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Cantor and Baire Space

Definition
1 Cantor space is a topology over 2ω. The basic open sets

are those sets of reals extending a fixed finite string
σ ∈ 2<ω. We use [σ] to denote the basic open set
{x ∈ 2ω | x � σ}.

2 Baire space is a topology over ωω. The basic open sets are
those sets of reals extending a fixed finite string σ ∈ ω<ω.
We use [σ] to denote the basic open set {x ∈ ωω | x � σ}.



König Lemma

Lemma
If T is a finitely branching tree, then
[T ] = {x | x is an infinite path through T} is not empty if and
only if T is infinite.

Proof.
“→” is trivial.
“←. Suppose T is infinite. Then using the fact as an “oracle” to
construct an infinite path.

Exercise
Cantor space is compact.
König lemma fails if T is not finitely branching.
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Kreisel’s Basis Theorem

Theorem
If T ⊆ 2<ω is an infinite recursive tree, then T has an infinite
path recursive in ∅′.

Proof.
Let x be the leftmost path of T . The existence of x is
guaranteed by König lemma.
Then x ≤T ∅′.

Exercise
There is an infinite recursive tree T ⊆ 2<ω so that T has no
recursive infinite path.
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Relativization and Lowness

A real x ∈ 2ω is GL1 if x ′ ≡T x ⊕ ∅′.
A real x is low (L1) if x ≤T ∅′ and x is GL1.



A Nonrecursive Low Real

Theorem
There is a nonrecursive low real.

Proof.

Ne : Φe is total =⇒ x 6= Φe.

We satisfy Ne to ensure x is nonrecursive.
To make it be low, we need {e | Φx

e(e) ↓} ≤T ∅′.
We perform a ∅′-effective Cohen-forcing construction to make x
be GL1.



Jockusch-Soare Forcing

Definition
A JS forcing is a partial ordering 〈T,≤〉 where
T = {T ⊆ 2<ω | T is an infinite recursive tree}. T1 ≤ T2 if
T1 ⊆ T2.

Exercise
There is an r.e. infinite tree T so that every infinite path in T
computes the halting problem.
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Low Basis Theorem

Theorem
If T is a condition, then there is a real x ∈ [T ] so that x ′ ≤T ∅′.

Proof.
An ∅′-effective forcing argument.
For any e and condition S, check whether there is another
condition S1 ≤ S so that for any σ ∈ S1, Φσ

e(e) ↑.



Hyperimmune-freeness

Definition
A real x is hyperimmune-free if for any function f ≤T x , there is
a recursive function g dominating f . In other words,
∀n(g(n) > f (n)).

Theorem
If x ≤T ∅′ is not recursive, then x is not hyperimmune-free.

Proof.
By Shoenfield lemma, there is a recursive function f so that
x(n) = lims→∞ f (n, s).
Let g(n) be the least sn ≥ n so that for any m ≤ n,
x(m) = f (m, sn). Then g(n) is not dominated by any recursive
function.



Exercise
1 If x is r.e. in ∅′ and hyperimmune-free, then x is recursive.
2 There is a nonrecursive hyperimmune-free real x ≤T ∅′′.



Hyperimmune-free Basis Theorem

Theorem
If T is a condition, then there is hyperimmune-free real x ∈ [T ].

Proof.
A forcing construction.
Check whether there is some n so that there is some S ≤ T
and S 
 Φe(n) ↑.



Peano Arithmetic Theory

Definition
x has Peano degree, or PA, if there is a theory T ≤T x which is
a complete extension of Peano arithmetic axioms.

By Gödel incompleteness, no PA degree can be recursive.



A set of PA-degrees

Theorem
There is a condition T so that any x ∈ [T ] is of PA.

So there is a PA-real x so that x ′ ≤T ∅′.



PA-basis Theorem

Theorem
If T is a condition and x is of PA, then there is some y ∈ [T ] so
that y ≤T x.

Proof.
First, given any number n, x proves that T has height at least n.
By induction, given σn ∈ T , decide the sentence “σa

n 0 has
height less than σa

n 1 in T ”.



Exercise
1 Prove that if x is of PA, then there is some real y ≤T x so

that ∀e(Φe(e) 6' y(e)).
2 If x is of PA, then there is a complete extension T of PA so

that T ≡T x.



