Algorithmic Conversion of Polynomial Optimization Problems of Noncommuting Variables to Semidefinite Programming Relaxations Sparsity and Scalability

Peter Wittek

University of Borås

December 10, 2013

Outline

- Polynomial Optimization Problems of Noncommuting Variables
- 2 SDP Relaxations
- The Problem of Translation
- 4 Sources of Sparsity
- Scalability
- 6 Limitations
 - Conclusions

Problem Statement

We are interested in finding the global minimum p^* of a polynomial p(x):

$$\mathbb{P}_{\mathcal{K}} \mapsto p^* := \min_{x \in \mathcal{K}} p(x), \tag{1}$$

where *K* is a not necessarily convex set defined by polynomial inequalities $g_i(x) \ge 0, i = 1, ..., r$.

Bounding Quantum Correlations

$$\max_{E,\phi} \langle \phi, \sum_{ij} c_{ij} E_i E_j \phi \rangle$$

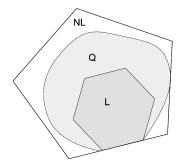
subject to

$$||\phi|| = 1$$

$$E_i E_j = \delta_{ij} E_i \quad \forall i, j$$

$$\sum_i E_i = 1$$

$$[E_i, E_j] = 0 \quad \forall i, j.$$



Navascués, M.; Pironio, S. & Acín, A. Bounding the set of quantum correlations. *Physical Review Letters*, 2007, 98, 1040.

Ground-state Energy

 $\min\langle\phi, H\phi\rangle$

$$H_{\text{free}} = \sum_{\langle rs \rangle} \left[c_r^{\dagger} c_s + c_s^{\dagger} c_r - \gamma (c_r^{\dagger} c_s^{\dagger} + c_s c_r) \right] - 2\lambda \sum_r c_r^{\dagger} c_r, \quad (2)$$

where < rs > goes through nearest neighbour pairs in the lattice. The fermionic operators are subject to the following constraints:

$$\{ \boldsymbol{c}_r, \boldsymbol{c}_s^{\dagger} \} = \delta_{rs} \boldsymbol{I}_r \\ \{ \boldsymbol{c}_r, \boldsymbol{c}_s \} = \boldsymbol{0}.$$

Corboz, P.; Evenbly, G.; Verstraete, F. & Vidal, G. Simulation of interacting fermions with entanglement renormalization. *Physics Review A*, 2010, 81, 010303.

Detection of Multipartite Entanglement

- Partitions: $s = \{AB|C, AC|B, BC|A\}$.
- P(abc|xyz) is biseparable iff it equals to $\sum_{s} tr[M^{s}_{a|x} \otimes M^{s}_{b|y} \otimes M^{s}_{c|z} \rho^{s}],$
- Where measurement operators for an isolated party commute: [M^{AB|C}_{c|z}, M^{AB|C}_{c'|z'}].
- Bancal, J.-D.; Gisin, N.; Liang, Y.-C. & Pironio, S. Device-Independent Witnesses of Genuine Multipartite Entanglement. *Physics Review Letters*, 2011, 106, 250404.

Mutually Unbiased Bases

Mutually unbiased bases in Hilbert space \mathbb{C}^d are two orthonormal bases $\{|e_1\rangle, \dots, |e_d\rangle\}$ and $\{|f_1\rangle, \dots, |f_d\rangle\}$ such that $|\langle e_j | f_k \rangle|^2 = \frac{1}{d}, \quad \forall j, k \in \{1, \dots, d\}.$ Translating it to a noncommutative optimization problem:

- **1** $\Pi_{i}^{x} = (\Pi_{i}^{x})^{*};$

- $\Pi_i^x \Pi_j^{x'} \Pi_i^x = \frac{1}{d} \Pi_i^x$, for $x \neq x'$;
- **5** $[\Pi_i^x O_1 \Pi_i^x, \Pi_i^x O_2 \Pi_i^x] = 0$, for any *x*, *i*, and any pair of monomials O_1 and O_2 of $\{\Pi_i^x\}$ of length three.

