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The incompressible Euler equations
vi+ (v-V)v=-VP,
V.-v=0,

are equations describing the motion of an ideal
incompressible fluid(with constant density of mass).

v: the velocity, P: the pressure,
Define the corresponding vorticity w = V x v, the curl of v,
which describes the rotation of the fluid.

Daomin Cao Steady Vortex Solutions



Steady vortex ring in R3 (from L.E.Franenkel and M.S.Berger,
”A global theory of steady vortex rings in an ideal fluid”, Acta
Math.,132(1974), 13-51)

By the steady vortex ring we mean a figure of revolution J that
is expected to be homoeomorphic to a solid torus in most
cases, and is associated with a continuous, axi-symmetric,
solenoidal vector field v(divergence free, div v=0) having the
following properties when we take axes fixed in the ring J:

1. Both J and v do not vary with time;

2. the vorticity w has positive magnitude in J, vanishes in
R3\ 3, and satisfies a nonlinear equation of motion which,
among other thing, determines the boundary of J;

3. v tends to a constant value at infinity in R3.

Example: smoke ring, “mushrooms” created by big
explosions
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The existence of solutions representing steady vortex rings
occupies a central place in the theory of vortex motion.

For 3-dimension case, steady vortex ring in an ideal fluid can
be described in the cylindrical coordinates as

-LV =0, in{(r, 2)}\ A,
—LV = Ar?f(V), in A,

V(0,z) = -k <0, V|pa =0,
V,/r—-W, V,/r >0, r’2+ 2% — oo,

— (19} L &
whereL_rar(rar)+622.
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Helmholtz[1858, J.Reine Angew.Math]: first mentioned the
problem;

Hill[1894,Philos.Trans.Roy.Soc.London]: discovered an Hill’s
type “vortex ring”: a ball in R3;

Berger-Fraenkel [1974, Acta Math.; 1980, CMP]: Global
existence of vortex rings was first established with 1 as a
Lagrange parameter, f convex and smooth;

Ni[1980, J.Anal.Math.], Using Mountain Pass lemma, more
general f
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Ambrosetti-Mancini[1981,Nonli.Anal.], Struwe [1988, Acta.
Math.], Ambrosetti-Struwe [1989,ARMA],
Ambrosetti-Yang [1990, MMMAS]: f super-linear.

Turkington [1983, CPDE] obtained a solution by studying an
integral equation and analyzed the asymptotic behavior for a
sequence of 1 — +oco.
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We will focus on

1. Approximating planar point vortex:

Find a family of smooth steady solutions such that the vortex
set ( the set where w is not 0) shrinks to one or a couple of
points.

2. Existence of planar vortex patch:

Find a family of steady solutions such that the vorticity w for
each solution is a constant 1 in a connected domain 2, which
shrinks to a single point or several points as 1 — o, while

w = 0 elsewhere.
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We will see that they are related to the following problems:

{—A;b =), xeQ,

lﬁ = lﬁo, X € (9(2,
where p > 1,
and
—Alﬁ = ﬂ.1{¢,>0}, X € Q,
v = Yo, x € 9.
Remark: The second one can be taken as p = 0 in the first
one.
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In R?, the vorticity w := V XV = d1vo — davy,

wt+ V-V =0.
Suppose that w is known then by Biot-Savart law

1 xt

V=—w % ——,
2r |x[2

where x* = (xz, —x1) if x = (X1, X2).
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One special singular solution is w = Z, 1 Kilx (where ki is the
vorticity strength), which is related

xi : R — R? satisfy the following Kirchhoff law:

dx,

S = (VW)

where the Kirchhoff-Routh (path) function

m
KiK; 1
W(x1, -+, Xm) := —lo .
( m) 21 g Ixi — x|
i#j
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For bounded domain Q c R?, similar singular solutions also
exist. Suppose that the normal component of v vanishes on
090, then the Kirchhoff-Routh function is

m m
W(X‘], ,Xm) == ZKIK] X/, X] Z (3)
i#] i=1
where G is the Green function of —A on  with 0 Dirichlet
boundary condition and h is its regular part (H(x) = h(x, x) is
the Robin function),

]
G(x.y) = 5log —h(x,y).
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Let v, be the outward component of the velocity v on the
boundary 992, then we see from divergence theorem
J,V-v=[,vndSthat [ v,=0sinceV-v=0.

