

CRICOS PROVIDER 00123M

Noncommutative Geometry & Conformal Geometry

Hang Wang (joint with Raphael Ponge) 18 Nov 2014

adelaide.edu.au

Main Results

We use tools of noncommutative geometry to obtain:

- Local index formula in conformal-diffeomorphism invariant geometry.
- A new class of conformal invariants.
- Vafa-Witten inequality in the setting of twisted spectral triples.

References

- PW0 Ponge, R.; Hang, W.: Index map, σ-connections and Connes-Chern character in the setting of twisted spectral triples. arXiv 1310.6131.
- PW1 Ponge, R.; Wang, H.: Noncommutative geometry and conformal geometry. I. Local index formula and conformal invariants. arXiv 1411.3701.
- PW2 Ponge, R.; Hang, W.: Noncommutative geometry and conformal geometry. II. Connes-Chern character and the local equivariant index theorem. arXiv 1411.3703.
- PW3 Ponge, R.; Wang, H.: Noncommutative geometry and conformal geometry. III. Vafa-Witten inequality and Poincaré duality. arXiv 1310.6138.

Part 1 Background

- 1. Twisted spectral triples in noncommutative geometry.
- 2. Index map and Connes-Chern character of a twisted spectral triple.
- 3. Conformal invariants and local index formulas in conformal geometry.

4. Vafa-Witten inequality for twisted spectral triples.

Manifolds and Spectral triples

Let (M^n, g) be a compact Riemannian spin manifold (n even) with spinor bundle $\$ = \$^+ \oplus \$^-$. Then

$$M \rightsquigarrow C^{\infty}(M), L^2_g(M, \$), \mathcal{D}_g.$$

• $C^{\infty}(M)$ acts by multiplication on $L^2_g(M, \$)$.

• $ot\!\!\!/ p_g: C^\infty(M, \$) \to C^\infty(M, \$)$ is the Dirac operator of (M, g). Conversely,

 $C^{\infty}(M), L^2_g(M, \$), \not \! D_g \rightsquigarrow$ Riemannian geometry of M.

- The algebra $C^{\infty}(M)$ encodes space information.
- The operator \mathcal{P}_{g} encodes geometric information.

-
$$[\mathcal{D}_g, f] = c(df).$$

- $d(x, y) = \sup_f \{|f(x) - f(y)| : ||[\mathcal{D}_g, f]|| \le 1\}.$

Spectral Triples

Definition (Connes)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of

- 1. A $\mathbb{Z}_2\text{-graded}$ Hilbert space $\mathcal{H}=\mathcal{H}^+\oplus\mathcal{H}^-.$
- 2. An involutive algebra \mathcal{A} represented in \mathcal{H} .
- 3. A selfadjoint unbounded operator D on \mathcal{H} such that

3.1
$$D$$
 maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .

- 3.2 $(D \pm i)^{-1}$ is compact.
- 3.3 [D, a] is bounded for all $a \in A$.

Example (Dirac Spectral Triple) In the previous slide, $(C^{\infty}(M), L_g^2(M, \$), \mathcal{D}_g)$ is a spectral triple:

- (Mⁿ, g) compact Riemannian spin manifold (n even) with spinor bundle \$ = \$⁺ ⊕ \$⁻.
- $C^{\infty}(M)$ acts by multiplication on $L^2_g(M, \$)$.

Group Actions on Manifolds

Fact

If G is a group of diffeomorphisms of a manifold M, then M/G need not be Hausdorff.

Solution Provided by NCG

Trade the space M/G for the crossed product algebra,

$$\begin{aligned} C^{\infty}_{c}(M) \rtimes G &= \left\{ \sum f_{\phi} u_{\phi}; \ f_{\phi} \in C^{\infty}_{c}(M) \right\}, \\ u^{*}_{\phi} &= u^{-1}_{\phi} = u_{\phi^{-1}}, \qquad u_{\phi} f = (f \circ \phi^{-1}) u_{\phi}. \end{aligned}$$

Proposition (Green)

If G acts freely and properly, then $C^{\infty}(M/G)$ is Morita equivalent to $C_{c}^{\infty}(M) \rtimes G$.

