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Weighted sums on lattice points of a polytope p ⊂ Rd

p ⊂ Rd convex semi-rational polytope. (Ax ≤ b, A rational
matrix, b ∈ RN ).
Weight h(x) := polynomial function on Rd .
Sum of values h(x) over set of lattice points in p.

S(p,h) =
∑

x∈p∩Zd

h(x).
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Number of lattice points

If the dimension is part of input, computing number of points is
]P-hard (even for a simplex).

Volume is an approximation, when p is dilated.
Card(tp ∩ Zd )∼ vol(p)td when t → +∞.
Computing volume of a simplex is fast (determinant).

Ehrhart quasi-polynomial (1962) Card(np ∩ Zd ) =

vol(p)nd + Ed−1(n)nd−1 + · · ·+ Ed−k (n)nd−k + · · ·+ E0(n)

Coefficients are periodic functions of n (constant if p has
integral vertices).

Example p = [0, 1
2 ]. Number of lattice points is

n
2 + 1 for n even, n

2 + 1
2 for n odd.
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Computation of the number of points

Theorem (Barvinok 1994)
If p is an rational polytope of fixed dimension d, then its number
of lattice points can be computed in polynomial time.

First implementation: LattE, (De Loera, Hemmecke, Tauzer,
and Yoshida, 2003)

Theorem (Barvinok 2005)
If p is a rational simplex,( dim p is part of the input), if k is fixed,
then the k highest degree coefficients of the Ehrhart
quasi-polynomial can be computed in polynomial time.

Card(np∩Zd ) = vol(p)nd +Ed−1(n)nd−1+· · ·+Ed−k (n)nd−k +· · ·
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Card(np∩Zd ) = vol(p)nd +Ed−1(n)nd−1+· · ·+Ed−k (n)nd−k +· · ·

Main idea:
highest degree terms can be described and computed by

means of remarkable
linear combinations of intermediate sums.
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Lattice points
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Integral over polytope
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Intermediate sums

L ⊆ Rd fixed rational subspace.
Slice p by parallels to L through lattice points and add the
integrals over the slices.
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Intermediate sums

SL(p) :=
∑

y

vol(p ∩ (y + L))

Weight h(x),

SL(p,h) :=
∑

y

∫
p∩(y+L)

h(x)dx

summation index y runs over projected lattice in Rd/L.

L = Rd → integral of the weight over p.
L = {0} → weighted sum over lattice points of p.
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Polytime computation of intermediate sums on a simplex

SL(p,h) :=

Theorem Computing integral of h on a simplex NP-hard if deg h
not fixed. (”How to integrate a polynomial on a simplex”
B.B.DeL.K.V. 2008).
Theorem. p a simplex. Assume deg h fixed, or h(x) = `(x)m

(more generally P(`1(x), . . . , `N(x)), N fixed, `j(x) linear).
• Then,

∫
p h(x)dx can be computed in polynomial time.

(B.B.DeL.K.V. 2008)
• If , moreover, codim L ≤ k with k fixed,
SL(p,h) can be computed in polynomial time. (unweighted:
Barvinok, 2005, weighted: B.B.DeL.K.V. 2010)
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Proof: discrete sums in dimension ≤ k , integrals in dimension
d − k .
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Ehrhart quasi-polynomials for intermediate sums

Weight h(x),

S(tp,h) :=
∑

x∈tp∩Zd

h(x), SL(tp,h) :=
∑

y

∫
tp∩(y+L)

h(x)dx

summation index y runs over projected lattice in Rd/L.

For a dilated polytope tp, intermediate sum is a
quasi-polynomial function of the parameter t,

the highest degree coefficient is the integral of the weight.
unweighted, t ∈ N: Barvinok 2005,
weighted, t real: BBDeLKV 2010
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Barvinok’s linear combination
L finite family of subspaces L.
ρ(L) ∈ Z. ∑

L∈L
ρ(L)SL(p)

Fix k ≤ dim p.

