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This talk is based on joint work with Henri Lombardi (Besançon, France) and
Daniel Perrucci (Buenos Aires, Argentina). Follows a first talk by Daniel.
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1 Sums of squares

Hilbert’s question (1900), X =(X1,	Xk): is it true that

P ∈R[X ] is non negative if and only if P ∈
∑

R(X) 2

sum of squares of rational function (with denominators)

Artin’s positive answer (1927): abstract algebra

Result about the reals, method of proof uses much more abstract objects :
real closures of the field of rational functions.
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Outline of Artin’s proof:

• Start from P which is not a sum of squares of rational functions.

• Sums of squares do not contain P and form a proper cone.

• Using Zorn’s lemma, obtain a maximal proper cone which does not contain
P . Such a maximal cone is a total order.

• Taking the real closure of the field of rational functions for this order, get
a field in which P takes negative values (the images of the variables).

• If P takes negative values in a real closed field containing the reals, P
takes negative values over the reals. This is the first instance of a transfer
principle in real algebraic geometry. Based on Sturm’s theorem.

“quite indirect” : by contradiction + use of Zorn
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Many problems after Artin’s proof.

Effectivity problems : is there an algorithm checking whether a given polyno-
mial is everywhere nonnegative and if so provides a representation as a sum of
squares?

Complexity problems : what are the best possible bounds on the degrees of
the polynomials in this representation?

Former results (see Daniel’s talk for references to former work): primitive
recursive degree bounds.

Our work [LPR] gives elementary recursive degree, precisely (d degree, k
number of variables of the input polynomial)

2
2
2d

4k
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Strategy For every unrealizable H, construct an algebraic identity ↓H↓ and
control the degrees for the Positivstellensatz. Hilbert 17 th problem follows (cf
talk by Daniel).

Principle of the proof Translate a (very elementary) proof that H is unrealiz-
able into an incompatibility (algebraic identity) ↓H↓.

Method already used by Lombardi in 1990 [Lom] to give primitive recursive
bounds : the construction of the impossibility follows the proof of unrealiz-
ability based on the very elementary proof produced by the quantifier elimination
method of Hormander [Hor],[BCR].

primitive recursive degree bounds coming from Hormander’s

quantifier elimination algorithm.
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Here the construction of the incompatibility uses more sophisticated tools that
can be used to prove the unrealizability

1. a real polynomial of odd degree has a real root

2. a real polynomial has a complex root (algebraic proof due to Laplace)

3. number of real roots given by the signature of Hermite’s quadratic form
(moment matrix (!)) which is also determined by sign conditions on prin-
cipal minors

4. Sylvester’s inertia law: the signature of a quadratic form is well defined

5. cylindrical decomposition : realizable sign conditions for P ⊂R[X1,	 ,Xk]
fixed by list of non empty sign conditions for ProjXk

(P)⊂R[X1,	 ,Xk−1].
ProjXk

(P) contains minors of several Hermite quadratic forms (using
Thom’s encoding of real roots by sign of derivatives)

necessary to construct the corresponding incompatibilities, controling the

degrees.
main concept : weak inference (see Daniel’s talk)
basic tools: algebraic identities, case by case reasoning (see Daniel’ talk)
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1.1 Base case: univariate polynomial (with parameters

A polynomial of odd degree has a real root
P (u, y) polynomial monic with respect to y, of odd degree in y (with param-

eters u (many))
Since P has a root in R for every u ∈Rk it is clear that, for every system of

sign conditions H (“context”)

if H∧P (u, t)= 0 is unrealizable, then H is unrealizable

We need to prove

⊢ ∃t P (u, t)= 0

i.e. give a construction of ↓H↓ starting from ↓H, P (u, t)= 0↓
“goes from right to left”
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Artin-Shreier’s [AS] : in a maximally real field (-1 is not a sum of squares but
in every algebraic extension -1 a sum of squares), every polynomial of odd degree
has a root: proof is by induction on the degree p, using euclidean division.

