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Problems

The incompressible Euler equations vt + (v · ∇)v = −∇P,

∇ · v = 0,
(1)

are equations describing the motion of an ideal
incompressible fluid(with constant density of mass).

v: the velocity, P: the pressure,
Define the corresponding vorticity ω = ∇ × v, the curl of v,
which describes the rotation of the fluid.
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Steady vortex ring in R3 (from L.E.Franenkel and M.S.Berger,
”A global theory of steady vortex rings in an ideal fluid”, Acta
Math.,132(1974), 13-51)
By the steady vortex ring we mean a figure of revolution J that
is expected to be homoeomorphic to a solid torus in most
cases, and is associated with a continuous, axi-symmetric,
solenoidal vector field v(divergence free, div v=0) having the
following properties when we take axes fixed in the ring J:
1. Both J and v do not vary with time;
2. the vorticity ω has positive magnitude in J, vanishes in
R3 \ J, and satisfies a nonlinear equation of motion which,
among other thing, determines the boundary of J;
3. v tends to a constant value at infinity in R3.

Example: smoke ring, ”mushrooms” created by big
explosions
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The existence of solutions representing steady vortex rings
occupies a central place in the theory of vortex motion.

For 3-dimension case, steady vortex ring in an ideal fluid can
be described in the cylindrical coordinates as

−LΨ = 0, in {(r , z)} \ A ,

−LΨ = λr2f(Ψ), in A ,

Ψ(0, z) = −k ≤ 0, Ψ|∂A = 0,

Ψr/r → −W , Ψz/r → 0, r2 + z2 → ∞,

(2)

where L = r ∂
∂r

(
1
r
∂
∂r

)
+ ∂2

∂z2 .
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Helmholtz[1858, J.Reine Angew.Math]: first mentioned the
problem;

Hill[1894,Philos.Trans.Roy.Soc.London]: discovered an Hill’s
type “vortex ring”: a ball in R3;

Berger-Fraenkel [1974, Acta Math.; 1980, CMP]: Global
existence of vortex rings was first established with λ as a
Lagrange parameter, f convex and smooth;

Ni [1980, J.Anal.Math.], Using Mountain Pass lemma, more
general f
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Ambrosetti-Mancini [1981,Nonli.Anal.], Struwe [1988, Acta.
Math.], Ambrosetti-Struwe [1989,ARMA],
Ambrosetti-Yang [1990, MMMAS]: f super-linear.

Turkington [1983, CPDE] obtained a solution by studying an
integral equation and analyzed the asymptotic behavior for a
sequence of λ→ +∞.
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We will focus on

1. Approximating planar point vortex:
Find a family of smooth steady solutions such that the vortex
set ( the set where ω is not 0) shrinks to one or a couple of
points.

2. Existence of planar vortex patch:
Find a family of steady solutions such that the vorticity ω for
each solution is a constant λ in a connected domain Ωλ which
shrinks to a single point or several points as λ→ ∞, while
ω = 0 elsewhere.
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We will see that they are related to the following problems:−∆ψ = λ(ψ)p
+, x ∈ Ω,

ψ = ψ0, x ∈ ∂Ω,

where p > 1,
and −∆ψ = λ1{ψ>0}, x ∈ Ω,

ψ = ψ0, x ∈ ∂Ω.

Remark: The second one can be taken as p = 0 in the first
one.
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In R2, the vorticity ω := ∇ × v = ∂1v2 − ∂2v1,

ωt + v · ∇ω = 0.