Assume
• family L contains the linear spaces parallel to all faces of

codimension ≤ k of p,
• family L is closed under sum,

drawings on blackboard
• coefficients satisfy Moebius property

[
⋃
L∈L

L⊥] =
∑
L∈L

ρ(L)[L⊥].

L⊥ orthogonal of L in dual space of Rd
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Top degree coefficients of Ehrhart quasi-polynomial

Theorem. Barvinok 2005
p ⊂ Rd be a rational polytope. k ≤ dim p.

L family of subspaces, containing the linear spaces parallel to
all faces of codimension ≤ k of p and closed under sum,
coefficients ρ(L) satisfying Moebius property.
Then the quasi-polynomials

S(np) and
∑
L∈L

ρ(L)SL(np)

have the same coefficients of degree ≥ d − k

vol(p)nd + · · ·+ Ed−k (n)nd−k .

Furthermore, if p is a simplex, dim p ∈ input, then∑
L∈L ρ(L)SL(np) can be computed in polynomial time
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Faces poset and its Moebius coefficients

Dimension 2.
Triangle with vertices (1,2,3). Faces of codimension ≤ 1
3 edges of codimension 1→ ρ(L(i,j)) = 1
Whole space L(1,2,3) = R2 → ρ(L(1,2,3)) = −2

Drawings

Dimension 3.
Tetrahedron with vertices (1,2,3,4).
Faces of codimension ≤ 2 and their sums.
4 edges of codimension 2→ ρ(L(i,j)) = 1
4 facets of codimension 1→ ρ(L(i,j,k)) = −2
3 pairs of opposite edges→ ρ(L(i,j),(k ,l)) = −1
Whole space L(1,2,3,4) = R3 → ρ(L(1,2,3,4)) = 6
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Main ideas for number of points in fixed dimension
• Generating functions for polyhedra.

S(p)(ξ) :=
∑

x∈p∩Zd

e〈ξ,x〉, meromorphic function of ξ.

Example [s,+∞[, a := dse,
∑

n≥a enξ = eaξ

1−eξ .
• If p is compact, number of lattice points = S(p)(0).

• Brion’s theorem. p polytope. For each vertex s, Cs := cone
of feasible directions at vertex s,

S(p)(ξ) =
∑

s

S(s+Cs)(ξ). Poles cancel out in sum over vertices.

Example: Drawing. For a and b integers,∑∞
n=a enξ +

∑b
n=−∞ enξ =

eaξ

1− eξ
+

ebξ

1− e−ξ
=

eaξ − e(b+1)ξ

1− eξ
=

b∑
n=a

enξ
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• Short formulas for generating functions of unimodular
cones (generated by lattice vectors v1, . . . , vd with
det(vj) = 1).

Example [s,+∞[, a := dse,
∑

n≥a enξ = eaξ

1−eξ .

• Barvinok’s decomposition. Any convex polyhedral cone
can be decomposed into a sum of unimodular cones, in
polynomial time when dimension is fixed. (Short vector in a
lattice, Minkowski, LLL.)
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Our results. (B.,B.,De L.,K.,V., 2008-2013)

• Ehrhart theory for weighted case and real parameter t
SL(tp,h) = (

∫
p h) td+deg h+· · ·+Ed+deg h−k (t)td+deg h−k +· · ·

Requires to describe coefficients as step-polynomials of t ,
instead of pointwise computation of Ek (n) for n ∈ N

• Given polytope p, weight h(x) and codimension k , we
canonically define two quasi-polynomials
Barvinokp,h,k (t) (similar to Barvinok’s approximation of the
number of points)
ConeByConep,h,k (t) (new and simpler)
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• We prove that S(tp,h), Barvinokp,h,k (t), and
ConeByConep,h,k (t) have the same terms of degree
≥ d + deg(h)− k .

• Similar results for semi-rational parametric polytopes
Ax ≤ b, A fixed rational matrix, parameter b ∈ RN .