Theorem 1. Let P (u, y)∈K[u, y] monic with respect to y of odd degree p in y.
Then

⊢ ∃t P (u, t)= 0

Suppose we have an initial incompatibility ↓H, P (u, t) = 0↓ in variables (v, t),
where v ⊃ u and t � v, with degree in v bounded by δv and degree in t bounded
by δt. The final incompatibility ↓H↓ has degree in v bounded by 3g1(p) (δv +
δt degu (P )), where

g1(p)= 23·2
p−1

pp.

Degree: adds two level of exponentials
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A polynomial with real coefficients has a complex root [Lap]

P (u, t) a polynomial monic and of degree p with respect to T .

P (u, a+ i b)= 0 is an abbreviation for the two equalities

PIm(u, a, b)= 0,PRe(u, a, b)= 0

expressing that the real and imaginary part of

P (u, a+ i b)

are zero.

Since P has a root in R[i] for every υ∈Rk, it is clear that if H∧P (u,a+ i b)=0
is unrealizable then H is unrealizable.

Need to prove

⊢ ∃z [ P (z)= 0 ]

i.e. to give a construction of ↓H↓ from ↓H, P (u, a+ i b)= 0↓

“goes from right to left”
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Based on the algebraic proof of the fundamental theorem of algebra (Laplace).
Proof by induction on the exponent of 2 in the degree p, constructs a polynomial
of odd degree 6p p, which has a real root, then a complex root of P by successive
quadratic extensions.

Theorem 2. Let P (y) ∈ K[u, y] monic with respect to y, of degree p in y,

p=2r o≥ 1, with o odd. Then (z= a+ i b)

⊢ ∃z [ P (z)= 0 ]

Suppose we have an initial incompatibility ↓H, P (u, a + i b) = 0↓ in K[v,
a, b], where v ⊃ v and a, b � v, degree in v bounded by δv and degree in (a,
b) bounded by δz. The final incompatibility ↓H↓ has degree in v bounded by
g2(p) (δv+ δz degu (P )) where

g2(p)= 22
3(

p

2
)2

r

Degree: adds three level of exponentials
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Factorization into irreducible real factors of degree 1 and 2 as incom-
pabilities, with degree bounds.

Factµ,ν(t, z)

describes the factorization of P into #µ distinct real factors of degree 1 with
multiplities µ1,	 , µ#µ and #ν distinct irreducible real factors of degree 2

(tk+ ak)
2+ bk

2

with multiplities ν1,	 , ν#ν, t=(t1,	 , t#µ) and z=(z1,	 , z#ν), zk=ak+ i bk, bk=0.
That two quadratic factors are distinct is expressed by

Resy
(

(y− a)2+ b2, (y− a′)2+ b′
2)
=((a− a′)2+(b− b′)2) · ((a− a′)2+(b+ b′)2)=0

where Resy is the resutant polynomial in the variable y.
Degree: adds three level of exponentials
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Hermite’s method [Her], [BPR]

P (u, t) a polynomial monic in t of degree p.

Hermite’s quadratic form, using Newton sums

Her(P )(u)=
∑

t∈Z(P (u),R[i])

µ(t)(f1+ f2 t+
 + fp t
p−1)2,

Hermite’s theory

Rk(Her(P )(u)) = number of complex roots of P (u, t)

Si(Her(P )(u)) = number of real roots of P (u, t)

Complex conjugate roots give a difference of two squares, only real roots con-
tribute to the signature.
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fixing the number of distinct real and complex roots with multiplicities of
P by (µ, ν), get a value (RkFact(µ, ν), SiFact(µ, ν)) of the rank and signature of
Hermite’s quadratic form.

fixing a sign condition τ ∈ {−1, 0, 1}0,	 ,p−1 on the principal minors of Her-
mite’s quadratic form, get a value (RkHMi(τ),SiHMi(τ )) of its rank and signature.

By Sylvester’s inertia law,hese two values of the rank and signature cannot
be different.

Theorem 3. P (u, y)∈K[u, y]monic with respect to y of degree p in y.
If (RkHMi(τ ), SiHMi(τ))� (RkFact(µ, ν), SiFact(µ, ν)), we have

↓sign(HMiP ))= τ ,Fact(P )µ,ν(t, z)↓

with degree bounded by gH(p) degt,z (P ), with

gH(p)= 21 · 27p+1 p5p+6 34p+2.