Suppose that ω is known then by Biot-Savart law

v = −ω ∗
1
2π

x⊥

|x |2
,

where x⊥ = (x2, −x1) if x = (x1, x2).
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One special singular solution is ω =
∑m

i=1 κiδxi(t)(where κi is the
vorticity strength), which is related

v = −
m∑

i=1

κi

2π
(x − xi(t))⊥

|x − xi(t)|2
,

xi : R→ R2 satisfy the following Kirchhoff law:

κi
dxi

dt
= (∇xiW)⊥

where the Kirchhoff-Routh (path) function

W(x1, · · · , xm) :=
m∑
i,j

κiκj

2π
log

1
|xi − xj |

.
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For bounded domain Ω ⊂ R2, similar singular solutions also
exist. Suppose that the normal component of v vanishes on
∂Ω, then the Kirchhoff-Routh function is

W(x1, · · · , xm) =
m∑
i,j

κiκjG(xi , xj) −
m∑

i=1

κ2
i H(xi), (3)

where G is the Green function of −∆ on Ω with 0 Dirichlet
boundary condition and h is its regular part (H(x) = h(x, x) is
the Robin function),

G(x, y) =
1
2π

log
1

|x − y |
− h(x, y).
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Let vn be the outward component of the velocity v on the
boundary ∂Ω, then we see from divergence theorem∫

Ω
∇ · v =

∫
∂Ω

vndS that
∫
∂Ω

vn = 0 since ∇ · v = 0.
Let ψ0 be determined up to a constant by−∆ψ0 = 0, in Ω,

−
∂ψ0

∂τ
= vn, on ∂Ω,

(4)

where ∂ψ0
∂τ denotes the tangential derivative on ∂Ω.
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The Kirchhoff-Routh function associated to the vortex
dynamics becomes( C.C.Lin in 1941)

Wm(x1, · · · , xm) =
m∑
i,j

κiκjG(xi , xj) −
m∑

i=1

κ2
i H(xi) + 2

m∑
i=1

κiψ0(xi).

(5)
The Kirchhoff-Routh functionWm in (5) induces m1

anti-clockwise vortices motion if all κi > 0 for i = 1, · · · , m1,

and m −m1 clockwise vortices motion if κj < 0 for
j = m1 + 1, · · · ,m.
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It is known that critical points of the Kirchhoff-Routh function
W give rise to stationary vortex points solutions of the Euler
equations.

Existence of critical points ofWm given by (5) has been
studied by

T.Bartsch, A.Pistoia and T.Weth, M.del Pino, M.Kowalczyk and
M.Musso, D.Bartolucci and A.Pistoia, · · ·

Question: For a given critical point ofW, can we get
stationary smooth solutions approximating solutions
concentrating near that point?
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The vorticity method

The vorticity method consists in finding maximizer of the
kinetic energy defined by

1
2

∫
Ω

∫
Ω
ω(x)G(x, y)ω(y)dxdy+

∫
Ω
ψ0(x)ω(x)dx+

1
2

∫
Ω
|∇ψ0(x)|2dx

under some constraints on the sublevel sets of ω defined by

Kλ(Ω) =

{
ω ∈ L∞(Ω) :

∫
Ω
ω(x)dx = 1, 0 ≤ ω(x) ≤ λ a.e. x ∈ Ω

}
.
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In this way, B.Turkington studied the case that the flow is
everywhere tangential to the boundary, i.e., vn = 0,
equivalently, ψ0 ≡ 0. He obtained an absolute maximizer ωλ of

max
{∫

Ω

∫
Ω
ω(x)G(x, y)ω(y)dxdy : ω ∈ Kλ(Ω)

}
.

Indeed, ωλ = λ1D ,D = {x ∈ Ω : ψλ(x) > 0}, where λ > 0, ψλ is
the corresponding stream function satisfying−∆ψ = λ1{ψ(x)>0}, in Ω,

ψ = µλ, on ∂Ω,
(6)

where µλ is a constant depending on λ such that
µλ = − log λ + 0(1) for λ large.
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It was showed that as λ→ ∞
ωλ(x)→ δ(x − x∗), in the sense of distribution

ψλ(xλ + 1√
πλ

y)→ W(y), in C1
loc(R2),

(7)

where xλ → x∗ ∈ Ω and H(x∗) = max{H(x) : x ∈ Ω},

W(y) =

 1
4 (1 − |y |2), 0 ≤ |y | ≤ 1,
1
2 log |y |−1, |y | ≥ 1.