• We describe polynomial-time algorithms for computing
Barvinokp,h,k (t) and ConeByConep,h,k (t), if
k is fixed,
p a semi-rational simplex, (also holds for more general
data),
weight h has fixed degree, or h(x) = `(x)m (more generally
P(`1(x), . . . , `N(x)), N fixed, `j(x) linear).
(implemented in a Maple program, see LattE integrale).
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Methods might have their own interest

• Intermediate generating functions of a polyhedron q.
SL(q)(ξ) :=

∑
y
∫
q∩(y+L) e〈ξ,x〉 dx .

We prove an approximation theorem for generating
functions (in the sense of power series approximation)of
affine convex polyhedral cones,
from which we derive equality of highest degree terms of
quasi-polynomials.

• All this relies on properties of intermediate generating
function SL(s + C)(ξ) of a shifted cone s + C with vertex s,
as function of the pair (s, ξ).

• Icing on the cake. A beautiful formula for the Moebius
coefficients of a simplex. (discovered in A. Bjorner and L.
Lovasz, Linear decision trees, subspace arrangements and
Moebius functions, 1994, where it is attributed to Stanley)
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Case h(x) = 〈`,x〉m
m!

Weight is a power of a linear form

Weights which are powers of linear forms are related to
homogeneous components of Taylor series of generating
functions. ∫

p

〈`, x〉m

m!
dx =

(∫
p

e〈ξ,x〉
)

[m]

|
ξ=`

∑
x∈p∩Zd

〈`, x〉m

m!
=

 ∑
x∈p∩Zd

e〈ξ,x〉


[m]

|
ξ=`

General case: write h(x) as a linear combination of powers of
linear forms.
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Intermediate generating functions of polyhedra

L ⊆ Rd rational subspace, q ⊆ Rd polyhedron (semi-rational
convex).

SL(q)(ξ) :=
∑

y∈ΛRd/L

∫
q∩(y+L)

e〈ξ,x〉 dx .

for those ξ where integral and series converge.
SL(q)(ξ) admits a meromorphic continuation to Cd .

Example: For a and b integers,∑∞
n=a enξ = eaξ

1−eξ∑b
n=−∞ enξ = ebξ

1−e−ξ
Meromorphic continuation:
first sum converges for ξ < 0, second sum converges for ξ > 0.
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Brion’s theorem

Theorem p polytope. For each vertex s of p, Cs cone of feasible
directions at s, s + Cs supporting cone at s,

SL(p)(ξ) =
∑

s

SL(s + Cs)(ξ)

Originally, for L = {0}, proved by Brion using localization in
equivariant cohomology of toric varieties.

Combinatorial proof can be deduced from set-theoretic
Brianchon-Gram theorem (strengthening of Euler identity).
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Hyperplane singularities
Homogeneous components with respect to ξ

Dimension 1. C = [0,+∞[, s ∈ R,
shifted affine cone s + C = [s,+∞[, a := dse

I(s + C)(ξ) :=

∫ +∞

s
eξxdx = −esξ

ξ
.

S(s + C)(ξ) =
∑
n≥a

enξ =
eaξ

1− eξ
= (

eaξξ

1− eξ
)

1
ξ

= −1
ξ
−
∑
m≥0

Bm+1(a)

(m + 1)!
ξm

Bernoulli polynomials euξξ
eξ−1 = 1 +

∑
n≥1

Bn(u)
n! ξn

S(s + C)(ξ) is the (infinite) sum of homogeneous components
of degree ≥ −1 , the lowest degree one is I(C)(ξ) = −1

ξ .
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Hyperplane singularities
Homogeneous components with respect to ξ

We prove similar properties for all intermediate generating
functions of cones.
• Can assume C simplicial, edge generators vi , 1 ≤ i ≤ d ,

SL(s + C)(ξ) =
holomorphic at ξ = 0∏d

i=1〈ξ, vi〉

• ⇒ SL(s + C)(ξ) = sum of series of homogeneous
components

SL(s + C)(ξ) =
Taylor series of numerator∏d

i=1〈ξ, vi〉

=
∑

m≥−d

SL(s + C)[m](ξ)

SL(s + C)[m](ξ) is a rational function of total degree m.
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Examples. d = 2, C = R2
≥0.

