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1. Introduction and main result

−
(
ε2a + εb

∫
R3

|∇u|2
)

∆u + V (x)u = λ|u|p−2u + |u|4u in R3,

u > 0, u ∈ H1(R3),
(1)

where ε is a small positive parameter, a, b > 0, λ > 0,
2 < p ≤ 4.
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1. Introduction and main result

The potential V satisfies:
(V1) V ∈ C (R3,R) and inf

x∈R3
V (x) = α > 0;

(V2) There is a bounded domain Λ such that

V0 := inf
Λ
V < min

∂Λ
V .

Set M := {x ∈ Λ; V (x) = V0}. Without loss of generality, we
may assume that 0 ∈M.
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1. Introduction and main result

−
(
a + b

∫
Ω
|∇u|2

)
∆u = f (x , u) in Ω,

u = 0 on ∂Ω,

(2)

where Ω ⊂ R3 is a smooth domain. Such problems are
often referred to be nonlocal because of the presence of the
term (

∫
Ω |∇u|

2)∆u which implies that the equation (2) is no
longer a pointwise identity.
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1. Introduction and main result

(2) is related to the stationary analogue of the equation utt −
(
a + b

∫
Ω
|∇xu|2

)
∆xu = f (x , u) (x ∈ Ω, t > 0),

u(·, t) |∂Ω = 0 (t ≥ 0),

(3)
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1. Introduction and main result

(3) is proposed by Kirchhoff in [G. Kirchhoff, Mechanik,
Teubner, Leipzig, 1883] as an existence of the classical
D’Alembert’s wave equations for free vibration of elastic
strings. Kirchhoff’s model takes into account the changes in
length of the string produced by transverse vibrations. In
(3), u denotes the displacement, f (x , u) the external force
and b the initial tension while a is related to the intrinsic
properties of the string (such as Young’s modulus).
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1. Introduction and main result

Nonlocal problems also appear in other fields as biological
systems, where u describes a process which depends on the
average of itself (for example, population density). After the
pioneer work of Lions [J. L. Lions, On some questions in
boundary value problems of mathematical physics, 1977],
where a functional analysis approach was proposed, the
Kirchhoff type equations began to call attention of
researchers.
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Previous results

F A. Arosio and S. Panizzi (Trans. Amer. Math. Soc.
1996, 305-330) considered the following equation utt −m

(∫
Ω
|∇xu|2dx

)
∆xu = f (x , t) (x ∈ Ω, t > 0)

u(·, t) |∂Ω = 0 (t > 0) ,

where Ω is an open subset of Rn and m is a positive function
of one real variable which is continuously differentiable. They
proved the well-posedness in the Hadamard sense (existence,
uniqueness and continuous dependence of the local solution
upon the initial data) in Sobolev spaces of low order.
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Previous results

F K. Perera and Zhang Zhitao (J. Differential Equations
2006, 246-255) considered the equation{

−
(
a + b

∫
Ω |∇u|

2
)

∆u = f (x , u) in Ω,

u = 0 on ∂Ω,
(4)

where Ω is a smooth bounded domain in Rn, n = 1, 2, 3,
a, b > 0, f is a Caratheodory function on Ω× R, s.t.

lim
t→0

f (x , t)

at
= λ, lim

|t|→∞

f (x , t)

bt3
= µ uniformly in x .
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Previous results

Denote by λ1 < λ2 6 λ3... the eigenvalues of the operator
−∆ and µ1 6 µ2 6 µ3... the eigenvalues of the problem{

−‖u‖2
H1

0 (Ω) ∆u = µu3 in Ω,

u = 0 on ∂Ω.

they proved that if λ ∈ (λl , λl+1) and µ ∈ (µm, µm+1) with
l 6= m, then problem has a nontrivial solution by Yang index
and critical group.
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Previous results

F Chen C.Y., Kuo Y.C. and Wu T.F. (J. Differential
Equations 2011, 1876-1908) studied−

(
a

∫
Ω
|∇u|2dx + b

)
∆u = λf (x)|u|q−2u + g(x)|u|p−2u in Ω

u = 0 on ∂Ω

where 1 < q < 2 < p < 2∗, f , g ∈ C (Ω̄), f +, g+ 6= 0 by using
Nehari manifold and fibering map methods, and multiple
positive solutions were obtained.
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Previous results

In recent years, the following Kirchhoff type equation−
(
a + b

∫
R3

|∇u|2
)

∆u + u = f (x , u) in R3,

u ∈ H1(R3)

(5)

has been studied extensively by many researchers where
f ∈ C (R3 × R,R), a, b > 0 are constants .
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Previous results

F X. He and W. Zou in (J. Differential Equations 2012,
1813-1834) studied (5) under the conditions that
f (x , u) := f (u) ∈ C 1(R+,R+) satisfies the
Ambrosetti-Rabinowitz condition ((AR) condition in short):

∃µ > 4, 0 < µ

∫ u

0
f (s)ds ≤ f (u)u,

lim
|u|→0

f (u)
|u|3 = 0, lim

|u|→∞
f (u)
|u|q = 0 for some 3 < q < 5 and f (u)

u3 is

strictly increasing for u > 0, i.e. f (u) behaves like
|u|p−2u(4 < p < 6). They showed that the Mountain Pass
Theorem and the Nehari manifold can be used directly to
obtain a positive ground state solution to (5).
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Previous results