(8)
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The stream function method

In the planar case, since ∇ · v = 0(divergence free), we can
find a function(stream function) ψ such that v = (∇ψ)⊥, where
(∇ψ)⊥ := ( ∂ψ∂x2

,−
∂ψ
∂x1

). Assume that ω = λf(ψ) for some function
f ∈ C1(R) and λ, then−∆ψ = λf(ψ), x ∈ Ω,

ψ = ψ0, x ∈ ∂Ω,

f is called vorticity function, λ vortex parameter.
If ψ satisfies the above equation, then v = (∇ψ)⊥ and
P = F(ψ) − 1

2 |∇ψ|
2 is a stationary solution to the Euler

equations, where F(t) =
∫ t

0 f(s)ds.

v is irrotational on the set {x : f(ψ) = 0}.

{x : f(ψ) > 0} is called the vorticity set.
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Let f(t) = 0, t ≤ 0. Set q = −ψ0 and u = ψ − ψ0, then u satisfies
the following boundary value problem−∆u = λf(u − q), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(9)

The boundary of the set {x : f(u − q) > 0} is not known a priori
and thus is a free boundary.

(9) has been studied extensively for Ω bounded or Ω is the
whole space.
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We will focus on the planar vortex patch problem:
Find a flow such that the vorticity ω is a constant λ in a
connected domain Ωλ which shrinks to a single point or
several points as λ→ ∞, while ω = 0 elsewhere.

To do this we need to consider the case−∆u = λ1
{u(x)> κ ln λ

4π }
, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(10)

We will see that

Ωλ = {x ∈ Ω, u(x) >
κ ln λ
4π
}.
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or −∆u = λ
k∑

j=1
1Bδ(x0,j)1

{
u>

κj ln λ
4π

}, in Ω,

u = 0, on ∂Ω,

(11)

where κj ≥ κ > 0 is some given constant, and δ > 0 is chosen
small so that Bδ(x0,i) ∩ Bδ(x0,j) = ∅, i , j.
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Previous results

G. Li, S. Yan and J. Yang, An elliptic problem related to planar
vortex pairs, SIAM J. Math. Anal., 36(2005), 1444–1460.

Their main objective is to obtain the existence result and
investigate the asymptotic behavior of the solution pair
(uλ,Aλ) of problem (9) as λ→ ∞, where

Aλ = {x ∈ Ω : uλ(x) > q(x)}.
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Under some standard conditions for f , using the mountain
pass theorem, they obtained the least energy solution uλ. In
addition, let q0(x) = q(x) for x ∈ ∂Ω, and suppose that q0(x) is
not a constant, then for λ large, Aλ is connected and

diam(Aλ)→ 0.

Suppose that Aλ shrinks to a point x0 ∈ Ω̄, then x0 ∈ ∂Ω and
q(x0) = minx∈∂Ωq0(x).
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On the other hand, let x0 be a given strict local minimum point
of q on the boundary, then they obtained existence of a
solution uλ such that the corresponding set Aλ is connected
and diam(Aλ)→ 0. Moreover diam(Aλ) shrinks to x0 as λ→ ∞.

Remark. ∫
Ω
ωλ =

∫
Ω
λf(uλ − q)→ 0, as λ→ ∞.

More interesting case is that∫
Ω
ωλ =

∫
Ω
λf(uλ − q)→ κ , 0, as λ→ ∞.
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D. Smets and J. Van Schaftingen [Desingulariation of vortices
for the Euler equation, Arch. Rat. Mech. Anal., 198(2010),
869–925.] investigated the following problem−∆u = ε−2

(
u − q − κ

2π log 1
ε

)p

+
, in Ω,

u = 0, on ∂Ω.
(12)

where p > 1.
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Define

Eε(u) =

∫
Ω

(
1
2
|∇u|2 −

1
(p + 1)ε2 (u − q −

κ

2π
log

1
ε

)p+1
+

)
,

Nε =
{
u ∈ H1

0(Ω) \ {0} : 〈dEε(u), u〉 = 0
}
,

cε = inf
u∈Nε

Eε(u).