{u} := fractional part of u ∈ R. s = (s1, s2) , ξ = (ξ1, ξ2).

SL(s + C)(ξ) =

L = R2, e〈ξ,s〉
1
ξ1ξ2

L = {0}, e〈ξ,s〉
e{−s1}ξ1e{−s2}ξ2

(1− eξ1) (1− eξ2)

L = R(1,−1), e〈ξ,s〉(
e{−(s1+s2)}ξ1

1− eξ1
− e{−(s1+s2)}ξ2

1− eξ2
)(

1
ξ1 − ξ2

)

L = R(1,1), e〈ξ,s〉(
e{s2−s1}ξ1

1− eξ1
− e−{s2−s1}ξ2

1− e−ξ2
)(
−1

ξ1 + ξ2
)

Easy to check: all four of the form holomorphic at ξ=0
ξ1ξ2

,

1
ξ1ξ2

+
∑

m≥−1

( ∑
m1+m2=m

am1,m2ξ
m1
1 ξm2

2

)
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Weight h(x) = 〈`,x〉m
m!

SL(p)(
`m

m!
) =

 ∑
s vertex of p

SL(s + Cs)[m](ξ)

 |
ξ=`

Sum of rational functions. Poles cancel out.

Example
∑b

n=a enξ = eaξ

1−eξ + ebξ

1−e−ξ = eaξ−e(b+1)ξ

1−eξ .

b∑
n=a

nm

m!
= (

eaξ − e(b+1)ξ

1− eξ
)[m]|ξ=1

=
Bm+1(b + 1)− Bm+1(a)

(m + 1)!
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Dilating p

When p is dilated, replaced by tp,
vertex s is replaced by ts,
cone Cs does not change.

SL(tp)(
`m

m!
) =

(∑
s

SL(ts + Cs)[m](ξ)

)
|
ξ=`

[Similar phenomenon for multi-parametric polytopes]

Ehrhart theory⇐ How SL(ts + Cs)[m](ξ) depends on t ∈ R

For a given linear cone C, how does SL(u + C)[m](ξ) depend on
u ∈ Rd ?
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Periodicity

For v ∈ Zd ,

SL(v + u + C) = e〈ξ,v〉SL(u + C)

ML(u,C)(ξ) := e−〈ξ,u〉SL(u + C)(ξ)

is a Zd -periodic function of u

SL(u + C)[m](ξ) =
m+d∑
j=0

〈ξ,u〉m+d−j

(m + d − j)!
ML(u,C)[−d+j](ξ)
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Piecewise polynomial

SL(u + C)[m](ξ) =
m+d∑
j=0

〈ξ,u〉m+d−j

(m + d − j)!
ML(u,C)[−d+j](ξ)

ML(u,C)[−d+j](ξ) are expressed as step-polynomials of u ∈ Rd ,
hence piecewise polynomial function of u ∈ Rd , with
one-sided-continuity on boundary of pieces.
Example.
M(s + R≥0)(ξ) = e{−s}ξ

1−eξ

M(s + R≥0)[m](ξ) = −Bm+1({−s})
(m+1)! ξm

polynomial of degree m + 1 on pieces s ∈]n,n + 1], left
continuous on each piece.
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Periodicity

For v ∈ Zd ,

SL(v + u + C) = e〈ξ,v〉SL(u + C)

ML(u,C)(ξ) := e−〈ξ,u〉SL(u + C)(ξ)

is a periodic function of u

SL(t s + C)[m](ξ) =
m+d∑
j=0

tm+d−j 〈ξ, s〉m+d−j

(m + d − j)!
ML(t s,C)[−d+j](ξ)

quasi-polynomial of degree m + d with respect to t .
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Highest degree terms of Ehrhart quasi-polynomial
when the weight is a power of a linear form

Combining with Brion’s formula, get

S(tp)(
`m

m!
) =

 ∑
s vertex of p

S(ts + Cs)[m](ξ)

 |
ξ=`

=

 ∑
s vertex of p

m+d∑
j=0

tm+d−j 〈ξ, s〉m+d−j

(m + d − j)!
M(t s,Cs)[−d+j](ξ)

 |
ξ=`

For computing the highest degree coefficients, of terms
tm+d , tm+d−1, . . . , tm+d−k , need only lowest degree components

M(t s,Cs)[−d ], M(t s,Cs)[−d+1], . . . ,M(t s,Cs)[−d+k ]
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Example in dim 2.