Let y( be determined up to a constant by

—Ai,bo = 0, in Q,
4
—% = Vp, 0NOSY, )
or

where % denotes the tangential derivative on 61..
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The Kirchhoff-Routh function associated to the vortex
dynamics becomes( C.C.Lin in 1941)

m m m
Win(xa,-++  Xm) = D kKGO, ) = D KEH(x) +2 ) kiro(xi).
i#j i=1 i=1

(5)
The Kirchhoff-Routh function Wy, in (5) induces my
anti-clockwise vortices motionifallx; >0fori=1,---, my,
and m — my clockwise vortices motion if «; < 0 for
j=my4+1,---,m.
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It is known that critical points of the Kirchhoff-Routh function
W give rise to stationary vortex points solutions of the Euler
equations.

Existence of critical points of ‘W, given by (5) has been
studied by

T.Bartsch, A.Pistoia and T.Weth, M.del Pino, M.Kowalczyk and
M.Musso, D.Bartolucci and A.Pistoia, - --

Question: For a given critical point of 1/, can we get
stationary smooth solutions approximating solutions
concentrating near that point?
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The vorticity method

The vorticity method consists in finding maximizer of the
kinetic energy defined by

ff G(x,y)w(y) dxdy+f Yo(X)w dX+1§fQIV¢o(X)I2dX

under some constraints on the sublevel sets of w defined by

Ki(Q) = {w e L>(Q) : fﬂw(x)dx —1,0<w(x) <A ae xe Q}.
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In this way, B.Turkington studied the case that the flow is
everywhere tangential to the boundary, i.e., v, = 0,
equivalently, vy = 0. He obtained an absolute maximizer w, of

max {foQw(X)G(x,y)w(y)dxdy CweE KA(Q)}.

Indeed, wy = A1p,D = {x € Q : Y,(x) > 0}, where 1 > 0, ¢, is
the corresponding stream function satisfying

(6)

—Alﬁ = /11{l//(X)>0}7 in Q,
W = uy, onosl,

where 1, is a constant depending on 1 such that
ua = —logA+0(1) for A large.
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It was showed that as 1 —» «

wa(x) = 6(x — x*), in the sense of distribution

(7)
Ya(xa + \/1—”7}’) — W(y), in C| (R?),
where x; — x* € Q and H(x*) = max{H(x) : x € Q},
1T—1yl%), 0<lyl<1,
wiy) =] 30 WP o<l @)
sloglyl™, lyl=>1.
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The stream function method

In the planar case, since V - v = 0(divergence free), we can
find a function(stream function) ¢ such that v = (Vy)*, where

(Vo)* = (32.-5=). Assume that w = Af(y) for some function

f e C'(R) and A, then

Ay = Af(¥), xeQ,
lﬁ = lﬁo, X € 69,

f is called vorticity function, 1 vortex parameter.
If v satisfies the above equation, then v = (Vy)* and
P=F(y)-VylPisa stationary solution to the Euler

equations, where F(t fo
v is irrotational on the set {x : f(y) = 0}.

{x : f(y) > 0} is called the vorticity set.
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Let f(t) =0, t < 0. Set g = -y and u = ¢ — Y, then u satisfies
the following boundary value problem

9)

-Au = Af(u-q), xe,
u=20, x € Q.

The boundary of the set {x : f(u— g) > 0} is not known a priori
and thus is a free boundary.

(9) has been studied extensively for Q2 bounded or (2 is the
whole space.
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We will focus on the planar vortex patch problem:

Find a flow such that the vorticity w is a constant 1ina
connected domain 2, which shrinks to a single point or
several points as 1 — oo, while w = 0 elsewhere.

To do this we need to consider the case

_AU = /l1{u(x)>;<‘ltiﬂ/l}, X € Q,
u=20, x € 09).

We will see that
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or

—AU—AZ 15& X01)1{ ]Inl} in Q, (1)
u=0, on 012,

where «; > k > 0 is some given constant, and 6 > 0 is chosen
small so that Bs;(xo,) N Bs(xoj) =0, i # .

Daomin Cao Steady Vortex Solutions



Previous results

G. Li, S. Yan and J. Yang, An elliptic problem related to planar
vortex pairs, SIAM J. Math. Anal., 36(2005), 1444-1460.

Their main objective is to obtain the existence result and
investigate the asymptotic behavior of the solution pair
(ua, Ay) of problem (9) as 1 — oo, where

Ay ={xeQ:u(x)>q(x)}.
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Under some standard conditions for f, using the mountain
pass theorem, they obtained the least energy solution u,. In
addition, let go(x) = g(x) for x € 92, and suppose that qo(x) is
not a constant, then for 1 large, A, is connected and

diam(A,) — 0.

