 T 1
O'l(é) = ﬂCOS (27Tr — Z) + O <r3/2> ,

where r = || — 0.

o Fourier Lemma: If ¢y > 0,¢; > 1 then there is ¢ > 0 such that

[ w@rdza o> a)
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Circle discrepancy lower bound: the L? approach, again

e C(x,t) is the circle of center x, radius t.
Discrepancy function: Di(x) = [¢(, , f = f * 0¢(x).
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Circle discrepancy lower bound: the L? approach, again

e C(x,t) is the circle of center x, radius t.
Discrepancy function: Di(x) = [¢(, , f = f * 0¢(x).
o Parseval:

2 2
/Rz|Dt(X)|2dx:/R2‘Dt(§)‘ dg:AQ‘f(f)‘ |Ut(§)|2d§
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Circle discrepancy lower bound: the L? approach, again

e C(x,t) is the circle of center x, radius t.
Discrepancy function: Di(x) = [¢(, , f = f * 0¢(x).
o Parseval:

2 2
/Rz|Dt(X)|2dx:/R2‘Dt(§)‘ dg:/ﬂgz‘f(f)‘ |Ut(f)|2d§

@ We bound from below the L2 norm

BN
/ |De(x)|? dx dt > N*
aN JR2?

_1p_1
where a = ¢, 8 = 3.
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Circle discrepancy lower bound: the L? approach, again

e C(x,t) is the circle of center x, radius t.
Discrepancy function: Di(x) = [¢(, , f = f * 0¢(x).
o Parseval:

2 2
/Rz|Dt(X)|2dx:/R2‘Dt(§)‘ dg:/ﬂgz‘f(f)‘ |Ut(f)|2d§

@ We bound from below the L2 norm

BN
/ / |De(x)|? dx dt > N*
aN JR2?

where oo = %,B = %.
@ Since diamsupp D(-) < N it follows that

sup |De(x)[2 2 N
X,t
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L? lower bound for the circle discrepancy
BN BN

/ / |De(x)|? dx dt / /
aN JR2 aN JR2

D) de at
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L? lower bound for the circle discrepancy
BN BN

/ / IDi(x))? dx dt = / /
aN JR2 aN JR2

BN —~ 2
[ |pof dear
oN Jz<lel<a

D) de at

v
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L? lower bound for the circle discrepancy
BN BN

/ IDy(x)|? dx dt = / /
aN JR2 aN JR2

AN —~ 2
> [ |Bief acar
aN J 2<|¢[<A

B /asagA ‘?(5)’2/5\:\/ |6e(6)[? dt d¢

D) de at
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L? lower bound for the circle discrepancy
BN BN

/ IDy(x)|? dx dt = / /
aN JR2 aN JR2

AN —~ 2
> [ |Bief acar
aN J 2<|¢[<A

B /asagA ‘?(5)’2/5\:\/ |6e(6)[? dt d¢

= [ el ] et are

D) de at
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L? lower bound for the circle discrepancy
BN BN

/ IDy(x)|? dx dt = / /
aN JR2 aN JR2

BN N
) /O"V /ﬁvsasA‘Dt(g)rdgdt
B /asagA ‘?(5)’2/5\:\/ |6e(6)[? dt d¢

= [ el ] et are

21 [PlEN
o [ 7] [ )R dude
2<lel<A 1€l Jaein

D) de at

v
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L? lower bound for the circle discrepancy
BN BN

/ IDy(x)|? dx dt = / /
aN JR2 aN JR2

> [ iN / Swﬁ(g)fdadt

- / e ol [ i’N!cﬂ(f)lzdt de

= el et are

e [ el ZTLN i) du de

a2 N? ~, 2
) / 7©)]
HZIEISA

D) de at

v

v
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L? lower bound for the circle discrepancy
BN BN

/ IDy(x)|? dx dt = / /
aN JR2 aN JR2

> [ iN / Swﬁ(g)fdadt

- / e ol [ i’N!cﬂ(f)lzdt de

= el et are

e [ el ZTLN i) du de

2702 N 2
> ¢ [ )
NSKI<A

> CN*.

D) de at

v
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Di t norms

@ The lower bounds we've shown are for the L2 norm of the discrepancy.

@ They translate to lower bounds for the sup norm.
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Different norms

The lower bounds we've shown are for the L? norm of the discrepancy.
They translate to lower bounds for the sup norm.
Other norms are possible and often studied in classical discrepancy

The LP norm
Line discrepancy: two parameters, angle u and x-intercept

s = (5 [ [1awaraa)”

Circle discrepancy: 3 parameters, center x and radius t

1 N/4 1/p
D(f, p) = N3/N/5 /|Dt(x)|pdxdt

@ Essentially increasing in p
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Different norms: things are different for L1

@ For the coloring f shown

A(f,1) ~log N

|
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Different norms: things are different for L1

@ For the coloring f shown

A(f,1) ~log N

o Line of angle € has discrepancy

< b
~ sinf

|
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Different norms: things are different for L1

|

Mihalis Kolountzakis (U. of Crete)

@ For the coloring f shown

A(f,1) ~log N

o Line of angle € has discrepancy

< b
~ sinf

o L! discrepancy is

. 1 N3 df ~ log N
/0 mln{m, } ~ log

Checkerboard discrepancies
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Different norms: things are different for L1

