Some Basis Theorems in Recursion Theory

Liang Yu Institute of mathematics Nanjing University

June 24, 2014

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Cantor and Baire Space

Definition

- Cantor space is a topology over 2^ω. The basic open sets are those sets of reals extending a fixed finite string σ ∈ 2^{<ω}. We use [σ] to denote the basic open set {x ∈ 2^ω | x ≻ σ}.
- Baire space is a topology over ω^ω. The basic open sets are those sets of reals extending a fixed finite string σ ∈ ω^{<ω}. We use [σ] to denote the basic open set {x ∈ ω^ω | x ≻ σ}.

König Lemma

Lemma

If *T* is a finitely branching tree, then $[T] = \{x \mid x \text{ is an infinite path through } T\}$ is not empty if and only if *T* is infinite.

Proof.

" \rightarrow " is trivial.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

König Lemma

Lemma

If *T* is a finitely branching tree, then $[T] = \{x \mid x \text{ is an infinite path through } T\}$ is not empty if and only if *T* is infinite.

Proof.

" \rightarrow " is trivial.

Exercise

- Cantor space is compact.
- König lemma fails if T is not finitely branching.

Kreisel's Basis Theorem

Theorem

If $T \subseteq 2^{<\omega}$ is an infinite recursive tree, then T has an infinite path recursive in \emptyset' .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Proof.

Let *x* be the leftmost path of *T*. The existence of *x* is guaranteed by König lemma. Then $x \leq_T \emptyset'$.

Kreisel's Basis Theorem

Theorem

If $T \subseteq 2^{<\omega}$ is an infinite recursive tree, then T has an infinite path recursive in \emptyset' .

Proof.

Let *x* be the leftmost path of *T*. The existence of *x* is guaranteed by König lemma. Then $x \leq_T \emptyset'$.

Exercise

There is an infinite recursive tree $T \subseteq 2^{<\omega}$ so that T has no recursive infinite path.

Relativization and Lowness

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A real $x \in 2^{\omega}$ is GL_1 if $x' \equiv_T x \oplus \emptyset'$. A real x is low (L_1) if $x \leq_T \emptyset'$ and x is GL_1 .

A Nonrecursive Low Real

Theorem

There is a nonrecursive low real.

Proof.

$$N_e: \Phi_e \text{ is total } \implies x \neq \Phi_e.$$

We satisfy N_e to ensure x is nonrecursive. To make it be low, we need $\{e \mid \Phi_e^x(e) \downarrow\} \leq_T \emptyset'$. We perform a \emptyset' -effective Cohen-forcing construction to make x be GL_1 .

Jockusch-Soare Forcing

(日) (日) (日) (日) (日) (日) (日)

Definition

A JS forcing is a partial ordering $\langle \mathbf{T}, \leq \rangle$ where $\mathbf{T} = \{T \subseteq 2^{<\omega} \mid T \text{ is an infinite recursive tree}\}. T_1 \leq T_2 \text{ if}$ $T_1 \subseteq T_2.$

Jockusch-Soare Forcing

Definition

A JS forcing is a partial ordering $\langle \mathbf{T}, \leq \rangle$ where $\mathbf{T} = \{T \subseteq 2^{<\omega} \mid T \text{ is an infinite recursive tree}\}$. $T_1 \leq T_2$ if $T_1 \subseteq T_2$.

Exercise

There is an r.e. infinite tree T so that every infinite path in T computes the halting problem.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Low Basis Theorem

Theorem

If *T* is a condition, then there is a real $x \in [T]$ so that $x' \leq_T \emptyset'$.

Proof.

An \emptyset' -effective forcing argument. For any *e* and condition *S*, check whether there is another condition $S_1 \leq S$ so that for any $\sigma \in S_1$, $\Phi_e^{\sigma}(e) \uparrow$.

・ コット (雪) (小田) (コット 日)

Hyperimmune-freeness

Definition

A real x is hyperimmune-free if for any function $f \leq_T x$, there is a recursive function g dominating f. In other words, $\forall n(g(n) > f(n)).$

Theorem

If $x \leq_T \emptyset'$ is not recursive, then x is not hyperimmune-free.

Proof.

By Shoenfield lemma, there is a recursive function f so that $x(n) = \lim_{s \to \infty} f(n, s)$. Let g(n) be the least $s_n \ge n$ so that for any $m \le n$, $x(m) = f(m, s_n)$. Then g(n) is not dominated by any recursive function.

Exercise

1 If x is r.e. in \emptyset' and hyperimmune-free, then x is recursive.

・ コット (雪) (小田) (コット 日)

2 There is a nonrecursive hyperimmune-free real $x \leq_T \emptyset''$.

Hyperimmune-free Basis Theorem

Theorem

If T is a condition, then there is hyperimmune-free real $x \in [T]$.

Proof.

A forcing construction.

Check whether there is some *n* so that there is some $S \leq T$ and $S \Vdash \Phi_e(n) \uparrow$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ● ◆○ ○ ○

Peano Arithmetic Theory

Definition

x has Peano degree, or *PA*, if there is a theory $T \leq_T x$ which is a complete extension of Peano arithmetic axioms.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

By Gödel incompleteness, no PA degree can be recursive.

A set of PA-degrees

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem

There is a condition T so that any $x \in [T]$ is of PA.

So there is a *PA*-real *x* so that $x' \leq_T \emptyset'$.

PA-basis Theorem

Theorem

If T is a condition and x is of PA, then there is some $y \in [T]$ so that $y \leq_T x$.

Proof.

First, given any number *n*, *x* proves that *T* has height at least *n*. By induction, given $\sigma_n \in T$, decide the sentence " $\sigma_n^{-}0$ has height less than $\sigma_n^{-}1$ in *T*".