Suppose that A, shrinks to a point x; € Q, then x; € dQ and
a(Xo) = minkesaqo(x)-
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On the other hand, let x; be a given strict local minimum point
of g on the boundary, then they obtained existence of a
solution u, such that the corresponding set A, is connected
and diam(A,) — 0. Moreover diam(A,) shrinks to x; as 1 — co.

Remark.

fau:f/lf(u,l—q)—>0, as A — oo,
Q Q

More interesting case is that

fw,lzf/lf(u/l_q)—)K¢0, as A — oo.
Q Q
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D. Smets and J. Van Schaftingen [Desingulariation of vortices
for the Euler equation, Arch. Rat. Mech. Anal., 198(2010),
869-925.] investigated the following problem

“Au=e2(u-qg-L1ogl), inQ,
u=ce¢ (u q- 5. log 6)+ i 12)
u=20, on 9.

where p > 1.
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m
—~
<
~
Il

T — 1 i g- Eiog et
Sz - e g2,
Ne = {u € H}(Q)\ (0} : (dEs(u), uy =0},

e = inf Eg(u).
o = Jof B0

They showed that assume that g + ﬁlog% > 0on Q, then
N. # @ and there exists u. € N, such that E.(u;) = c., u: is a
positive solution of (12).
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For a solution u, of (12), set
Ve = (V(us - )%,

1 logel\PT" 1 »
e — Q- — —|V(u, - q)P.
( o ) NG

&
+

Then (v., P.) forms a stationary solution for problem (1).

The corresponding vorticity is w, = V X v.
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Concerning steady solution for Euler equation they obtained:
Theorem A (Smets and Schaftingen). Suppose that Q c R? is
a bounded simply-connected smooth domain. Let v, : 92 - R
be such that v, € L5(9Q) for some s > 1 satisfying [, v, = 0.
Let x1 > 0 be given. Then, there exists ¢y, > 0, such that for
each ¢ € (0, ), problem (1) has a stationary solution v, with
outward boundary flux given by v,, and its vorticities w,
satisfies that supp(w:) c B(x., C¢) for some x. € Qand C >0
independent of £ such thatas ¢ —» 0

fw€_)K1$
Q

Wi (Xs) — Sup Wi (X)
xeQ
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Concerning regularization of pairs of vortices, they studied
the following problem

-Au=¢g" (u q- Iog) e2(q+s2logl-u),inQ,
u=20, on 99,
(13)
where k1 > 0, ko <0, € > 0.
Define
1 1
Efxu)= | (3 —| -
W= [ (G (p+1)( a- 2109 )2
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Mg ={ueH}(Q)\(0) : uy £0, u_ %0,

(dEZ (), ut) = (dEZ(u), u-) =0},

d. = inf EX(u).
nf. = (u)
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They obtained that:

Theorem B (Smets and Schaftingen). Suppose that 2 and v,
satisfy the same assumptions as in Theorem A. Let

k1 > 0,x2 < 0 be given. Then, there exists ¢; > 0, such that for
each 0 < ¢ < g, problem (1) has a stationary solution v, with
outward boundary flux given by v,, and its vorticities w,
satisfying for some x;", x; € Q and C > 0 independent of &,

supp(w,) c B(x, Ce), supp(w;) c B(x;, Ce).

Moreoveras ¢ —» 0

fw;*—wﬁ, fw;—w@,
Q Q

Wao(xt, xZ) — sup Wa(x™, x7).

xt,x"eQ
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Approximating steady point vortex

”Regularization of point vortices pairs for the Euler equation
in dimension two” by D.Cao, Z.Liu and J.Wei (ARMA,2014)

Theorem 1. Under the same assumptions as in Theorem A.
For any given «; > 0(i = 1,--- ,m) and a C' stable critical point
(X1, , Xm.) of Kirchhoff - Routh function Wp,(x1,- -+, Xm)
defined by (5), there exists ¢y > 0, such that for each
€ € (0,&0), problem (1) has a stationary solution v, with
outward boundary flux given by v,, whose vorticity can be

m

represented by w, = Z w;j ¢ satisfying for small &,
i=1
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supp(wi.,) € B(xie Ce), fori=1,---,m,

where x; . € Q;(i=1,---,m), C > 0 is a constant independent
of . Furthermore as € — 0,

f wi,€_>Kis i:1"“’m’
B(X,‘_]S,CS)