They showed that assume that q + κ
2π log 1

ε ≥ 0 on Ω, then
Nε , Ø and there exists uε ∈ Nε such that Eε(uε) = cε, uε is a
positive solution of (12).
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For a solution uε of (12), set

vε = (∇(uε − q))⊥,

Pε =
1

p + 1

(
uε − q −

κ| log ε|
2π

)p+1

+

−
1
2
|∇(uε − q)|2.

Then (vε,Pε) forms a stationary solution for problem (1).

The corresponding vorticity is ωε = ∇ × vε.
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Concerning steady solution for Euler equation they obtained:
Theorem A (Smets and Schaftingen). Suppose that Ω ⊂ R2 is
a bounded simply-connected smooth domain. Let vn : ∂Ω→ R
be such that vn ∈ Ls(∂Ω) for some s > 1 satisfying

∫
∂Ω

vn = 0.
Let κ1 > 0 be given. Then, there exists ε0 > 0, such that for
each ε ∈ (0, ε0), problem (1) has a stationary solution vε with
outward boundary flux given by vn, and its vorticities ωε
satisfies that supp(ωε) ⊂ B(xε,Cε) for some xε ∈ Ω and C > 0
independent of ε such that as ε→ 0∫

Ω
ωε → κ1,

W1(xε)→ sup
x∈Ω
W1(x).
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Concerning regularization of pairs of vortices, they studied
the following problem−∆u = ε−2

(
u − q − κ1

2π log 1
ε

)p

+
− ε−2(q + κ2

2π log 1
ε − u)p

+, in Ω,

u = 0, on ∂Ω,
(13)

where κ1 > 0, κ2 < 0, ε > 0.
Define

E±ε (u) =

∫
Ω

(
1
2
|∇u|2 −

1
(p + 1)ε2 (u − q −

κ1

2π
log

1
ε

)p+1
+

−
1

(p + 1)ε2 (q +
κ2

2π
log

1
ε
− u)p+1

+ ),
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Mε =
{
u ∈ H1

0(Ω) \ {0} : u+ . 0, u− . 0,

〈dE±ε (u), u+〉 = 〈dE±ε (u), u−〉 = 0
}
,

dε = inf
u∈Mε

E±ε (u).
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They obtained that:
Theorem B (Smets and Schaftingen). Suppose that Ω and vn

satisfy the same assumptions as in Theorem A. Let
κ1 > 0, κ2 < 0 be given. Then, there exists ε0 > 0, such that for
each 0 < ε < ε0, problem (1) has a stationary solution vε with
outward boundary flux given by vn, and its vorticities ωε
satisfying for some x+

ε , x−ε ∈ Ω and C > 0 independent of ε,

supp(ω+
ε ) ⊂ B(x+

ε ,Cε), supp(ω−ε ) ⊂ B(x−ε ,Cε).

Moreover as ε→ 0∫
Ω
ω+
ε → κ1,

∫
Ω
ω−ε → κ2,

W2(x+
ε , x−ε )→ sup

x+, x−∈Ω
W2(x+, x−).
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Approximating steady point vortex

”Regularization of point vortices pairs for the Euler equation
in dimension two” by D.Cao, Z.Liu and J.Wei (ARMA,2014)

Theorem 1. Under the same assumptions as in Theorem A.
For any given κi > 0(i = 1, · · · ,m) and a C1 stable critical point
(x1,∗, · · · , xm,∗) of Kirchhoff - Routh functionWm(x1, · · · , xm)
defined by (5), there exists ε0 > 0, such that for each
ε ∈ (0, ε0), problem (1) has a stationary solution vε with
outward boundary flux given by vn, whose vorticity can be

represented by ωε =
m∑

i=1

ωi, ε satisfying for small ε,

Daomin Cao Steady Vortex Solutions



supp(ωi, ε) ⊂ B(xi, ε,Cε), for i = 1, · · · ,m,

where xi, ε ∈ Ωi (i = 1, · · · ,m), C > 0 is a constant independent
of ε. Furthermore as ε→ 0,∫