On Π1
1-sets

There is an effective enumeration of recursive trees in ω<ω. In
other words, there is a recursive set U ⊆ ω × ω<ω so that for
any e, Ue = {σ | (e, σ) ∈ U} is a tree and for every recursive
tree T , there is some Ue so that [Ue] = [T ].
Let WF = {e | Ue has no infinite path}.
Obviously WF is a Π1

1-set.



Π1
1-completeness

Theorem

WF is Π1
1-complete.

Proof.

We need to prove that given any Π1
1-real x , there is a recursive

function f so that x(n) = 1↔ n ∈WF .

Corollary

WF is not Σ1
1.

Proof.
Otherwise, then ∀n(n 6∈WF ↔ f (n) ∈WF ) for some recursive
function f . A contradiction by recursion theorem.



Gandy Basis Theroem

Theorem
1 If T ⊆ ω<ω has an infinite path, then there is some x ∈ [T ]

so that x ≤T WF.
2 If A ⊆ 2ω is a nonempty Σ1

1 set, then A contains a real
recursive in WF.

Proof.
By induction recursive in WF .

Exercise
Prove that there is recursive tree T ⊆ ω<ω having an infinite
path but no path recursive in ∅′.



Kleene-Brouwer Ordering

Given σ, τ ∈ ω<ω, we say that σ <KB τ if either σ � τ or
∃n(σ � n = τ � n ∧ σ(n) < τ(n)).

Lemma
A tree T has no infinite path if and only if <KB is a T -recursive
well ordering over T .

Proof.
“←” is obvious.
“→” can be proved as in König lemma.



Representations of Π1
1-sets

Theorem

A set of reals A ⊆ 2<ω is Π1
1 if and only if there is a recursive

tree T ⊆ 2<ω × ω<ω so that
x ∈ A↔ Tx = {σ | ∃n((x � n, σ) ∈ T )} has no infinite path.

So x ∈ A if and only if <KB is a well ordering over x-recursive
tree Tx .



Constructibility (1)

L0 = ∅;

Lα+1 = {x | ∃ϕ(z ∈ x ↔ Lα |= ϕ(z))};

Lλ =
⋃
α<λ

Lλ;

L =
⋃
α

Lα.

Gödel proves that L is a model of ZFC.



Constructibility (2)

Given a set y ,

L0[y ] = ∅;

Lα+1[y ] = {x | ∃ϕ(z ∈ x ↔ 〈Lα[y ], y∩Lα[y ]〉 |= ϕ(z, y∩Lα[y ]))};

Lλ[y ] =
⋃
α<λ

Lλ[y ];

L[y ] =
⋃
α

Lα[y ].

Exercise
Prove that if x ∈ 2ω does not belong to L, then x ∈ L[x ] but
L[{x}] = L.



Representing Π1
1 sets in L

Theorem

If A ⊆ 2<ω is Π1
1, then there is tree T ⊆ 2<ω × ω<ω1 in L so that

x ∈ A↔ ∃f ∈ ωω1 ∩ L[x ]((x , f ) ∈ [T ]).

Proof.

By the presentation of Π1
1-sets, let S be the recursive tree.

Let (σ, τ) ∈ T if τ is a finite order preserving (in the <KB sense)
function from |σ||σ| ∩ {ν | (σ, ν) ∈ S} to ω1



A Basis Theorem for Π1
1-set

Theorem

If A ⊆ 2ω is Π1
1, then there is some real x ∈ A so that x ∈ L.

Proof.

Presenting Π1
1-sets as a tree T in L. Consider the left most

infinite path in T .

Exercise

Prove that there is a Π1
1 set {x} ⊂ 2ω so that x is not recursive

in WF.



Shoenfield Absoluteness

Theorem

If A ⊆ 2ω is Σ1
2, then there is some real x ∈ A so that x ∈ L.

Proof.
Immediately from the previous theorem.



Exercise
1 A ⊆ 2<ω is Σ1

2 if and only if there is tree T ⊆ 2<ω × ω<ω1 in
L so that x ∈ A↔ ∃f ∈ ωω1 ∩ L[x ]((x , f ) ∈ [T ]).

2 x ∈ 2ω is Σ1
2 if and only if there is Σ1-formula ϕ so that

n ∈ x ↔ LωL
1
|= ϕ(n).



Thanks