m
f We = Kis
Q =

i

(X1,87"' ,Xm,g) - (X'I,*" t 7Xm,4<)-
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Theorem 2. Under the same assumptions as in Theorem A, for
any givenx; >0(i=1,--- ,mqy),xi<0(i=my+1,--- ,m)and a
C' stable critical point (1., , Xm.) of Kirchhoff - Routh
function W, defined by (5), there exists ¢y > 0, such that for
each ¢ € (0, &), problem (1) has a stationary solution v, with
outward boundary flux given by v, whose vorticity can be

m

represented by w, = Z wij . satisfies for small ¢,
i=1
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supp(wi.s) C B(Xie Ce), for i=1,---,m,

where x; . € Q;(i=1,---,m),and C > 0 is a constant
independent of ¢. Furthermore as ¢ — 0,

(X1,87‘” 7Xm,€) - (X1,*a' o ,Xm,*)’

f wi,8_>Kfa i:17.”’ma
B(X,“S,CS)

m

We — E Kj.

Q i=
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How to show Theorem 1

We need to consider the following problem

m
2 . Kj 1 p
—-&Au = ; 155(X,’*)(u -q- o log E)+ x €, (14)
u=0, xeof,
where p > 1 and § > 0 is small so that Bs(x;..)(i=1,---, m)

are mutually disjoint ball.
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Proof of Theorem 1

We will use a reduction argument to prove Theorem 1. To this
end, we need to construct an approximate solution for (14).
We will construct solutions for (14) of the form

m
Ue(X) = > M z,4,(X) + 1e(X),
i=1

where z; € Qj,a,;>0fori=1,---,m,

ZL Mg, 2, o, ; is the main part and 1, is a small perturbation
term.
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Existence of steady vortex patch

We only state the result for g = 0.

Theorem 3. Let v, =0, > 0(j = 1,--- , m) be given. Suppose
that xo = (X0.1,--- , Xo.m) € Q" is an isolated critical point of
Wm(x) defined by (3) satisfying deg(V‘Wn,Xo) # 0. Then there
exists a gy > 0 such that for ¢ € (0, &), problem (1) has a
solution v, the corresponding vorticity w. of which satisfies
we(x) = g7 for x € UL Q¢ € Q, and we(x) = 0 elsewhere,
where (); . satisfies
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B‘S\/g(FL‘S“nd%)(Xj’s) - Qj’g “ BS@(1+L18| Inslg)(xlﬁ&)

for some L; > 0 and x;. € {2 near xo .
Furthermore as ¢ — 0,

Xj,8—>XO,j, f U)g(X):Kj+O(1), forj:‘l’...,m’

j.&

m

Lw,;(x) = Y+ o(1),

=

where o(1) denotes various quantities that go to 0 as
£ — +o00,
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We need to study the following boundary value problem

2A(p Z 156()(0])1 ||na\ v in €, (15)

v =0, on 02,

where «; > k > 0 is some given constant, and 6 > 0 is chosen
small so that Bs;(xp ) N Bs(xoj) = 0, i # j. Note that (15)
corresponds to the case that the rotation of the flow at each x;
is anti-clockwise.

Remark: (15) corresponding to p = 0 in (14).

Daomin Cao Steady Vortex Solutions



The main difference between the case f(u) = (u—-«): (p > 1)
and f(u) = 1y>4(p = 0) is that in the case p > 1 the nonlinear
function is smooth, while when p = 0 it is no longer
continuous. The functional corresponding to (15) is
non-smooth(not C').

When p = 0 the linearized operator at its approximate solution
involves Dirac measures while for p > 1 the linearized
operator at its approximate solution is an elliptic operator with
smooth coefficient.

The involvement of the measure implies that we need to use
domain-variation type estimates. The estimates for p > 1 are
all carried out in some standard Sobolev spaces.
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It is possible to use the critical point theory for non-smooth
functional to obtain solutions. However it is hard to obtain the
asymptotic behavior of solutions as ¢ — 0.

K. C. Chang, The obstacle problem and partial differential
equations with discontinuous nonlinearities, Comm. Pure
Appl. Math. 33(1980), 117-146.

K. C. Chang, Variational methods for nondifferentiable
functionals and their applications to partial differential
equations, J. Math. Anal. Appl. 80(1981), 102—129.
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We only need to study the following boundary value problem

m

—8$AU = 155(X0’j)1{u>,(j}, in Q,
j=1

u=20, on 99,

ev|Ingl

where ¢4 = o

Indeed y = D9y satisfies (15).
In the sequel we will consider the following problem instead

m

_32AU = Z 1B(5(Xo,j)1{U>Kjl9 in Q,
j=1

u=20, on 0.