Geometry of Manifolds with Group Actions

Example (Equivariant Dirac Spectral Triple)

- (Mⁿ, g) compact Riemannian spin manifold (n even) with spinor bundle \$ = \$⁺ ⊕ \$⁻ with the action of a group G of isometries preserving orientation and spin structure.
- $C^{\infty}(M) \rtimes G$ is the (discrete) crossed product.

Then
$$(C^{\infty}(M) \rtimes G, L^2_g(M, \$), \not D_g)$$
 is a spectral triple.

Remark

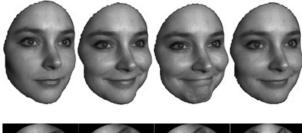
When the group ${\it G}$ acts by conformal diffeomorphisms on ${\it M},$ commutators

$$[D_g, a] \qquad a \in C^\infty(M) \rtimes G$$

are not bounded.

Conformal Geometry

Conformal Geometry



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition (Connes-Moscovici)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of

- 1. A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- 2. An involutive algebra \mathcal{A} represented in \mathcal{H} .
- 3. A selfadjoint unbounded operator D on \mathcal{H} such that

- 3.1 D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
- 3.2 $(D \pm i)^{-1}$ is compact.
- 3.3 [D,a] is bounded for all $a \in A$.

Definition (Connes-Moscovici)

A twisted spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of

- 1. A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- 2. An involutive algebra \mathcal{A} represented in \mathcal{H} .
- 3. A selfadjoint unbounded operator D on ${\mathcal H}$ such that

- 3.1 D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
- 3.2 $(D \pm i)^{-1}$ is compact.
- 3.3 is bounded for all $a \in A$.

Definition (Connes-Moscovici)

A twisted spectral triple $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ consists of

- 1. A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- 2. An involutive algebra \mathcal{A} represented in \mathcal{H} .
- 3. A selfadjoint unbounded operator D on \mathcal{H} such that

- 3.1 D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
- 3.2 $(D \pm i)^{-1}$ is compact.
- 3.3 is bounded for all $a \in A$.

Definition (Connes-Moscovici)

A twisted spectral triple $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ consists of

- 1. A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- 2. An involutive algebra \mathcal{A} represented in \mathcal{H} together with an automorphism $\sigma : \mathcal{A} \to \mathcal{A}$ such that $\sigma(a)^* = \sigma^{-1}(a^*)$ for all $a \in \mathcal{A}$.

- 3. A selfadjoint unbounded operator D on \mathcal{H} such that
 - 3.1 D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
 - 3.2 $(D \pm i)^{-1}$ is compact.
 - 3.3 is bounded for all $a \in A$.

Definition (Connes-Moscovici)

A twisted spectral triple $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ consists of

- 1. A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- 2. An involutive algebra \mathcal{A} represented in \mathcal{H} together with an automorphism $\sigma : \mathcal{A} \to \mathcal{A}$ such that $\sigma(a)^* = \sigma^{-1}(a^*)$ for all $a \in \mathcal{A}$.

- 3. A selfadjoint unbounded operator D on \mathcal{H} such that
 - 3.1 D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
 - 3.2 $(D \pm i)^{-1}$ is compact.
 - 3.3 $[D, a]_{\sigma} := Da \sigma(a)D$ is bounded for all $a \in A$.

Conformal Deformations of Spectral Triples

Example (Connes-Moscovici)

- An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.
- A positive element k ∈ A withinner automorphism σ(a) = k²ak⁻², a ∈ A.

Then $(\mathcal{A}, \mathcal{H}, kDk)_{\sigma}$ is a *twisted* spectral triple.