For the coloring f shown

A(f,1) ~log N

Line of angle # has discrepancy

< b
~ sinf

L' discrepancy is

. 1 N3 df ~ log N
/0 mln{m, } ~ log

No lower bound is known but log N is
probably the correct order.

il
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Circle discrepancy: restricting the radius

o Can we guarantee a circle of large discrepancy with fixed radius?
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Circle discrepancy: restricting the radius

o Can we guarantee a circle of large discrepancy with fixed radius?
@ Instead of lower bounding ff,(lv fIX\<N |D¢(x)|? dx dt we now bound

/||< |De(x))? + |Dae(x)|? dx  (fixed t ~ N)
x|SN
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Circle discrepancy: restricting the radius

@ Can we guarantee a circle of Iarge discrepancy with fixed radius?
@ Instead of lower bounding f foN |D(x)|? dx dt we now bound

/ |De(x))? + |Dae(x)|? dx  (fixed t ~ N)
IxISN
e Asymptotic information for o1(&) again:

[@1(8)1* + e1(26)* 2 (large €)

|£|
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Circle discrepancy: restricting the radius

Can we guarantee a circle of Iarge discrepancy with fixed radius?

@ Instead of lower bounding f foN |D(x)|? dx dt we now bound
/ |De(x))? + |Dae(x)|? dx  (fixed t ~ N)
Ix|<N
e Asymptotic information for o1(&) again:

[@1(8)1* + e1(26)* 2 (large €)

\ﬁl

Working as in the case of variable t we get

1D + D20 o 2
x|SN

So for any t < N there exists x such that

[De(x)] 2 V't or [Dae(x)| 2 V'
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Circle discrepancy: fixing the radius completely

@ Fix radius t ~ N and a coloring f. Then there is a circle C of radius t

/
C

@ Still not a circle contained fully in the N x N square.

ZVt
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Circle discrepancy: fixing the radius completely

@ Fix radius t ~ N and a coloring f. Then there is a circle C of radius t

/
C

@ Still not a circle contained fully in the N x N square.

ZVt

o Parseval gives for Di(x) = f * o¢(x)

[ipafax= [ 7o) 150 de

so we'd love for 6;(£) not to vanish, but it does ...
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Circle discrepancy: fixing the radius completely

@ Fix radius t ~ N and a coloring f. Then there is a circle C of radius t

/
C

@ Still not a circle contained fully in the N x N square.

ZVt

o Parseval gives for Di(x) = f * o¢(x)

[ipafax= [ 7o) 150 de

so we'd love for 6;(£) not to vanish, but it does ...
e Plan is

o throw away neighborhood of the roots of 7;

2
o show f‘f’ has not lost much.
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lgnoring where 1(¢) is small

NI

w L
Asymptotics for o1(§) tell us

@ Root circles are spaced roughly by %
1

e Staying constant distance w from them guarantees [77(¢)[?

~

m
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A corresponding Poincaré type inequality

o Let Z be the region crossed out (annuli).
@ Then for g € C1(R?) we have

/ g2 < /Z g+ w? / Vgl
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A corresponding Poincaré type inequality

o Let Z be the region crossed out (annuli).
@ Then for g € C1(R?) we have

/ g2 < /Z g+ w? / Vgl

@ Consequence of the bounded
geometry

@ Integrate along the radius.
Essentially the one-dimensional

Lo 2 1o

!
/ ] 5/ &l +/\g}
1/2 0 0
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Proof of the lower bound for fixed radius
/ |D(x)? dx_/ ‘f |at )2 de = / ‘f |01(u| du
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Proof of the lower bound for fixed radius
/ |D(x)? dx_/ ‘f |at )2 de = / ‘f |01(u| du

2du 2d¢
> [ Ol =) el
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Proof of the lower bound for fixed radius
/ |D(x)? dx_/ ‘f |at )2 de = / ‘f |01(u| du
uy2du 2d¢
> [l = L, e

t 1€l
. 2dE
f as
= t/tlzcﬂ{|§|<A} ‘ (©) [3
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Proof of the lower bound for fixed radius

/}RQ‘Dt(X)de_/]Rz ‘?(é‘)’ |6\t(£)|2d§_/ﬂ{2 ‘?(%)) |a(u)|2du

/ 2 du / o j2de
> 2oy
c |U| t—1z¢c

f(§) Tl
S 2dE
f a5
N t/rlzcm{|s|<A}‘ Ol

t

~ 2
= 7o) de
t=1Zen{|¢|<A}

)

V
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Proof of the lower bound for fixed radius
2 2P o2 ge ZoUN2 e~ 2
Lipare= [ [ werde= [ [f] e
= u |2du ~, |2d¢
Z/C f(?) |u|_t/t_125 f(€) i€l
~ 2
/ Fe)| &
t-1Zen{|¢|<A} [3
t ~ 2
J ARG

([ o a2 [ [vref s)

v
~

v

A%
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Proof of the lower bound for fixed radius
2 . =P N2 e S U2~ (2
Lipare= [ [ werde= [ [f] e

~ U 12du S 2de
AL [ [Rel

> [ [ P t/t-lzc ] g
2d¢

7e)[2 9
- t/tlzcﬂ{|§|<A}‘ (©) [3

V

>t / et 7o) de
Zt</RZ’?(§) d§—/ ‘Vf ) d.f)

~ 2 ~
But [ [VAQ)[ de = IxIF ()1 < W and [ [F(&)| de = 172 = W2,
Since t ~ N, choose w a small constant to get

1
e [ I axz e
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Thank you for your attention.
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