F Similarly, J. Wang, L. Tian, J. Xu and F. Zhang (J.
Differential Equations 2012 2314-2351), Y. He, G. Li and S.
Peng (Adv. Nonlinear Stud. 2014 441-468) and G. Li, H. Ye
(Math. Meth. Appl. Sci. 2014 2570-2584) used the same
arguments as X. He and W. Zou in (J. Differential Equations
2012, 1813-1834) to prove the existence of a positive ground
state solution for (5) when f (x , u) := λf (u) + |u|4u, which

exhibits a critical growth, where lim
|u|→0

f (u)
|u|3 = 0, f (u)u ≥ 0, f (u)

u3

is strictly increasing for u > 0 and |f (u)| ≤ C (1 + |u|q) for
some 3 < q < 5, i.e. f (x , u) ∼ λ|u|p−2u + |u|4u(4 < p < 6).
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Previous results

F G. Li and H. Ye (J. Differential Equations 2014 566-600)
studied (5) with f (x , u) = |u|p−2u(3 < p ≤ 4). The
corresponding energy functional of (5) is

I (u) =
1

2
a

∫
R3

|∇u|2 +
b

4

(∫
R3

|∇u|2
)2

+
1

2

∫
R3

u2

− 1

p

∫
R3

|u|p, u ∈ H1(R3).

Inspired by Ruiz (J. Functional Analysis 2006 655-674), they
observed that

γ(t) := I (tu(t−1x))

=
1

2
at3

∫
R3

|∇u|2 +
b

4
t6
(∫

R3

|∇u|2
)2

+
1

2
t5

∫
R3

u2 − 1

p
tp+3

∫
R3

|u|p

has a unique critical point t0 > 0 corresponding to its
maximum.
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Previous results

If u is a solution of (5), then γ′(1) = 0, i.e.

G (u) :=
3

2
a

∫
R3

|∇u|2+
3

2
b

(∫
R3

|∇u|2
)2

+
5

2

∫
R3

u2−p + 3

p

∫
R3

|u|p = 0,

where G (u) = 〈I ′(u), u〉+ P(u) and P(u) = 0 is the
corresponding Pohozaev’s identity of (5). They used the
constrained minimization on a new manifold M to get a
positive ground state solution to (5) where

M := {u ∈ H1(R3)\{0}|G (u) = 0}.
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Previous results

As far as we know, there is no result on the existence of
positive ground state solutions for (5) under the condition
f (x , u) = λ|u|p−2u + |u|4u(2 < p ≤ 4). In this paper, we will fill
this gap.
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Previous results

Our motivation to study the concentration of solutions of (1)
mainly comes from the results of perturbed Schrödinger
equations, i.e.

−ε2∆u + V (x)u = |u|q−2u, x ∈ RN , (6)

where 2 < q < 2∗, N ≥ 1.

Many mathematicians proved the existence, concentration
and multiplicity of solutions for (6).
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Previous results

F A. Floer and A. Weinstein (J. Functional Analysis 1986
397-408) studied (6) in the case where N = 1, q = 4, V ∈ L∞

with inf V > 0. They construct a single peak solution which
concentrates around any given non-degenerate critical point
of the potential V .

Gongbao Li Kirchhoff type equations with critical Sobolev exponents



Previous results

F Y. G. Oh (Commun. Partial Differential Equations 1988
1499-1519) extended the result of A. Floer and A. Weinstein
(J. Functional Analysis 1986 397-408) in higher dimensions
when 2 < q < 2N/(N − 2) and the potential V belongs to a
Kato class which means that V satisfies the following
condition:

(V )a : V ≡ a or V > a and (V − a)−
1
2 ∈ Lip(RN) for some a ∈ R.
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Previous results

F Y. G. Oh (Commun. Math. Phys. 1990 223-253) proved
the existence of multi-peak solutions to (6) which
concentrate around any finite subsets of the non-degenerate
critical points of V .
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Previous results

F P. Rabinowitz (Z. Angew. Math. Phys. 1992 270-291)
studied (6) under the conditions:
(V3) V∞ = lim inf

|x |→∞
V (x) > V0 = inf

x∈RN
V (x) > 0.

Rabinowitz proved that (6) possesses a positive ground state
solution for ε > 0 small by using the Mountain Pass Theorem.
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Previous results

F X. Wang (Commun. Math. Phys. 1993 229-244) proved
that the positive ground state solutions of (6) must
concentrate at global minima of V as ε→ 0.
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Previous results

Under the same condition (V3) on V (x), S. Cingolani and N.
Lazzo (Topol. Methods Nonlinear Anal. 1997 1-13) proved
the multiplicity of positive ground state solutions for (6) by
using Ljusternik-Schnirelmann theory.
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Previous results

F M. del Pino and P. L. Felmer (Calc. Var. Partial
Differential Equations 1996 121-137) studied (6) with the
conditions on V :
(V1) V ∈ C (R3,R) and inf

x∈R3
V (x) = α > 0;

(V2) There is a bounded domain Λ such that

V0 := inf
Λ
V < min

∂Λ
V .

They proved that (6) possesses a positive bound state
solution for ε > 0 small which concentrates around the local
minima of V in Λ as ε→ 0 via the penalization method.
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Previous results

F Gui. C. (Commun. Partial Differential Equations 1996
787-820) studied (6) with the conditions on V :
(V1) V ∈ C (R3,R) and inf

x∈R3
V (x) = α > 0;

(V2) There exist k disjoint bounded regions Ω1, ...,Ωk such
that

V0 := inf
Ωi

V < min
∂Ωi

V , i = 1, ...k.
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Previous results

Gui showed that (6) possesses a positive bound state
solution uε for ε > 0 small with the following properties:
(1) uε has exactly k local maximum points Pε,1, ...,Pε,k
satisfying Pε,i ∈ Ωi and

lim
ε→0

V (Pε,i ) = inf
Ωi

V .