Degree: one level of exponentials
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Similar result (statement would be more technical) for a useful generalization
(sign determination) [BPR]

Hermite’s quadratic form Her(P , Q)

Her(P , Q) =
∑

t∈Zer(P ,R[i])

µ(t)Q(t)(f1+ f2 t+
 + fp t
p−1)2

Rank(Her(P , Q)) = #{x∈Zer(P ,R[i])N Q(x)=0}

Sign(Her(P , Q)) = #{x∈Zer(P ,R)N Q(x)> 0}−#{x∈Zer(P ,R)N Q(x)< 0}

also determined by signs of principal minors
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1.2 Removing one variable: cylindrical decomposition
P s polynomials in k variables, cylindrical decomposition produces ProjXk

(P)
in k − 1 variables (minors of Hermite quadratic forms associated to products of
(few) polynomials of P). To every realizable sign condition τ on ProjXk

(P) is
associated the list Sign(τ ,P) of realizable sign conditions on P implied by τ .

Uses subresultants, sign determination, Thom encodings ...
If H is such that for every σ ∈ Sign(τ , P), H ∧ sign(P) = σ is unrealizable,
then H ∧ sign(ProjXk

(P)) = τ is unrealizable. Need to construct, given incom-
patibilities ↓H ∧ sign(P) = σ↓ for every σ ∈ Sign(τ , P), an incompatibility
↓H∧ sign(ProjXk

(P))= σ↓ which is the meaning of

(⋆) sign(ProjXk
(P))= τ ⊢

∨

σ∈Sign(τ ,P)

sign(P)= σ

“goes from right to left”
Degree: adds three level of exponentials

induction on the number of variables: the degree produced at the end (uni-

variate polynomials) ProjX2(	ProjXk
(P)) are d 4 k
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1.3 Back to effective Hilbert 17 th problem

If it is true that P > 0 everywhere, want to construct an incompatibility ↓H↓
where H

�

= {P },H≥= {−P },H== ∅ (expressing that P < 0 is empty)

start from incompatibility between P > 0 and H

P 2+(−P )P =0 (1)

and incompatibility between P =0 and H

P 2+(−P )P =0 (2)

using the inference (⋆) for ProjXk
({P }) , we get an incompatibility between H

and every relizable sign condition on ProjXk
({P })

using the inference (⋆) for ProjXk
({P }), we get an incompatibility betweenH and

every relizable sign condition on ProjXk−1
(ProjXk

({P }))
....

using k times the inference (⋆) we get an incompability between H and ...
nothing .. because all the variables have been eliminated
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as seen before (talk of Daniel) an incompatibility of ↓H↓ where H

�

= {P },
H≥= {−P },H== ∅ (expressing that P < 0 is empty) is of the form

P 2e+
∑

Qi
2−

∑

Rj
2P =0

P =

∑

Rj
2P 2

P 2e+
∑

Qi
2 =

∑

Rj
2P 2 (P 2k+

∑

Qi
2)

(P 2e+
∑

Qi
2)2

,

degree of the last eliminating family doubly exponential d4
k

, to

plug in a tower with already three level of exponents: we get

five !
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2 Discussion

Classical Nullstellensatz: single exponential bounds [Bro].

Existential theory of the reals: single exponential bounds (when based on critical
point method, not on CAD, use infinitesimal deformation) [BPR].

Why not single exponential certificate for Hilbert 17th problem ?

Trade-off: “elementary proof’ correspond to’ “long certificate”, “more sophis-
ticated proof” correspond to “shorter certificate”.
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Projects for the near future: finalize the paper (75 pages), first talk announcing
the result in NY in jan 1991 (23 years ago)

Projects for the future

- use another algebraic proof of the existence of complex roots (two
exponentials rather than three) (recent work of M. Eisermann)

- use critical point method rather than projection variable after variable (one
exponential rather than two)
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