Words and Involution

- Given *n* noncommuting variables, words are sequences of letters of x = (x₁, x₂,..., x_n) and x^{*} = (x₁^{*}, x₂^{*},..., x_n^{*}).
- E.g., $w = x_1 x_2^*$.
- Involution: similar to a complex conjugation on sequences of letters.
- A polynomial is a linear combination of words $p = \sum_{w} p_{w} w$.
- Hermitian moment matrix.
- Hermitian variables.
- Versus commutative case.

The Target SDP

We replace the optimization problem (1) by the following SDP:

$$\begin{array}{ll} \min_{y} & \sum_{w} p_{w} y_{w} & (3) \\ \text{s.t.} & M(y) \succeq 0, \\ & M(g_{i} y) \succeq 0, i = 1, \dots, r. \end{array}$$

• A truncated Hankel matrix.

Pironio, S.; Navascués, M. & Acín, A. Convergent relaxations of polynomial optimization problems with noncommuting variables. *SIAM Journal on Optimization*, SIAM, 2010, 20, 2157–2180.

The Complexity of Translation

- Generating the moment and localizing matrices is not a trivial task.
- The number of words the monomial basis grows exponentially in the order of relaxation.
- The number of elements in the moment matrix is the square of that.

Commutative Examples

- SparsePOP
 - Approximative, up to 1,000 variables in optimal cases.
- Gloptipoly 3.
- Philipp Rostalski's convex algebraic geometry package.

Supporting Libraries

- Efficient noncommutative symbolic operations
 - Undocumented and dying feature in Yalmip (Matlab).
 - SymPy and its quantum physics extension.
 - SymbolicC++.
 - NCAlgebra in Mathematica.
 - Singular, GAP, etc.

The Kinds of SDPs

- Equality constraints
 - Solving the equalities is less efficient.
- Structural Sparsity
- Sparsity in the generated SDP

Reduce the Monomial Basis

- We often encounter equality constraints of the following form:
 - a + b = 0, where *a* and *b* are monomials.
- Remove *a* from the monomial basis, and substitute it with -*b* when encountered.

Toy Example: Polynomial Optimization

Consider the following polynomial optimization problem:

 $\min_{x\in\mathbb{R}^2} 2x_1x_2$

such that

$$-x_2^2 + x_2 + 0.5 \ge 0$$

$$x_1^2 - x_1 = 0.$$

Toy Example: Corresponding SDP

				y	2		
	۲ 1	y 1	y 2	y 11	y 12	<i>y</i> 22 <i>y</i> 122 <i>y</i> 222 <i>y</i> 1122 <i>y</i> 1222 <i>y</i> 2222	1
	<i>y</i> ₁	y 11	y 12	y 111	y 112	y 122	
	y ₂	y 12	y 22	y 112	y 122	y 222	<u>> 0</u>
	y 11	y 111	y 112	y 1111	y 1112	y 1122	
	y 12	y 112	y 122	y 1112	y 1122	y 1222	
	y 22	y 122	y 222	y 1122	y 1222	y 2222	

 $\min 2v_{12}$

$$\begin{bmatrix} -y_{22} + y_2 + 0.5 & -y_{122} + y_{12} + 0.5y_1 & -y_{222} + y_{22} + 0.5y_2 \\ -y_{122} + y_{12} + 0.5y_1 & -y_{1122} + y_{112} + 0.5y_{11} & -y_{1222} + y_{122} + 0.5y_{12} \\ -y_{222} + y_{22} + 0.5y_2 & -y_{1222} + y_{122} + 0.5y_{12} & -y_{2222} + y_{222} + 0.5y_{22} \end{bmatrix} \succeq 0.$$

$$\begin{bmatrix} y_{11} - y_1 & y_{111} - y_{11} & y_{112} - y_{12} \\ \hline y_{111} - y_{11} & y_{1111} - y_{111} & y_{1112} - y_{112} \\ \hline y_{112} - y_{12} & y_{112} - y_{112} & y_{1122} - y_{122} \end{bmatrix} = 0.$$

such that

Toy Example: Reduced SDP

$\min_{y} 2y_{12}$

such that

1	y 1	y 2	y 12	y 22	1
y 1	y 1	y 12	y 12	y 122	
y 2	y 12	y 22	y 122	y 222	≿ 0
y ₁₂	y 12	y 122	y 122	y 1222	
y ₂₂	y 122	y 222	y 1222	Y 2222]

$$\begin{bmatrix} -y_{22} + y_2 + 0.5 & -y_{122} + y_{12} + 0.5y_1 & -y_{222} + y_{22} + 0.5y_2 \\ -y_{122} + y_{12} + 0.5y_1 & -y_{122} + y_{12} + 0.5y_1 & -y_{1222} + y_{122} + 0.5y_{12} \\ -y_{222} + y_{22} + 0.5y_2 & -y_{1222} + y_{122} + 0.5y_{12} & -y_{2222} + y_{222} + 0.5y_{22} \end{bmatrix} \succeq 0.$$