M(s,C)(ξ) := e−〈ξ,s〉S(s + C)(ξ) =
e{−s1}ξ1 e{−s2}ξ2

(1− eξ1) (1− eξ2)
=

1
ξ1ξ2

degree (−d) = −2

+B1({−s2})
1
ξ1

+ B1({−s1})
1
ξ2

degree (−d + 1) = −1

+B1({−s1})B2({−s2})

+
B2({−s2})

2
ξ2

ξ1
+

B2({−s1})
2

ξ1

ξ2
degree (−d + 2) = 0

+ · · · degree ≥ 1

B1(u) = u − 1
2 , B2(u) = u2 − u + 1

6 .
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Approximation. Fix k ≤ d .

S(t s + C)[m](ξ) =
m+d∑
j=0

tm+d−j 〈ξ, s〉m+d−j

(m + d − j)!
M(t s,C)[−d+j](ξ)

For each supporting cone Cs of p, we construct functions
Mapprox (u,Cs)(ξ) which approximate M(u,Cs)(ξ) in the sense
of power series w.r.to ξ,
i.e. have the same lowest degree components as M(u,Cs)(ξ).

M(ξ) = M[−d ](ξ) + · · ·+ M[−d+k ](ξ) + higher degree
Mapprox (ξ) = M[−d ](ξ) + · · ·+ M[−d+k ](ξ) + higher degree
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Approximations of the generating function of a cone

Use linear combinations of intermediate generating functions of
the cone u + C

Mapprox
L (u,C)(ξ) = e−〈ξ,u〉

∑
L∈L

ρL(L)SL(u + C)(ξ)

L any family of subspaces which contains all subspaces parallel
to the faces of codimension ≤ k of C and is closed under sum.
ρL(L) Moebius coefficients of L.

When C is simplicial, smallest such family is just the set of
faces of codimension ≤ k , (sums of subspaces not needed),
Moebius function easy to compute.
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• First proof that Mapprox
Ls

(u,C)(ξ) is an approximation: based
on Euler-MacLaurin formula for a polyhedral cone (Baldoni,
B., Vergne, 2008)

• New proof (2013): based on Poisson summation formula
(and one-sided continuity).

Heuristically, S(u + C)(ξ) =
∑

x∈Zd φ(x) =
∑

γ∈Zd φ̂(2πγ)

φ(x) := e〈ξ,x〉[u + C](x)

φ̂(2πγ) =
∫

u+C e〈ξ+2iπγ,x〉 dx =: I(u + C)(ξ + 2iπγ)

S(u + C)(ξ) =
∑
γ∈Zd

I(u + C)(ξ + 2iπγ)

Dual lattice to projected lattice: (ΛRd/L)∗ = Zd ∩ L⊥.

SL(u + C)(ξ) =
∑

γ∈Zd∩L⊥
I(u + C)(ξ + 2iπγ)
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Barvinok’s linear combination
L finite family of subspaces L.
ρ(L) ∈ Z. ∑

L∈L
ρ(L)SL(p)

Fix k ≤ dim p.

• family L contains the linear spaces parallel to all faces of
codimension ≤ k of p,

• family L is closed under sum,
drawings on blackboard

• coefficients satisfy Moebius property

[
⋃
L∈L

L⊥] =
∑
L∈L

ρ(L)[L⊥].

L⊥ orthogonal of L in dual space of Rd
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Two canonical families of slicing subspaces for a
polytope p

In order to use Brion’s theorem, need to approximate
generating functions of cone Cs, for all vertices s of p.
Need a family of slicing subspaces Ls for each vertex s of p.
Two canonical such families.