B(xi, ε,Cε)
ωi, ε → κi , i = 1, · · · ,m,

∫
Ω
ωε →

m∑
i=1

κi ,

(x1, ε, · · · , xm, ε)→ (x1,∗, · · · , xm,∗).
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Theorem 2. Under the same assumptions as in Theorem A, for
any given κi > 0(i = 1, · · · ,m1), κi < 0(i = m1 + 1, · · · ,m) and a
C1 stable critical point (x1,∗, · · · , xm,∗) of Kirchhoff - Routh
functionWm defined by (5), there exists ε0 > 0, such that for
each ε ∈ (0, ε0), problem (1) has a stationary solution vε with
outward boundary flux given by vn whose vorticity can be

represented by ωε =
m∑

i=1

ωi, ε satisfies for small ε,
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supp(ωi, ε) ⊂ B(xi, ε,Cε), for i = 1, · · · ,m,

where xi, ε ∈ Ωi (i = 1, · · · ,m),and C > 0 is a constant
independent of ε. Furthermore as ε→ 0,

(x1, ε, · · · , xm, ε)→ (x1,∗, · · · , xm,∗),∫
B(xi, ε,Cε)

ωi, ε → κi , i = 1, · · · ,m,

∫
Ω
ωε →

m∑
i=1

κi .
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How to show Theorem 1

We need to consider the following problem −ε
2∆u =

m∑
i=1

1Bδ(xi,∗)

(
u − q −

κi

2π
log

1
ε

)p

+
x ∈ Ω,

u = 0, x ∈ ∂Ω,

(14)

where p > 1 and δ > 0 is small so that Bδ(xi,∗)(i = 1, · · · , m)
are mutually disjoint ball.
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Proof of Theorem 1

We will use a reduction argument to prove Theorem 1. To this
end, we need to construct an approximate solution for (14).
We will construct solutions for (14) of the form

uε(x) =
m∑

i=1

Mε, zi , aε, i (x) + rε(x),

where zi ∈ Ωi , aε, i > 0 for i = 1, · · · ,m,∑m
i=1 Mε, zi , aε, i is the main part and rε is a small perturbation

term.
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Existence of steady vortex patch

We only state the result for q ≡ 0.

Theorem 3. Let vn = 0, κj > 0(j = 1, · · · ,m) be given. Suppose
that x0 = (x0, 1, · · · , x0,m) ∈ Ωm is an isolated critical point of
Wm(x) defined by (3) satisfying deg(∇Wm, x0) , 0. Then there
exists a ε0 > 0 such that for ε ∈ (0, ε0), problem (1) has a
solution vε, the corresponding vorticity ωε of which satisfies
ωε(x) = ε−2 for x ∈

⋃m
j=1 Ωj, ε ⊂ Ω, and ωε(x) = 0 elsewhere,

where Ωj, ε satisfies
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B
ε

√
κj
π

(
1−L1ε| ln ε|

3
2
)(xj,ε) ⊂ Ωj, ε ⊂ B

ε

√
κj
π

(
1+L1ε| ln ε|

3
2
)(xj,ε)

for some L1 > 0 and xj,ε ∈ Ω near x0,j .
Furthermore as ε→ 0,

xj,ε → x0,j ,

∫
Ωj, ε

ωε(x) = κj + o(1), for j = 1, · · · ,m,

∫
Ω
ωε(x) =

m∑
j=1

κj + o(1),

where o(1) denotes various quantities that go to 0 as
ε→ +∞.
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We need to study the following boundary value problem
−ε2∆ψ =