(2) There exist positive constants C , σ, (independent of x,
ε), such that

|uε| ≤ C exp
(
−σ
ε

min |x − Pε,i |
)
.

Gongbao Li Kirchhoff type equations with critical Sobolev exponents



Previous results

We note that Gui get the concentration result mainly by
using a version of global compactness method which is
different from del Pino and Felmer.
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Previous results

F X. He and W. Zou (J. Differential Equations 2012,
1813-1834) studied−

(
ε2a + εb

∫
R3

|∇u|2
)

∆u + V (x)u = f (u) in R3,

u > 0, u ∈ H1(R3),

(7)

with V satisfies
(V3) V∞ = lim inf

|x |→∞
V (x) > V0 = inf

x∈RN
V (x) > 0,

f ∈ C 1(R+,R+) and satisfies the (AR) condition, lim
s→0

f (s)
s3 = 0,

lim
|s|→∞

f (s)
|s|q = 0 for some 3 < q < 5 and f (s)

s3 is strictly increasing

for s > 0.
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Previous results

They obtained the existence, concentration and multiplicity
of solutions for (7) by the same arguments as P. Rabinowitz
(Z. Angew. Math. Phys. 1992 270-291), X. Wang
(Commun. Math. Phys. 1993 229-244), S. Cingolani and N.
Lazzo (Topol. Methods Nonlinear Anal. 1997 1-13).
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1. Introduction and main result

F J. Wang, L. Tian, J. Xu and F. Zhang (J. Differential
Equations 2012, 2314-2351) extended the result of X. He
and W. Zou (J. Differential Equations 2012, 1813-1834) with
the nonlinearity is of critical growth.
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1. Introduction and main result

F G. M. Figueiredo, N. Ikoma and J. R. Santos Junior
(Arch. Rational Mech. Anal. 2014 931-979) obtained the
existence of positive solutions of the following equation ε2M

(
ε2−N

∫
RN

|∇u|2
)

∆u + V (x)u = f (u) in RN ,

u ∈ H1(RN), u > 0 in RN , N ≥ 1

(8)

concentrating around a local minima of V under the
conditions that V satisfies (V1) and (V2),
(V1) V ∈ C (R3,R) and inf

x∈R3
V (x) = α > 0;

(V2) There is a bounded domain Λ such that

V0 := inf
Λ
V < min

∂Λ
V .
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1. Introduction and main result

f satisfies
(F1) f ∈ C (R,R), f (s) = 0 if s ≤ 0;
(F2) −∞ < lim

s→0+

f (s)/s ≤ lim
s→0+

f (s)/s < V̂ ;

(F3) When N ≥ 3, f (s)/s(N+2)/(N−2) → 0 as s →∞ and when
N = 2, f (s)/eαs

2 → 0 as s →∞ for any α > 0;
(F4) There exists an s0 > 0 such that −V0s

2
0/2 + F (s0) > 0

where F (s) :=
∫ s

0 f (t)dt when N ≥ 2, and when N = 1,
−V0s

2
0/2 + F (s0) = 0, − V0s

2/2 + F (s) <
0 in (0, s0), − V0s0 + f (s0) > 0.
Generally, f is of subcritical.
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1. Introduction and main result

M ∈ C ([0,∞),R) satisfies
(M1) There exists m0 > 0 such that M(t) ≥ m0 > 0 for any
t ≥ 2;
(M2) Set M̂(t) :=

∫ t
0 M(s)ds, then there holds

lim
t→∞
{M̂(t)− (1− 2/N)M(t)t} =∞;

(M3) M(t)/t2/(N−2) → 0 as t →∞;
(M4) The function M(t) is nondecreasing in [0,∞);
(M5) The function M(t)/t2/(N−2) is nonincreasing in [0,∞).
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Our main results

F Theorem 1.1(Y.He-G.Li 2014) Let (V1), (V2) hold. There
exist λ∗ > 0 and ε∗ > 0 such that for each λ ∈ [λ∗,∞) and
ε ∈ (0, ε∗), (1) possesses a positive solution uε ∈ H1(R3) such
that
(i) there exists a maximum point xε of uε such that

lim
ε→0

dist(xε,M) = 0;

(ii) ∃C1,C2 > 0, such that

uε(x) ≤ C1 exp
(
−C2

ε
|x − xε|

)
,

where C1, C2 are independent of ε.
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The main difficulties

The main difficulties:

F (i) The fact that the nonlinearity λ|u|p−2u + |u|4u with
p ∈ (2, 4] does not satisfy (AR) condition and the fact that

the function λup−1+u5

u3 is not increasing for (u > 0) prevent us
from obtaining a bounded Palais-Smale sequence and using
the Nehari manifold, respectively.
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The main difficulties

F (ii) The unboundedness of the domain R3 and the
nonlinearity λ|u|p−2u + |u|4u(2 < p ≤ 4) with the critical
Sobolev growth lead to the lack of compactness.
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2. The limiting problem

Firstly, we need to prove the existence of ground state
solution to the following limiting equation of (1)−

(
a + b

∫
R3

|∇u|2
)

∆u + mu = λ|u|p−2u + |u|4u in R3,

u > 0, u ∈ H1(R3)

(9)

for m > 0.
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2. The limiting problem

The corresponding energy functional is

Im(u) =
a

2

∫
R3

|∇u|2 +
b

4

(∫
R3

|∇u|2
)2

+
m

2

∫
R3

u2

− λ

p

∫
R3

(u+)
p − 1

6

∫
R3

(u+)
6
, u ∈ H1(R3).
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2. The limiting problem

