Algorithmic Conversion of Polynomial Optimization Problems of Noncommuting
 Variables to Semidefinite Programming Relaxations

Sparsity and Scalability

Peter Wittek
University of Borås

December 10, 2013

Outline

(9) Polynomial Optimization Problems of Noncommuting Variables
(2) SDP Relaxations
(3) The Problem of Translation

4 Sources of Sparsity
(5) Scalability
(6) Limitations
(7) Conclusions

Problem Statement

We are interested in finding the global minimum p^{*} of a polynomial $p(x)$:

$$
\begin{equation*}
\mathbb{P}_{K} \mapsto p^{*}:=\min _{x \in K} p(x), \tag{1}
\end{equation*}
$$

where K is a not necessarily convex set defined by polynomial inequalities $g_{i}(x) \geq 0, i=1, \ldots, r$.

Bounding Quantum Correlations

$$
\max _{E, \phi}\left\langle\phi, \sum_{i j} c_{i j} E_{i} E_{j} \phi\right\rangle
$$

subject to

$$
\begin{array}{rlr}
\|\phi\| & =1 \\
E_{i} E_{j} & =\delta_{i j} E_{i} \quad \forall i, j \\
\sum_{i} E_{i} & =1 \\
{\left[E_{i}, E_{j}\right]} & =0 \quad \forall i, j .
\end{array}
$$

Navascués, M.; Pironio, S. \& Acín, A. Bounding the set of quantum correlations. Physical Review Letters, 2007, 98, 1040.

Ground-state Energy

$$
\begin{gather*}
\min \langle\phi, H \phi\rangle \\
H_{\text {firee }}=\sum_{\langle r s\rangle}\left[c_{r}^{\dagger} c_{s}+c_{s}^{\dagger} c_{r}-\gamma\left(c_{r}^{\dagger} c_{s}^{\dagger}+c_{s} c_{r}\right)\right]-2 \lambda \sum_{r} c_{r}^{\dagger} c_{r}, \tag{2}
\end{gather*}
$$

where $<r s>$ goes through nearest neighbour pairs in the lattice. The fermionic operators are subject to the following constraints:

$$
\begin{aligned}
& \left\{c_{r}, c_{s}^{\dagger}\right\}=\delta_{r s} I_{r} \\
& \left\{c_{r}, c_{s}\right\}=0 .
\end{aligned}
$$

Corboz, P.; Evenbly, G.; Verstraete, F. \& Vidal, G. Simulation of interacting fermions with entanglement renormalization. Physics Review A, 2010, 81, 010303.

Detection of Multipartite Entanglement

- Partitions: $s=\{A B|C, A C| B, B C \mid A\}$.
- $P(a b c \mid x y z)$ is biseparable iff it equals to
$\sum_{s} \operatorname{tr}\left[M_{a \mid x}^{s} \otimes M_{b \mid y}^{s} \otimes M_{c \mid z}^{s} \rho^{s}\right]$,
- Where measurement operators for an isolated party commute: $\left[M_{c \mid z}^{A B \mid C}, M_{c^{\prime} \mid z^{\prime}}^{A B \mid C}\right]$.
- Bancal, J.-D.; Gisin, N.; Liang, Y.-C. \& Pironio, S. Device-Independent Witnesses of Genuine Multipartite Entanglement. Physics Review Letters, 2011, 106, 250404.

Mutually Unbiased Bases

Mutually unbiased bases in Hilbert space \mathbb{C}^{d} are two orthonormal bases $\left\{\left|e_{1}\right\rangle, \ldots,\left|e_{d}\right\rangle\right\}$ and $\left\{\left|f_{1}\right\rangle, \ldots,\left|f_{d}\right\rangle\right\}$ such that $\left|\left\langle e_{j} \mid f_{k}\right\rangle\right|^{2}=\frac{1}{d}, \quad \forall j, k \in\{1, \ldots, d\}$.
Translating it to a noncommutative optimization problem:
(1) $\Pi_{i}^{X}=\left(\Pi_{i}^{X}\right)^{*}$;
(3) $\Pi_{i}^{X} \Pi_{j}^{X}=\delta_{i j} \Pi_{i}^{X}$;
(3) $\sum_{i=1}^{d} \Pi_{i}^{x}=\mathbb{I}$;
(1) $\Pi_{i}^{x} \Pi_{j}^{x^{\prime}} \Pi_{i}^{x}=\frac{1}{d} \Pi_{i}^{x}$, for $x \neq x^{\prime}$;
(0) $\left[\Pi_{i}^{X} O_{1} \Pi_{i}^{X}, \Pi_{i}^{X} O_{2} \Pi_{i}^{X}\right]=0$, for any x, i, and any pair of monomials O_{1} and O_{2} of $\left\{\Pi_{i}^{x}\right\}$ of length three.