m∑
j=1

1Bδ(x0,j)1{ψ> κj | ln ε|
2π }

, in Ω,

ψ = 0, on ∂Ω,

(15)

where κj ≥ κ > 0 is some given constant, and δ > 0 is chosen
small so that Bδ(x0,i) ∩ Bδ(x0,j) = ∅, i , j. Note that (15)
corresponds to the case that the rotation of the flow at each xi

is anti-clockwise.
Remark: (15) corresponding to p = 0 in (14).
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The main difference between the case f(u) = (u − κ)p
+(p > 1)

and f(u) = 1{u>κ}(p = 0) is that in the case p > 1 the nonlinear
function is smooth, while when p = 0 it is no longer
continuous. The functional corresponding to (15) is
non-smooth(not C1).

When p = 0 the linearized operator at its approximate solution
involves Dirac measures while for p > 1 the linearized
operator at its approximate solution is an elliptic operator with
smooth coefficient.

The involvement of the measure implies that we need to use
domain-variation type estimates. The estimates for p > 1 are
all carried out in some standard Sobolev spaces.
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It is possible to use the critical point theory for non-smooth
functional to obtain solutions. However it is hard to obtain the
asymptotic behavior of solutions as ε→ 0.

K. C. Chang, The obstacle problem and partial differential
equations with discontinuous nonlinearities, Comm. Pure
Appl. Math. 33(1980), 117–146.

K. C. Chang, Variational methods for nondifferentiable
functionals and their applications to partial differential
equations, J. Math. Anal. Appl. 80(1981), 102–129.
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We only need to study the following boundary value problem
−ε2

1∆u =
m∑

j=1

1Bδ(x0,j)1{u>κj }, in Ω,

u = 0, on ∂Ω,

where ε1 = ε
√
| ln ε|
2π .

Indeed ψ = | ln ε|
2π u satisfies (15).

In the sequel we will consider the following problem instead
−ε2∆u =

m∑
j=1

1Bδ(x0,j)1{u>κj }, in Ω,

u = 0, on ∂Ω.

(16)
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Let x = (x1, · · · , xm) ∈ Ωm be a point close to x0, which is a
non-degenerate critical point of the Kirchhoff-Routh function
Wm defined in (3). We are try to find solutions of the form

Uε,x,a + rε, (17)

where

Uε,x,a =
m∑

j=1

PUε,xj ,aj . (18)

and aj is chosen suitably close to κj , rε is a perturbation term.
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Question 1. What are PUε,xj ,aj ?

Question 2. How to obtain rε?

Daomin Cao Steady Vortex Solutions



Answer to Question 1

Let R > 0 be a large constant, such that for any x ∈ Ω,
Ω ⊂ BR(x). Consider the following problem:−ε2∆u = 1u>a , in BR(0),

u = 0, on ∂BR(0),
(19)

where a > 0 is a constant. Then, (19) has a solution Uε,a

Uε,a(y) =

a + 1
4ε2

(
s2
ε − |y |

2
)
, |y | ≤ sε,

a ln |y |R / ln sε
R , sε ≤ |y | ≤ R ,

(20)

where sε is the constant, such that Uε,a ∈ C1(BR(0)). So, sε
satisfies

−
sε

2ε2 =
a

sε ln sε
R

. (21)
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For any x ∈ Ω, define Uε,x,a(y) = Uε,a(y − x). Because Uε,x,a

does not vanish on ∂Ω, we need to make a projection. Let
PUε,x,a be the solution of−ε2∆w = 1{Uε,x,a>a}, in Ω,

w = 0, on ∂Ω.