F J. Hirata, N. Ikoma and K. Tanaka (Topol. Methods
Nonlinear Anal. 2010 253-276)

−∆u = g(u), u ∈ H1(RN)

with the corresponding energy functional

I (u) =
1

2

∫
RN

|∇u|2 −
∫
RN

G (u), u ∈ H1
r (RN),

where G (u) =
∫ u

0 g(s)ds and g ∈ C (R,R) ia an odd function
satisfying
(g1) −∞ < lim

s→0

g(s)
s 6 lim

s→0

g(s)
s < 0;

(g2) lim
s→∞

g(s)

s(N+2)/(N−2) = 0;

(g3)∃ξ0 > 0 s.t. G (ξ0) =
∫ ξ0

0 g(s)ds > 0.
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2. The limiting problem

They applied the Mountain Pass theorem on the augmented
functional Ĩ (θ, u) = I (u(e−θx)) to get a bounded (PS)
sequence {un}∞n=1 with an extra property P(un)→ 0 as n→∞
where P(u) = 0 is the corresponding Pohozaev’s identity.
Note that they have used the information of Pohozaev’s
identity.
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2. The limiting problem

F Ruiz (J. Functional Analysis 2006 655-674){
−∆u + u + λφu = up−1 in R3,

−∆φ = u2 in R3, 3 < p ≤ 4

I (u) =
1

2

∫
R3

|∇u|2 +
1

2

∫
R3

u2 +
1

16π

∫
R3

∫
R3

u2(x)u2(y)

|x − y |
dxdy

− λ

p

∫
R3

|u|p, u ∈ H1
r (R3).
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2. The limiting problem

F Ruiz obtained a positive radial nontrivial solution by
using the constrained minimization method on a new
manifold which is obtained by combining the usual Nehari
manifold and the Pohozaev’s identity M, where

M = {u ∈ H1(R3)\{0}|2
〈
I ′(u), u

〉
− P(u) = 0}

and P(u) = 0 is the corresponding Pohozaev’s identity.
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2. The limiting problem

I (t2u(tx)) =
1

2
t3

∫
R3

|∇u|2 +
1

2
t

∫
R3

u2

+
1

16π
t3

∫
R3

∫
R3

u2(x)u2(y)

|x − y |
dxdy − λ

p
t2p−3

∫
R3

|u|p

2p − 3 > 3⇒ p > 3

γ(t) := I (t2u(tx)) has a unique critical point t0 > 0
corresponding to its maximum.
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2. The limiting problem

F G. Li and H. Ye (J.Differential Equations 2014 566-600)−
(
a + b

∫
R3

|∇u|2
)

∆u + u = |u|p−2u in R3,

u > 0, u ∈ H1(R3), 3 < p 6 4,

I (u) =
a

2

∫
R3

|∇u|2+
b

4

(∫
R3

|∇u|2
)2

+
1

2

∫
R3

u2−1

p

∫
R3

|u|p, u ∈ H1(R3).
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2. The limiting problem

They obtained a positive ground state solution by using the
constrained minimization method on a new manifold which is
obtained by combining the usual Nehari manifold and the
Pohozaev’s identity M, where

M = {u ∈ H1(R3)\{0}|
〈
I ′(u), u

〉
+ P(u) = 0}

and P(u) = 0 is the corresponding Pohozaev’s identity.
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2. The limiting problem

I (tu(t−1x)) =
a

2
t3

∫
R3

|∇u|2 +
b

4
t6

(∫
R3

|∇u|2
)2

+
1

2
t5

∫
R3

u2 − 1

p
tp+3

∫
R3

|u|p

p + 3 > 6⇒ p > 3

γ(t) := I (tu(t−1x)) has a unique critical point t0 > 0
corresponding to its maximum.
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2. The limiting problem

In view of P. Pucci and J. Serrin (Indiana Univ. Math. J.
1986, 681-703), if u ∈ H1(R3) is a weak solution to problem
(9), then we have the following Pohozaev’s identity:

d

dt
Im(u(

x

t
) |t=1≡ Pm(u) =

a

2

∫
R3

|∇u|2 +
b

2

(∫
R3

|∇u|2
)2

+
3

2
m

∫
R3

u2

− 3

p
λ

∫
R3

(u+)
p − 1

2

∫
R3

(u+)
6

= 0.

(10)

Gongbao Li Kirchhoff type equations with critical Sobolev exponents



2. The limiting problem

Im(tu(t−2x)) =
a

2
t4

∫
R3

|∇u|2 +
b

4
t8

(∫
R3

|∇u|2
)2

+
m

2
t8

∫
R3

u2

− λ

p
tp+6

∫
R3

(u+)
p − 1

6
t12

∫
R3

(u+)
6

p + 6 > 8⇒ p > 2

γ(t) := Im(tu(t−2x)) has a unique critical point t0 > 0
corresponding to its maximum.
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2. The limiting problem

We introduce the following manifold:

Mm :=
{
u ∈ H1(R3)\{0} : Gm(u) = 0

}
,

where

Gm(u) = 2a

∫
R3

|∇u|2 + 2b

(∫
R3

|∇u|2
)2

+ 4m

∫
R3

u2

− p + 6

p
λ

∫
R3

(u+)
p − 2

∫
R3

(u+)
6
.