Conformal Change of Metric

Example

- (Mⁿ, g) compact Riemannian spin manifold (n even) with spinor bundle \$ = \$⁺ ⊕ \$⁻.
- $\mathcal{D}_g: C^\infty(M, \$) \to C^\infty(M, \$)$ is the Dirac operator of (M, g).
- $C^{\infty}(M)$ acts by multiplication on $L^2_g(M, \$)$.

Consider a conformal change of metric,

$$\hat{g}=k^{-2}g,\qquad k\in C^\infty(M),\ k>0.$$

Then the Dirac spectral triple $(C^{\infty}(M), L^2_{\hat{g}}(M, \$), \mathcal{D}_{\hat{g}})$ is unitarily equivalent to $(C^{\infty}(M), L^2_g(M, \$), \sqrt{k}\mathcal{D}_g\sqrt{k})$ (i.e., the spectral triples are intertwined by a unitary operator).

Further examples

1. (Conformal Dirac spectral triple, Connes-Moscovici)

- G is a group of conformal diffeomorphisms of (M, g).
- σ is an automorphism of $C^{\infty}(M) \rtimes G$ given by

$$\sigma_{g}(\mathit{fv}_{\phi}) = e^{2h_{\phi}}\mathit{fv}_{\phi}, \qquad f \in C^{\infty}(M), \phi \in G.$$

Then

$$\left(C^{\infty}(M)\rtimes G, L^2_g(M, \$), \mathcal{D}_g\right)_{\sigma_g}$$

is a twisted spectral triple.

- 2. Twisted spectral triples over NC tori associated to conformal weights (Connes-Tretkoff).
- 3. Twisted spectral triples associated to some quantum statistical systems (e.g., Connes-Bost systems).

Overview of Noncommutative Geometry

Classical	NCG
Manifold <i>M</i>	Spectral Triple $(\mathcal{A},\mathcal{H},D)$
Vector Bundle <i>E</i> over <i>M</i>	$\begin{array}{l} {\sf Projective \ Module \ } {\cal E} \ {\sf over} \ {\cal A} \\ {\cal E} = e {\cal A}^q, \ \ e \in M_q({\cal A}), \ e^2 = e \end{array}$
K-Theory $K^0(M)$	K-Theory $K_0(A)$
de Rham Cohomology $H^{ev}(M)$	Cyclic Homology $HP_0(\mathcal{A})$
de Rham Homology $H_{ev}(M)$	Cyclic Cohomology $HP^0(\mathcal{A})$
Atiyah-Singer Index Formula ${ m ind} { ot\!\!\!/}_E = \int \hat{A}(R^M) \wedge { m Ch}(E)$	Connes-Chern Character $Ch(D)$ ind $D_{\mathcal{E}} = \langle Ch(D), Ch(\mathcal{E}) \rangle$

Part 2 Index Theory of Twisted Spectral Triples

- 1. Twisted spectral triples in noncommutative geometry.
- 2. Index map and Connes-Chern character of a twisted spectral triple.
- 3. Conformal invariants and local index formulas in conformal geometry.

4. Vafa-Witten inequality for twisted spectral triples.

Connections over a Spectral Triple

- $(\mathcal{A}, \mathcal{H}, D)$ is a spectral triple.
- \mathcal{E} is a finitely generated projective (right) module over \mathcal{A} .
- Differential 1 forms:

$$\Omega^1_D(\mathcal{A}) = \mathsf{Span}\{ad(b); a, b \in \mathcal{A}\} \subset \mathcal{L}(\mathcal{H}),$$

where d(a) = [D, a] = Da - aD.

Definition

A connection on \mathcal{E} is a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \Omega^1_D(\mathcal{A})$ such that

$$\nabla^{\mathcal{E}}(\xi a) = \xi \otimes d(a) + \left(\nabla^{\mathcal{E}} \xi\right) a \qquad \forall a \in \mathcal{A} \ \forall \xi \in \mathcal{E}.$$

Example

Any connection $\nabla^{\mathcal{E}}$ on a vector bundle E over M defines a connection $\nabla^{\mathcal{E}}$ on $\mathcal{E} = C^{\infty}(M, E)$.