Then
PUε,x,a(y) = Uε,x,a(y) −

a

ln R
sε

g(y, x), (22)
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Choice of aε, j

To get a better approximation, we need to choose aε, j properly.
aε,j and sε,j , j = 1, · · · ,m should satisfy the following system:

ai = κi +
ai

ln R
sε,i

g(xi , xi) −
∑
j,i

aj

ln R
sε,j

Ḡ(xi , xj), (23)

and
sε,i

√
ln R

sε,i

ε
=

√
2ai , (24)

where Ḡ(y, x) = ln R
|y−x | − g(y, x).
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Answer to Question 2

Our aim is to find a solution u = Uε,x,a + r for (16). So, r
satisfies

− ε2∆r =
m∑

j=1

1Bδ(x0,j)1Uε,x,a+r >κj −

m∑
j=1

1Uε,xj ,aε,j>aε,j in Ω. (25)

Let

Eε,x,p =

{
u ∈ W1,p

0 (Ω),

∫
Ω
∇
∂PUε,xj ,aε,j

∂xjh
∇u = 0, j = 1, · · · ,m, h = 1, 2

}
,

Fε,x,p =

{
u ∈ W−1,p(Ω),

∫
Ω

∂PUε,xj ,aε,j

∂xjh
u = 0, j = 1, · · · ,m, h = 1, 2

}
,

where p > 2 is a fixed constant.
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Now we define the linear operator Lε as follows.

Lεu = −∆u − 2
m∑

j=1

1
sε,j

u(sε,j , θ)δ|y−xε,j |=sε,j , u ∈ Eε,x,p . (26)

For any u ∈ W−1,p(Ω), we define Qε as follows:

Qεu = u +
m∑

j=1

2∑
h=1

bjh∆
∂PUε,xj ,aj

∂xjh
,

where bj1 and bj2 are the constants such that Qεu ∈ Fε,x,p .
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Proposition 4. QεLε is one to one and onto from Eε,x,p to Fε,x,p .
Consider

QεLεr = QεRε(r), (27)

where

Rε(r) =
1
ε2

( m∑
j=1

1Bδ(x0,j)1Uε,x,a+r >κj −

m∑
j=1

1Uε,xj ,aε,j>aε,j

)

− 2
m∑

j=1

1
sε,j

a(sε,j , θ)δ|y−xε,j |=sε,j r .

(28)
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Using Proposition 4, we can rewrite (27) as

r = Gε r =: (QεLε)
−1QεRε(r). (29)

Proposition 5. Fixe a constant p > 2. There is an ε0 > 0, such
that for any ε ∈ (0, ε0], (27) has a unique solution rε,x ∈ Eε,x,+∞,
with

s
1− 2

p

ε,j ‖∇rε,x‖Lp(∪k
j=1B2Lsε,j (xj)) + ‖rε,x‖L∞(Ω) = O

( m∑
j=1

sε,j
| ln sε,j |

)
,

and
sε,1‖∇rε,x‖L∞(∪m

j=1B2Lsε,j (xj)) ≤
√
ε.

Moreover, rε,x is a continuous map from x to Eε,x,p in the norm
of H1(Ω).
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Let

M = Eε,x,+∞ ∩
{

s
1− 2

p

ε,1 ‖∇r‖Lp(∪m
j=1B2Lsε,j (xj)) + ‖r‖L∞(Ω) ≤ ε,

sε,1‖∇r‖L∞(∪m
j=1B2Lsε,j (xj)) ≤

√
ε
}
.

Main idea of the Proof of Proposition 5

Step 1. Gε is a map from M to M.

Step 2. Gε is a contraction map.
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We will choose x, such thatUε,x,a + rε,x is a solution of (16),
where rε,x is the map obtained in Proposition 5.

How to choose x?

Lemma 6. If x satisfies∫
Ω

(
ε2∇(Uε,x,a + rε,x)∇

∂PUε,xj ,aε,j
∂xjh

−
∑m

i=1 1Bδ(x0,i)1{Uε,x,a+rε,x>κi }

∂PUε,xj ,aε,j
∂xjh

)
= 0,

(30)

for j = 1, · · · ,m, h = 1, 2, thenUε,x,a + rε,x is a solution of (16).

(30) is equivalent to

∇Wm(x) = o(1). (31)
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Thank You
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