It is clear that

Gm(u) = 〈I ′m(u), u〉+ 2Pm(u).
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2. The limiting problem

F Lemma 3.2 For any u ∈ H1(R3)\{0}, there is a unique
t̃ > 0 such that ut̃ ∈ Mm, where ut̃(x) := t̃u(t̃−2x). Moreover,
Im(ut̃) = max

t>0
Im(ut).
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2. The limiting problem

F Lemma 3.3 Im possesses the Mountain-Pass geometry.
Fix u ∈ H1(R3)\{0}, set ut(x) := tu(t−2x),

Im(ut) =
a

2
t4

∫
R3

|∇u|2 +
b

4
t8

(∫
R3

|∇u|2
)2

+
1

2
mt8

∫
R3

u2

− λ

p
tp+6

∫
R3

(u+)
p − 1

6
t12

∫
R3

(u+)
6
< 0

for t > 0 large, then ∃t0 > 0, set u0 := ut0, I (u0) < 0.
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2. The limiting problem

The Mountain-Pass level of Im:

cm := inf
γ∈Γm

sup
t∈[0,1]

Im(γ(t)),

where

Γm :=
{
γ ∈ C ([0, 1],H1(R3)) : γ(0) = 0 and Im(γ(1)) < 0

}
.
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2. The limiting problem

Although Im satisfies the Mountain-Pass geometry, but the
nonlinearity g(u) := λ|u|p−2u + |u|4u with 2 < p ≤ 4 does not
satisfy the Ambrosetti-Rabinowitz condition
(∃µ > 4, 0 < µ

∫ u
0 g(s)ds ≤ g(u)u), the boundedness of (PS)

sequence seems to be difficult to be proved. We need some
more information for the (PS) sequence.
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2. The limiting problem

F (General Minimax Principle) Let X be a Banach space.
Let M0 be a closed subspace of the metric space M and
Γ0 ⊂ C (M0,X ). Define

Γ := {γ ∈ C (M,X ) : γ |M0 ∈ Γ0 } .

If ϕ ∈ C 1(X ,R) satisfies

∞ > c := inf
γ∈Γ

sup
u∈M

ϕ(γ(u)) > a := sup
γ0∈Γ0

sup
u∈M0

ϕ(γ0(u)),

then, for every ε ∈ (0, (c − a)/2), δ > 0 and γ ∈ Γ such that
sup
M
ϕ ◦ γ ≤ c + ε, there exists u ∈ X such that

(a) c − 2ε ≤ ϕ(u) ≤ c + 2ε,
(b) dist(u, γ(M)) ≤ 2δ,
(c) ‖ϕ′(u)‖ ≤ 8ε/δ.
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2. The limiting problem

F Proposition 3.4 There exists a sequence {un}∞n=1 in
H1(R3) such that, as n→∞,

Im(un)→ cm, I ′m(un)→ 0, Gm(un)→ 0.
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2. The limiting problem

Define the map

Φ(θ, v) := eθv(e−2θx), R× H1(R3)→ H1(R3).

Im ◦ Φ(θ, v) =
a

2
e4θ

∫
R3

|∇u|2 +
b

4
e8θ

(∫
R3

|∇u|2
)2

+
1

2
me8θ

∫
R3

u2

− λ

p
e(p+6)θ

∫
R3

(u+)
p − 1

6
e12θ

∫
R3

(u+)
6
.

Im ◦ Φ(θ, v) > 0 for all (θ, v) with |θ|, ‖v‖H1(R3) small and
(Im ◦ Φ)(0, u0) < 0,
i.e. Im ◦ Φ possesses the Mountain-Pass geometry in
R× H1(R3).
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2. The limiting problem

The Mountain-Pass level of Im ◦ Φ:

c̃m := inf
γ̃∈Γ̃m

sup
t∈[0,1]

(Im ◦ Φ)(γ̃(t)),

where

Γ̃m

:=
{
γ̃ ∈ C ([0, 1],R× H1(R3)) : γ̃(0) = (0, 0) and (Im

◦Φ)(γ̃(1)) < 0
}
.

As Γm = {Φ ◦ γ̃ : γ̃ ∈ Γ̃m}, the Mountain-Pass levels of Im and
Im ◦ Φ coincide, i.e. cm = c̃m.
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2. The limiting problem

Using the General Minimax Principle,
∃{(θn, vn)}n∈N ⊂ R× H1(R3), such that

(Im ◦ Φ)(θn, vn)→ cm, (11)

(Im ◦ Φ)′(θn, vn)→ 0 in (R× H1(R3))−1, (12)

θn → 0. (13)
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2. The limiting problem

Set ε = εn := 1
n2 , δ = δn := 1

n in the General Minimax
Principle,

(a), (c)⇒ (11), (12)

.
For (13), by the definition of cm, for ε = εn := 1

n2 , ∃γn ∈ Γm,
such that

sup
t∈[0,1]

Im(γn(t)) ≤ cm +
1

n2
.

Set γ̃n(t) = (0, γn(t)), then

sup
t∈[0,1]

Im ◦ Φ(γ̃n(t)) = sup
t∈[0,1]

Im(γn(t)) ≤ cm +
1

n2
.

By (b) of the General Minimax Principle, there exists
(θn, vn) ∈ R× H1(R3) such that dist((θn, vn), (0, γn(t))) ≤ 2

n ,
(13) holds.
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2. The limiting problem

∀(h,w) ∈ R× H1(R3),〈
(Im ◦ Φ)′(θn, vn), (h,w)

〉
=
〈
I ′m(Φ(θn, vn)),Φ(θn,w)

〉
+Gm(Φ(θn, vn))h.

(14)
Taking h = 1, w = 0 in (14),

Gm(Φ(θn, vn))→ 0 as n→∞.