• Barvinok (original family of A.Barvinok):
same family Ls = L for all vertices, L the smallest family
which contains all subspaces parallel to the faces of
codimension ≤ k of p and is closed under sum.

• ConeByCone: for a vertex s, Ls the smallest family which
contains all subspaces parallel to the faces of codimension
≤ k of Cs and is closed under sum.
(Easy when p is a simple polytope)



Weighted sums Intermediate generating functions Approximation Three quasi-polynomials

Two canonical families of slicing subspaces for a
polytope p

In order to use Brion’s theorem, need to approximate
generating functions of cone Cs, for all vertices s of p.
Need a family of slicing subspaces Ls for each vertex s of p.
Two canonical such families.
• Barvinok (original family of A.Barvinok):

same family Ls = L for all vertices, L the smallest family
which contains all subspaces parallel to the faces of
codimension ≤ k of p and is closed under sum.

• ConeByCone: for a vertex s, Ls the smallest family which
contains all subspaces parallel to the faces of codimension
≤ k of Cs and is closed under sum.
(Easy when p is a simple polytope)



Weighted sums Intermediate generating functions Approximation Three quasi-polynomials

Two canonical families of slicing subspaces for a
polytope p

In order to use Brion’s theorem, need to approximate
generating functions of cone Cs, for all vertices s of p.
Need a family of slicing subspaces Ls for each vertex s of p.
Two canonical such families.
• Barvinok (original family of A.Barvinok):

same family Ls = L for all vertices, L the smallest family
which contains all subspaces parallel to the faces of
codimension ≤ k of p and is closed under sum.

• ConeByCone: for a vertex s, Ls the smallest family which
contains all subspaces parallel to the faces of codimension
≤ k of Cs and is closed under sum.
(Easy when p is a simple polytope)



Weighted sums Intermediate generating functions Approximation Three quasi-polynomials

Three quasi-polynomials for a polytope p

• S(tp,h) =
∑

x∈tp∩Zd h(x)

• Barvinokp,h,k (t) =
∑

L∈L ρL(L)SL(tp,h)
where L family of sums of faces of codim ≤ k .

• ConeByConep,h,k (t)

What is it ?
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The third quasi-polynomial when p is simple
Fix k , 0 ≤ k ≤ d .

Theorem (B.B.DeL.K.V. 2013). p simple polytope.
1) For each vertex s of p, let Ls be the family of faces of
codimension ≤ k of the supporting cone Cs. Then the sum

ConeByCone(p)(ξ) :=
∑

s

∑
L∈Ls

ρLs (L)SL(s + Cs)(ξ)

is analytic at ξ = 0.
2) For h(x) = 〈`,x〉m

m! , polynomial weight on Rd , define

ConeByCone(p,h) = ConeByCone(p)[m](ξ)|
ξ=`

Then ConeByCone(tp,h) is a quasi-polynomial with the same
k + 1 highest degree terms as S(tp,h).
Proof of 1): poles and residues of SL(s + Cs)(ξ) are computed
using Poisson summation formula.
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Step-polynomials, polynomial time algorithms.
ask Jesus, Matthias ...

For h(x) = 〈`,x〉m
m!

Barvinokp,h,k (t) =
∑

L∈L ρL(L)SL(tp)[m](`)

ConeByConep,h,k (t) =
∑

s
∑

L∈Ls
ρLs (L)SL(s + Cs)[m](`)

• Read out of SL(t s + Cs)[m](ξ) how to express Barvinokp,h,k (t)
and ConeByConep,h,k (t) in terms of a finite family of
step-polynomials associated with the input (p, `,m).

• Moebius coefficients for a simplicial cone. A face L of
codimension j is defined by d − j edges of the cone.
ρ(L) = (−1)k−j binomial(d − j − 1,d − k − 1)
• Moebius coefficients for a simplex. A face L of codimension j
is defined by d + 1− j vertices, need to take also sums of
subspaces parallel to faces.
→ Poset of partitions of {1, . . . ,d + 1} into blocks of either size
1 (singletons) or size ≥ d + 1− k .
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THANK YOU
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