(16)
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Let x = (x1, -+, Xm) € Q™ be a point close to X, which is a
non-degenerate critical point of the Kirchhoff-Routh function
W, defined in (3). We are try to find solutions of the form

Uexa + Te (17)

where m
(L[s,x,a = Z PUS,X]‘,aj' (18)

j=1

and g; is chosen suitably close to «;, r; is a perturbation term.
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Question 1. What are PU, x 5,?

Question 2. How to obtain r.?
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Answer to Question 1

Let R > 0 be a large constant, such that for any x € Q,
Q c Bg(x). Consider the following problem:
u=0, on 9Bg(0),

where a > 0 is a constant. Then, (19) has a solution U,

a+7z(s2-yB). lyl<s.,
Ue,a()’) = (20)

| Se
aln%/lnﬁ, s: <|yl<R,

where s, is the constant, such that U, , € C'(Bg(0)). So, s,

satisfies
Se a

52 A - S:C
2e2 s, In 2

(21)
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For any x € Q, define U; x a(y) = U:a(y — x). Because U, x 4
does not vanish on 952, we need to make a projection. Let
PU; x 4 be the solution of

—82AW = 1{Us,x,a>a}’ in Q,
w =0, on of2.

Then a
- In_ﬁg(y’x)’ (22)

Se

PUs,x,a(y) = Ua,x,a(Y)
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To get a better approximation, we need to choose a. ; properly.
azjand s.j, j = 1,--- ,m should satisfy the following system:

a a -
aj = ki + —=9(xi, x;) - Z —’RG(X,-, X;), (23)
In s — | -—
i J#i Sgj
and
Sg,i In ﬁ

where G(y,x) = In ;B - g(y, x).
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Answer to Question 2

Our aim is to find a solution u = U,y 5 + r for (16). So, r
satisfies

m m
—PAr = 1g,0) tpmatron = ), Whga 22y INQ (25)
j=1 j=1

Let

OPU,,
Eexp = {u € wg'P(Q),f e
Q

8g.j .
V g . :1,-", ,h:1,2 Py
v u=20,j m }

OPUg . 4 .
Fs,x,p = {U e W_1’p(Q), f X, g j u=0, ] =1,---,m, h= 1,2},
Q OXpn

where p > 2 is a fixed constant.
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Now we define the linear operator L. as follows.

m

;
Lo =-Au=2)" —u(Ss),0)0) x=s., UE Ecxp.  (26)

where bj; and by, are the constants such that Q.u € F.x .

Daomin Cao Steady Vortex Solutions



Proposition 4. QL. is one to one and onto from E, x, to F.xp.
Consider
Q:L.r = Q:R(r), (27)

where

1/ m
Rs(r) :;( 1B5(x07j) 1 Uexatr>k — Z 1 U&Xj’a&j>a£’j)
' =1

g : (28)
o
-2 ; g,ja(sg,j, 6)6|Y—Xg,j|=sg,j r.
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Using Proposition 4, we can rewrite (27) as
r=Gor=:(QlLs)"Q.R:(r). (29)

Proposition 5. Fixe a constant p > 2. There is an g3 > 0, such
that for any ¢ € (0, 9], (27) has a unique solution r.x € E; x + o,
with

2

m
1-2
p
S&j IIVI‘g,xHLp(UI‘f:1 Bots,; () + ||r8,x”Loo( 51

8}|

and
88,1||Vr8,X“L°°(an;1BgLsgl.(Xj)) < VE'

Moreover, r, x is a continuous map from x to E, x , in the norm
of H'(Q).

Daomin Cao Steady Vortex Solutions



Let
1-2
M = Ecxtoo N S,1" IVMlILo(ur gais, ()) + IMlliee) < &
SVl B, ) < V.
Main idea of the Proof of Proposition 5

Step 1. G, is a map from M to M.

Step 2. G; is a contraction map.
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We will choose x, such that U x5 + r.x is a solution of (16),
where r. x is the map obtained in Proposition 5.

How to choose x?

Lemma 6. If x satisfies

6PUS’X'.aS ;
IV (Uea + )V
aPu,,;,Xl.,a&/.) o (30)

m
= Ziz1 18500) WUt e — g,

forj=1,---,m, h=1,2,then U.x, + r-x is a solution of (16).

(30) is equivalent to

VWn(x) = o(1). (31)
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Thank You