Set un := Φ(θn, vn),

Gm(un)→ 0 as n→∞.
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2. The limiting problem

∀v ∈ H1(R3), set w(x) = e−θnv(e2θnx), h = 0 in (14),〈
I ′m(un), v

〉
= o(1)

∥∥∥e−θnv(e2θnx)
∥∥∥
H1(R3)

= o(1)‖v‖H1(R3),

i.e. I ′m(un)→ 0 in (H1(R3))−1 as n→∞.
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2. The limiting problem

Similar to P. Rabinowitz (Z. Angew. Math. Phys. 1992
270-291), we can prove

cm = inf
u∈H1(R3)\{0}

max
t>0

Im(tu(t−2x)) = inf
u∈Mm

Im(u) > 0. (15)

i.e. the Mountain Pass level equals to the ground state level
for Im. Note that (15) holds only if the potential equals to
positive constant.
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2. The limiting problem

Denote

vδ := ψδ/
(∫

B2(0)
|ψδ|6

)1/6
,

where ψδ(x) := ϕ(x)wδ(x), ϕ ∈ C∞c (B2(0)) satisfying ϕ ≡ 1
on B1(0), 0 ≤ ϕ ≤ 1 on B2(0) and

wδ(x) = (3δ)1/4 1

(δ + |x |2)
1/2

is a minimizer for D1,2(R3) ↪→ L6(R3). We construct a special
path tvδ(t

−2x)(t ≥ 0) to show that

max
t>0

Im(tvδ(t
−2x)) <

1

4
abS3 +

1

24
b3S6 +

1

24
(b2S4 + 4aS)

3
2

for λ > 0 large. Then we get the following Lemma:
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2. The limiting problem

F Lemma 3.5

cm <
1

4
abS3 +

1

24
b3S6 +

1

24
(b2S4 + 4aS)

3
2

for λ > 0 large, where S is the best Sobolev constant for the
embedding D1,2(R3) ↪→ L6(R3).
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2. The limiting problem

F Lemma 3.6 The sequence got in Proposition 3.4 is
bounded in H1(R3).

cm + o(1)

= Im(un)− 1

p + 6
Gm(un)

=
p + 2

2(p + 6)
a

∫
R3

|∇un|2 +
p − 2

4(p + 6)
b

(∫
R3

|∇un|2
)2

+
p − 2

2(p + 6)
m

∫
R3

|un|2 +
6− p

6(p + 6)

∫
R3

(u+
n )

6
.
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2. The limiting problem

By the Vanishing Theorem and Lemma 3.5, we have
Lemma 3.7: There is a sequence {xn} ⊂ R3 and R > 0, β > 0
such that ∫

BR(xn)
u2
n ≥ β.
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2. The limiting problem

Denote ũn(x) = un(x + xn), by Lemma 3.7,

ũn ⇀ ũ in H1(R3)\{0}.

ũ satisfies

−(a + bA2)∆ũ + mũ = λ(ũ+)p−1 + (ũ+)5, (16)

where A2 := lim
n→∞

∫
R3 |∇ũn|2 ≥

∫
R3 |∇ũ|2.
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2. The limiting problem

Following (G. Li, H. Ye J. Differential Equations 2014
566-600), we have

(a + bA2)

∫
R3

|∇ũ|2 + m

∫
R3

ũ2 − λ
∫
R3

(ũ+)
p −

∫
R3

(ũ+)
6

= 0,

1

2
(a + bA2)

∫
R3

|∇ũ|2 +
3

2
m

∫
R3

ũ2 − 3

p
λ

∫
R3

(ũ+)
p − 1

2

∫
R3

(ũ+)
6

= 0.

The first one follows by multiplying (16) by ũ and
integrating. The second one is the Pohozaev’s identity
applying to (16).
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2. The limiting problem

Hence

Gm(ũ)

= 2a

∫
R3

|∇ũ|2 + 4m

∫
R3

ũ2 + 2b
(∫

R3

|∇ũ|2
)2

− p + 6

p
λ

∫
R3

(ũ+)
p − 2

∫
R3

(ũ+)
6

≤ 2a

∫
R3

|∇ũ|2 + 4m

∫
R3

ũ2 + 2bA2

∫
R3

|∇ũ|2

− p + 6

p
λ

∫
R3

(ũ+)
p − 2

∫
R3

(ũ+)
6

= 0.
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2. The limiting problem

To prove that Gm(ũ) = 0, just suppose that Gm(ũ) < 0, then
ũ 6= 0 and there is a unique 0 < t < 1 such that
Gm(tũ(t−2x)) = 0. So
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2. The limiting problem

cm ≤ Im((ũ)t) = Im((ũ)t)−
1

p + 6
Gm((ũ)t)

=
p + 2

2(p + 6)
at4

∫
R3

|∇ũ|2 +
p − 2

2(p + 6)
mt8

∫
R3

ũ2

+
p − 2

4(p + 6)
bt8
(∫

R3

|∇ũ|2
)2

+
6− p

6(p + 6)
t12

∫
R3

(ũ+)
6

<
p + 2

2(p + 6)
a

∫
R3

|∇ũ|2 +
p − 2

2(p + 6)
m

∫
R3

ũ2

+
p − 2

4(p + 6)
b
(∫

R3

|∇ũ|2
)2

+
6− p

6(p + 6)

∫
R3

(ũ+)
6

≤ lim
n→∞

[ p + 2

2(p + 6)
a

∫
R3

|∇ũn|2 +
p − 2

2(p + 6)
m

∫
R3

ũ2
n

+
p − 2

4(p + 6)
b
(∫

R3

|∇ũn|2
)2

+
6− p

6(p + 6)