Exercise

- Prove that if x is of PA, then there is some real $y \leq_T x$ so that $\forall e(\Phi_e(e) \not\simeq y(e))$.
- 2 If x is of PA, then there is a complete extension T of PA so that $T \equiv_T x$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

On ⊓1₁-sets

There is an effective enumeration of recursive trees in $\omega^{<\omega}$. In other words, there is a recursive set $U \subseteq \omega \times \omega^{<\omega}$ so that for any $e, U_e = \{\sigma \mid (e, \sigma) \in U\}$ is a tree and for every recursive tree *T*, there is some U_e so that $[U_e] = [T]$. Let $WF = \{e \mid U_e$ has no infinite path $\}$. Obviously *WF* is a Π_1^1 -set.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Π_1^1 -completeness

Theorem

WF is Π_1^1 -complete.

Proof.

We need to prove that given any Π_1^1 -real x, there is a recursive function f so that $x(n) = 1 \leftrightarrow n \in WF$.

Corollary

WF is not Σ_1^1 .

Proof.

Otherwise, then $\forall n (n \notin WF \leftrightarrow f(n) \in WF)$ for some recursive function *f*. A contradiction by recursion theorem.

Gandy Basis Theroem

Theorem

- If $T \subseteq \omega^{<\omega}$ has an infinite path, then there is some $x \in [T]$ so that $x \leq_T WF$.
- If A ⊆ 2^ω is a nonempty Σ¹₁ set, then A contains a real recursive in WF.

Proof.

By induction recursive in WF.

Exercise

Prove that there is recursive tree $T \subseteq \omega^{<\omega}$ having an infinite path but no path recursive in \emptyset' .

Kleene-Brouwer Ordering

Given $\sigma, \tau \in \omega^{<\omega}$, we say that $\sigma <_{KB} \tau$ if either $\sigma \succ \tau$ or $\exists n(\sigma \upharpoonright n = \tau \upharpoonright n \land \sigma(n) < \tau(n))$.

Lemma

A tree T has no infinite path if and only if $<_{KB}$ is a T-recursive well ordering over T.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proof.

"—" is obvious.

" \rightarrow " can be proved as in König lemma.

Representations of ⊓1+sets

Theorem

A set of reals $A \subseteq 2^{<\omega}$ is Π_1^1 if and only if there is a recursive tree $T \subseteq 2^{<\omega} \times \omega^{<\omega}$ so that $x \in A \leftrightarrow T_x = \{\sigma \mid \exists n((x \upharpoonright n, \sigma) \in T)\}$ has no infinite path.

So $x \in A$ if and only if $<_{KB}$ is a well ordering over *x*-recursive tree T_x .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Constructibility (1)

$$egin{aligned} & L_0 = \emptyset; \ & L_{lpha+1} = \{ x \mid \exists arphi(z \in x \leftrightarrow L_lpha \models arphi(z)) \}; \ & L_\lambda = igcup_{lpha < \lambda} L_\lambda; \ & L = igcup_{lpha < \lambda} L_lpha. \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Gödel proves that *L* is a model of *ZFC*.

Constructibility (2)

Given a set y,

 $L_{0}[y] = \emptyset;$ $L_{\alpha+1}[y] = \{x \mid \exists \varphi(z \in x \leftrightarrow \langle L_{\alpha}[y], y \cap L_{\alpha}[y] \rangle \models \varphi(z, y \cap L_{\alpha}[y]))\};$ $L_{\lambda}[y] = \bigcup_{\alpha < \lambda} L_{\lambda}[y];$ $L[y] = \bigcup_{\alpha} L_{\alpha}[y].$

Exercise

Prove that if $x \in 2^{\omega}$ does not belong to L, then $x \in L[x]$ but $L[\{x\}] = L$.

Representing Π_1^1 sets in *L*

Theorem

If $A \subseteq 2^{<\omega}$ is Π_1^1 , then there is tree $T \subseteq 2^{<\omega} \times \omega_1^{<\omega}$ in L so that $x \in A \leftrightarrow \exists f \in \omega_1^{\omega} \cap L[x]((x, f) \in [T]).$

Proof.

By the presentation of Π_1^1 -sets, let *S* be the recursive tree. Let $(\sigma, \tau) \in T$ if τ is a finite order preserving (in the $<_{KB}$ sense) function from $|\sigma|^{|\sigma|} \cap \{\nu \mid (\sigma, \nu) \in S\}$ to ω_1

A Basis Theorem for Π_1^1 -set

Theorem

If $A \subseteq 2^{\omega}$ is Π_1^1 , then there is some real $x \in A$ so that $x \in L$.

Proof.

Presenting Π_1^1 -sets as a tree *T* in *L*. Consider the left most infinite path in *T*.

Exercise

Prove that there is a Π_1^1 set $\{x\} \subset 2^{\omega}$ so that x is not recursive in WF.

Shoenfield Absoluteness

Theorem

If $A \subseteq 2^{\omega}$ is Σ_2^1 , then there is some real $x \in A$ so that $x \in L$.

(日) (日) (日) (日) (日) (日) (日)

Proof.

Immediately from the previous theorem.

Exercise

• $A \subseteq 2^{<\omega}$ is Σ_2^1 if and only if there is tree $T \subseteq 2^{<\omega} \times \omega_1^{<\omega}$ in *L* so that $x \in A \leftrightarrow \exists f \in \omega_1^{\omega} \cap L[x]((x, f) \in [T]).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

2 $x \in 2^{\omega}$ is Σ_2^1 if and only if there is Σ_1 -formula φ so that $n \in x \leftrightarrow L_{\omega_1^L} \models \varphi(n)$.

Thanks

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●