Words and Involution

- Given n noncommuting variables, words are sequences of letters of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $x^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)$.
- E.g., $w=x_{1} x_{2}^{*}$.
- Involution: similar to a complex conjugation on sequences of letters.
- A polynomial is a linear combination of words $p=\sum_{w} p_{w} w$.
- Hermitian moment matrix.
- Hermitian variables.
- Versus commutative case.

The Target SDP

We replace the optimization problem (1) by the following SDP:

$$
\begin{array}{cc}
\min _{y} & \sum_{w} p_{w} y_{w} \tag{3}\\
\text { s.t. } & M(y) \succeq 0, \\
& M\left(g_{i} y\right) \succeq 0, i=1, \ldots, r .
\end{array}
$$

- A truncated Hankel matrix.

Pironio, S.; Navascués, M. \& Acín, A. Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM Journal on Optimization, SIAM, 2010, 20, 2157-2180.

The Complexity of Translation

- Generating the moment and localizing matrices is not a trivial task.
- The number of words - the monomial basis - grows exponentially in the order of relaxation.
- The number of elements in the moment matrix is the square of that.

Commutative Examples

- SparsePOP
- Approximative, up to 1,000 variables in optimal cases.
- Gloptipoly 3.
- Philipp Rostalski's convex algebraic geometry package.

Supporting Libraries

- Efficient noncommutative symbolic operations
- Undocumented and dying feature in Yalmip (Matlab).
- SymPy and its quantum physics extension.
- SymbolicC++.
- NCAlgebra in Mathematica.
- Singular, GAP, etc.

The Kinds of SDPs

- Equality constraints
- Solving the equalities is less efficient.
- Structural Sparsity
- Sparsity in the generated SDP

Reduce the Monomial Basis

- We often encounter equality constraints of the following form:
- $a+b=0$, where a and b are monomials.
- Remove a from the monomial basis, and substitute it with $-b$ when encountered.

Toy Example: Polynomial Optimization

Consider the following polynomial optimization problem:

$\min 2 x_{1} x_{2}$
$x \in \mathbb{R}^{2}$

such that

$$
\begin{gathered}
-x_{2}^{2}+x_{2}+0.5 \geq 0 \\
x_{1}^{2}-x_{1}=0
\end{gathered}
$$

Toy Example: Corresponding SDP

$$
\min _{y} 2 y_{12}
$$

such that

$$
\begin{gathered}
{\left[\begin{array}{c|cc|ccc}
1 & y_{1} & y_{2} & y_{11} & y_{12} & y_{22} \\
\hline y_{1} & y_{11} & y_{12} & y_{111} & y_{112} & y_{122} \\
y_{2} & y_{12} & y_{22} & y_{112} & y_{122} & y_{222} \\
\hline y_{11} & y_{111} & y_{112} & y_{1111} & y_{1112} & y_{1122} \\
y_{12} & y_{112} & y_{122} & y_{1112} & y_{1122} & y_{1222} \\
y_{22} & y_{122} & y_{222} & y_{1122} & y_{1222} & y_{2222}
\end{array}\right] \succeq 0} \\
{\left[\left.\begin{array}{c}
-y_{22}+y_{2}+0.5 \\
\hline-y_{122}+y_{12}+0.5 y_{1} \\
-y_{222}+y_{22}+0.5 y_{2}
\end{array} \right\rvert\,-y_{1122}+y_{122}+0.5 y_{1}\right.} \\
\hline-y_{112}+0.5 y_{11} \\
-y_{1222}+y_{222}+0.5 y_{2} \\
{\left[\begin{array}{c|ccc}
y_{11}-y_{1} & y_{111}-y_{11} & y_{112}-y_{12} \\
\hline y_{111}-y_{11} & y_{1111}-y_{111} & y_{1112}-y_{112} \\
y_{112}-y_{12} & y_{1112}-y_{112} & y_{1122}-y_{122}
\end{array}\right]=0 .}
\end{gathered}
$$