∫
R3

(ũ+
n )

6
]

= lim
n→∞

[
Im(ũn)− 1

p + 6
Gm(ũn)

]
= lim

n→∞

[
Im(un)− 1

p + 6
Gm(un)

]
= cm,

(17)
Gongbao Li Kirchhoff type equations with critical Sobolev exponents



2. The limiting problem

a contradiction. Hence Gm(ũ) = 0. Using the above
inequality again with t = 1, we conclude that ũn → ũ in
H1(R3), then Im(ũ) = cm and I ′m(ũ) = 0, i.e. ũ is a ground
state solution for the limiting problem.
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2. The limiting problem

Let Sm the set of ground state solutions U of (9) satisfying
U(0) = max

x∈R3
U(x).

F Proposition 3.7 For each m > 0, Sm is compact in H1(R3).

The proof of Proposition 3.7 involves applying Brezis-Kato
type argument, i.e.
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2. The limiting problem

F Lemma 2.2 (i)Assume that {vn} is a sequence of weak
solutions to

−
(
a + b

∫
R3

|∇u|2
)

∆u + Vn(x)u = fn(x , u) in R3

satisfying ‖vn‖H1(R3) ≤ C where Vn(x) ≥ α > 0 and ∀δ > 0,
∃Cδ > 0 such that

|fn(x , t)| ≤ δ|t|+ Cδ|t|5, ∀(x , t) ∈ R3 × R.

If {|vn|6} is uniformly integrable in any bounded domain in
R3, then for any x0 ∈ R3, ∃R0(x0) > 0 such that

‖vn‖L∞(BR0(x0)/4(x0)) ≤ C (R0(x0)).
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2. The limiting problem

The proof of Lemma 2.2 (i) mainly comes from Zhu. X. and
Yang. J. (System Sci. Math. 1989, 47-52)
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3. Proof of the main result

(1) can be rewritten as

−
(
a + b

∫
R3

|∇v |2
)

∆v+V (εx)v = λ|v |p−2v+|v |4v , v ∈ H1(R3), v > 0

(17)
with the energy functional

Iε(v) =
a

2

∫
R3

|∇v |2 +
b

4

(∫
R3

|∇v |2
)2

+
1

2

∫
R3

V (εx)v2

− λ

p

∫
R3

(v+)
p − 1

6

∫
R3

(v+)
6
, v ∈ H1(R3).
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3. Proof of the main result

Hε := {v ∈ H1(R3)|
∫
R3

V (εx)v2 <∞}

endowed with the norm

‖v‖Hε :=
(∫

R3

|∇v |2 +

∫
R3

V (εx)v2
)1/2

.
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3. Proof of the main result

Define

χε(x) =

{
0 if x ∈ Λ/ε,

ε−1 if x /∈ Λ/ε

and

Qε(v) =
(∫

R3

χεv
2 − 1

)2

+
.

Set Jε : Hε → R be given by

Jε(v) = Iε(v) + Qε(v).

Note that this type of penalization was firstly introduced by
J. Byeon, Z. Q. Wang (Calc. Var. Partial Differential
Equations 2003 207-219).
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3. Proof of the main result

Let cV0 = IV0(w) for w ∈ SV0 and 10δ = dist{M,R3\Λ}, we fix
a β ∈ (0, δ) and a cut-off function ϕ ∈ C∞c (R3) such that
0 ≤ ϕ ≤ 1, ϕ(x) = 1 for |x | ≤ β, ϕ(x) = 0 for |x | ≥ 2β and
|∇ϕ| ≤ C/β.
Denote

Xε :=
{
ϕ(εx − x ′)w

(
x − x ′

ε

)
: x ′ ∈Mβ,w ∈ SV0

}
for sufficiently small ε > 0, where
Mβ := {y ∈ R3 : inf

z∈M
|y − z | ≤ β}.
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3. Proof of the main result

∀U∗ ∈ SV0, define Wε,t(x) := tϕ(εx)U∗(t−2x), by studying the
behavior of Jε(Wε,t), we can check that Jε possesses the
Mountain Pass geometry for ε > 0 small.
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3. Proof of the main result

The Mountain-Pass value of Jε:

cε := inf
γ∈Γε

max
s∈[0,1]

Jε(γ(s))

where Γε := {γ ∈ C ([0, 1],Hε)|γ(0) = 0, γ(1) = Wε,t0}.
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3. Proof of the main result

Denote
c̃ε := max

s∈[0,1]
Jε(γε(s)).

F Lemma 4.1, Lemma 4.2

lim
ε→0

cε = lim
ε→0

c̃ε = cV0 .

Note that Lemma 4.1, Lemma 4.2 will be used in Lemma 4.3
below.
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3. Proof of the main result

F Lemma 4.3
(i) There exists a d0 > 0 such that for any {εi}∞i=1, {Rεi},
{uεi} with lim

i→∞
εi = 0, Rεi ≥ R0/εi , uεi ∈ X d0

εi
∩ H1

0 (BRεi
(0)),

lim
i→∞

Jεi (uεi ) ≤ cV0 and lim
i→∞

∥∥J ′εi (uεi )∥∥∗,εi ,Rεi = 0,
(18)

then there exists, up to a subsequence, {yi}∞i=1 ⊂ R3,
x0 ∈M, U ∈ SV0 such that

lim
i→∞
|εiyi−x0| = 0 and lim

i→∞
‖uεi − ϕ(εix − εiyi )U(x − yi )‖Hεi = 0.