Fast Monomial Substitution

- Noncommutative symbolic libraries come with substitution routines.
- They are prepared for all eventualities.
- We know what monomials look like.
- Substitution routine can be tuned accordingly.

Ground-state Energy

The constraints are simple:

$$\{\boldsymbol{c}_{r}, \boldsymbol{c}_{s}^{\dagger}\} = \delta_{rs}\boldsymbol{I}_{r}$$

$$\{\boldsymbol{c}_{r}, \boldsymbol{c}_{s}\} = \boldsymbol{0}.$$

- Most of these are monomial substitutions.
- The number of actual equalities is linear.

Multipartite Correlations

•
$$[M_{c|z}^{AB|C}, M_{c'|z'}^{AB|C}] = 0.$$

- Notice the independence of algebras.
- Reduce the size of the moment matrix.

Mutually Unbiased Bases

- $[\Pi_i^x O_1 \Pi_i^x, \Pi_i^x O_2 \Pi_i^x] = 0$ implies over 34 billion constraints for D = 6, K = 4.
- Constant number of equalities: $\sum_{i=1}^{d} \Pi_{i}^{x} = \mathbb{I}$.
- The rest are all monomial substitutions.

We Cannot Change the Complexity

- We can make wise decisions in the implementation.
- SDP wrapper libraries will not generate sufficiently sparse SDPs: Yalmip, CvxOpt, PICOS.
- Re-implementation from symbolic manipulations.
- Choose your interpreter wisely: Pypy.

Memory Use

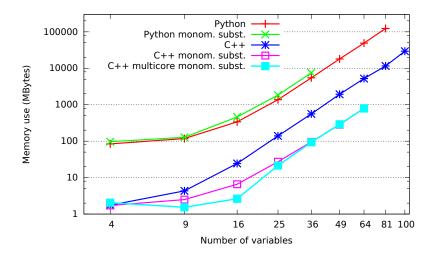


Figure : Memory use of different implementations (log log scale).

Running time

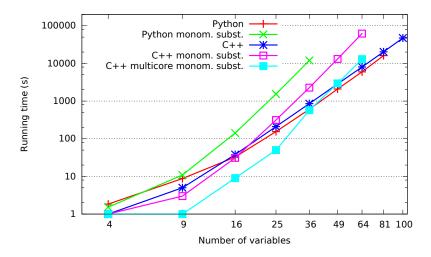


Figure : Running time of different implementations (log log scale).

Parallelization

- Not all programming languages parallelize easily.
- Internal symmetries of the moment matrix imply data dependencies.
- Race conditions exist.
- Only calculating the moment matrix is hard to parallelize.

Solving the SDPs

- Target solver: SDPA.
- Accepts sparse file format.
- Parallel and distributed.
- Accelerated by GPUs: Fujisawa, K.; Sato, H.; Matsuoka, S.; Endo, T.; Yamashita, M. & Nakata, M. High-performance general solver for extremely large-scale semidefinite programming problems. *Proceedings of SC-12, International Conference on High Performance Computing, Networking, Storage and Analysis*, 2012, 93:1–93:11.

Where the SDPs Go Wrong

- Generating the SPDs is not flawless.
- Toy example works.
- Calculating the ground-state energy of systems of harmonic oscillators works.
- Multipartite entanglement, MUBs, more involved Hamiltonians still have problems.

Summary

- http://arxiv.org/abs/1308.6029
- GitHub repositories: ncpol2sdpa, multipartite_entanglement, ncpol2sdpa-cpp.
- Problems in this domain imply sparse structures.
- Scalability to real-world problems: hundred noncommuting variables with quadratic numbers of constraints.
- Limitations apply.