Toy Example: Reduced SDP

$\min _{y} 2 y_{12}$
such that
$\left[\begin{array}{c|cc|cc}1 & y_{1} & y_{2} & y_{12} & y_{22} \\ \hline y_{1} & y_{1} & y_{12} & y_{12} & y_{122} \\ y_{2} & y_{12} & y_{22} & y_{122} & y_{222} \\ \hline y_{12} & y_{12} & y_{122} & y_{122} & y_{1222} \\ y_{22} & y_{122} & y_{222} & y_{1222} & y_{2222}\end{array}\right] \succeq 0$

$$
\left[\begin{array}{c|cc}
-y_{22}+y_{2}+0.5 & -y_{122}+y_{12}+0.5 y_{1} & -y_{222}+y_{22}+0.5 y_{2} \\
\hline-y_{122}+y_{12}+0.5 y_{1} & -y_{122}+y_{12}+0.5 y_{1} & -y_{1222}+y_{122}+0.5 y_{12} \\
-y_{222}+y_{22}+0.5 y_{2} & -y_{1222}+y_{122}+0.5 y_{12} & -y_{2222}+y_{222}+0.5 y_{22}
\end{array}\right] \succeq 0 .
$$

Fast Monomial Substitution

- Noncommutative symbolic libraries come with substitution routines.
- They are prepared for all eventualities.
- We know what monomials look like.
- Substitution routine can be tuned accordingly.

Ground-state Energy

The constraints are simple:

$$
\begin{aligned}
& \left\{c_{r}, c_{s}^{\dagger}\right\}=\delta_{r s} I_{r} \\
& \left\{c_{r}, c_{s}\right\}=0 .
\end{aligned}
$$

- Most of these are monomial substitutions.
- The number of actual equalities is linear.

Multipartite Correlations

- $\left[M_{c \mid z}^{A B \mid C}, M_{c^{\prime} \mid Z^{\prime}}^{A B \mid C}\right]=0$.
- Notice the independence of algebras.
- Reduce the size of the moment matrix.

Mutually Unbiased Bases

- $\left[\Pi_{i}^{x} O_{1} \Pi_{i}^{x}, \Pi_{i}^{x} O_{2} \Pi_{i}^{x}\right]=0$ implies over 34 billion constraints for $D=6, K=4$.
- Constant number of equalities: $\sum_{i=1}^{d} \Pi_{i}^{X}=\mathbb{I}$.
- The rest are all monomial substitutions.

We Cannot Change the Complexity

- We can make wise decisions in the implementation.
- SDP wrapper libraries will not generate sufficiently sparse SDPs: Yalmip, CvxOpt, PICOS.
- Re-implementation from symbolic manipulations.
- Choose your interpreter wisely: Pypy.

Memory Use

Figure : Memory use of different implementations (log log scale).

Running time

Figure : Running time of different implementations (log log scale).

Parallelization

- Not all programming languages parallelize easily.
- Internal symmetries of the moment matrix imply data dependencies.
- Race conditions exist.
- Only calculating the moment matrix is hard to parallelize.

Solving the SDPs

- Target solver: SDPA.
- Accepts sparse file format.
- Parallel and distributed.
- Accelerated by GPUs: Fujisawa, K.; Sato, H.; Matsuoka, S.; Endo, T.; Yamashita, M. \& Nakata, M. High-performance general solver for extremely large-scale semidefinite programming problems. Proceedings of SC-12, International Conference on High Performance Computing, Networking, Storage and Analysis, 2012, 93:1-93:11.

Where the SDPs Go Wrong

- Generating the SPDs is not flawless.
- Toy example works.
- Calculating the ground-state energy of systems of harmonic oscillators works.
- Multipartite entanglement, MUBs, more involved Hamiltonians still have problems.

Summary

- http://arxiv.org/abs/1308.6029
- GitHub repositories: ncpol2sdpa, multipartite_entanglement, ncpol2sdpa-cpp.
- Problems in this domain imply sparse structures.
- Scalability to real-world problems: hundred noncommuting variables with quadratic numbers of constraints.
- Limitations apply.