(ii) If we drop {Rεi} and replace(18) by

lim
i→∞

εi = 0, uεi ∈ X d0
εi
, lim

i→∞
Jεi (uεi ) 6 cV0

and lim
i→∞

∥∥J ′εi (uεi )∥∥(Hεi )
−1 = 0,

then the same conclusion holds.
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3. Proof of the main result

Note that Lemma 4.3 is a key for the proof of Theorem 1.1
and the idea of Lemma 4.3 mainly comes from Byeon and
Jeanjean (Arch. Rational Mech. Anal. 2007, 185-200), but
for the critical case, the method of Byeon and Jeanjean
seems to be hard to be used directly and some more tricks
are needed.
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3. Proof of the main result

F Lemma 4.4 Let d0 be the number given in Lemma 4.3,
then for any d ∈ (0, d0), there exist εd > 0, ρd > 0 and ωd > 0
such that ∥∥J ′ε(u)

∥∥
∗,ε,R ≥ ωd > 0

for all u ∈ J
cV0

+ρd
ε ∩ (X d0

ε \X d
ε )∩H1

0 (BR(0)) with ε ∈ (0, εd) and
R ≥ R0/ε.

Gongbao Li Kirchhoff type equations with critical Sobolev exponents



3. Proof of the main result

F Lemma 4.5 There exists T0 > 0 with the following
property: for any δ > 0 small, there exist αδ > 0 and εδ > 0
such that if Jε(γε(s)) ≥ cV0 − αδ and ε ∈ (0, εδ), then
γε(s) ∈ XT0δ

ε , where γε(s) := Wε,st0, s ∈ [0, 1].
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3. Proof of the main result

Inspired by G. M. Figueiredo, N. Ikoma, J. R. Santos Junior(
Arch. Rational Mech. Anal. 2014 931-979), using Lemma
4.4, Lemma 4.5 and a version of quantitative deformation
lemma due to G. M. Figueiredo, N. Ikoma, J. R. Santos
Junior, we can construct a bounded (PS) sequence of the
penalized functional Jε near the compact set SV0, i.e.
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3. Proof of the main result

F Lemma 4.6 ∃ε̄ > 0 such that for each ε ∈ (0, ε̄] and
R > R0/ε, there exists a sequence
{vRn,ε}∞n=1 ⊂ J c̃ε+ε

ε ∩ X d0
ε ∩ H1

0 (BR(0)) such that J ′ε(v
R
n,ε)→ 0 in

(H1
0 (BR(0)))−1 as n→∞.
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3. Proof of the main result

Using standard argument, we can find a solution vε ∈ H1(R3)
to the penalized equation

−
(
a + b

∫
R3

|∇u|2
)

∆u+V (εx)u+4
(∫

R3

χεu
2dx − 1

)
+
χεu = λup−1+u5 in R3.
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3. Proof of the main result (existence)

To show that, vε is, in fact, a solution to (17), we need the
following Brezis-Kato type argument:
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3. Proof of the main result (existence)

F Lemma 2.2 (ii) Assume that {vn} is a sequence of weak
solutions to

−
(
a + b

∫
R3

|∇u|2
)

∆u + Vn(x)u = fn(x , u) in R3

satisfying ‖vn‖H1(R3) ≤ C where Vn(x) ≥ α > 0 and ∀δ > 0,
∃Cδ > 0 such that

|fn(x , t)| ≤ δ|t|+ Cδ|t|5, ∀(x , t) ∈ R3 × R.

If {|vn|6} is uniformly integrable near ∞, i.e. ∀ε > 0, ∃R > 0,
for any r > R,

∫
R3\Br (0) |vn|

6 < ε, then

lim
|x |→∞

vn(x) = 0 uniformly for n.

The proof mainly comes from G. Li( Ann. Acad. Sci. Fenn.
A I Math. 1990 27-36)
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3. Proof of the main result (existence)

For any sequence {εj} with εj → 0, by Lemma 4.3(ii),
∃{yj}∞i=j ⊂ R3, x0 ∈M, U ∈ SV0 such that

lim
j→∞
|εjyj−x0| = 0 and lim

j→∞

∥∥vεj (x)− ϕ(εjx − εjyj)U(x − yj)
∥∥
Hεj

= 0

(20)

⇒

wεj (x) := vεj (x + yj)→ U(x) in L6(R3).

By Lemma 2.2 (ii), we get

lim
|x |→∞

wεj (x) = 0 uniformly for all εj . (21)
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3. Proof of the main result (existence)

Proceeding as G. Li and S. Yan (Commun. Partial
Differential Equations 1989 1291-1314), we get the uniform
exponential decay

wεj (x) ≤ C1e
−C2|x |, x ∈ R3.

Thus

ε−1
j

∫
R3\(Λ/εj )

v2
εj

(x) = ε−1
j

∫
R3\(Λ/εj−yj )

w2
εj

(x)

6 ε−1
j

∫
R3\Bβ/εj (0)

(C1)2e−2C2|x | → 0, as j →∞,

i.e. Qεj (vεj ) = 0 for εj small. Therefore vεj is a solution of
(17). Set uε(x) = vε(

x
ε ), uεj is a solution of (1).
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3. Proof of the main result (concentration)

Let Pj be a maximum point of wεj , we can check that ∃C0 > 0
such that wεj (Pj) > C0, then by (21), {Pj} must be bounded.
Since uεj (x) = wεj (

x
εj
− yj), xj := εjPj + εjyj is a maximum

point of uεj . From (20), xj → x0 ∈M as j →∞.
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