$\sigma\text{-Connections, Set up}$

 $\mathsf{Setup}/\mathsf{Notation}$

- $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ twisted spectral triple.
- \mathcal{E} finitely generated projective (right) module over \mathcal{A} .
- Twisted differential forms:

$$\Omega^1_{D,\sigma}(\mathcal{A})=\mathsf{Span}\{\mathit{ad}_\sigma b; \; \mathit{a},b\in\mathcal{A}\}\subset\mathcal{L}(\mathcal{H}),$$

where
$$d_{\sigma}(a) = [D, a]_{\sigma} = Da - \sigma(a)D$$
.

Definition

A σ -translate of \mathcal{E} is a finitely generated projective module \mathcal{E}^{σ} together with a linear isomorphism $\sigma^{\mathcal{E}}: \mathcal{E} \to \mathcal{E}^{\sigma}$ such that

$$\sigma^{\mathcal{E}}(\xi \mathbf{a}) = \sigma^{\mathcal{E}}(\xi)\sigma(\mathbf{a}) \qquad \forall \xi \in \mathcal{E} \,\, \forall \mathbf{a} \in \mathcal{A}.$$

Definition (Connes-Moscovici)

A connection on a finitely generated projective module \mathcal{E} is a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \Omega^{1}_{D,\sigma}(\mathcal{A})$ such that

$$abla^{\mathcal{E}}(\xi \mathsf{a}) = \xi \otimes \mathsf{d}\mathsf{a} + ig(
abla^{\mathcal{E}} \xi ig) \mathsf{a} \qquad orall \mathsf{a} \in \mathcal{A} \ orall \xi \in \mathcal{E},$$

where da = [D, a].

Definition (PW0)

A σ -connection on a finitely generated projective module \mathcal{E} is a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \to \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \Omega^{1}_{D,\sigma}(\mathcal{A})$ such that

$$\nabla^{\mathcal{E}}(\xi a) = \sigma^{\mathcal{E}}(\xi) \otimes d_{\sigma}a + (\nabla^{\mathcal{E}}\xi) a \qquad \forall a \in \mathcal{A} \ \forall \xi \in \mathcal{E},$$

where $d_{\sigma}a = [D, a]_{\sigma} = Da - \sigma(a)D$.

Definition (PW0)

A σ -connection on a finitely generated projective module \mathcal{E} is a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \to \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \Omega^{1}_{D,\sigma}(\mathcal{A})$ such that

$$\nabla^{\mathcal{E}}(\xi a) = \sigma^{\mathcal{E}}(\xi) \otimes d_{\sigma}a + (\nabla^{\mathcal{E}}\xi) a \qquad \forall a \in \mathcal{A} \ \forall \xi \in \mathcal{E},$$

where $d_{\sigma}a = [D, a]_{\sigma} = Da - \sigma(a)D$.

Example

If
$$\mathcal{E}=e\mathcal{A}^q$$
 with $e=e^2\in M_q(\mathcal{A})$, then

- 1. $\mathcal{E}^{\sigma} = \sigma(e)\mathcal{A}^{q}$ is a σ -translate.
- 2. We have the Grassmanian σ -connection,

$$\nabla_0^{\mathcal{E}}\xi := \sigma(e)d_{\sigma}\xi, \qquad \xi \in \mathcal{E}.$$

Operators Coupling with σ -connections

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Operators Coupling with σ -connections

Definition

Let $\nabla^{\mathcal{E}}$ be a connection on \mathcal{E} . Then the coupled operator $D_{\nabla^{\mathcal{E}}}: \mathcal{E} \otimes_{\mathcal{A}} \operatorname{dom} D \to \mathcal{E} \otimes_{\mathcal{A}} \mathcal{H}$ is given by

$$D_{
abla^{\mathcal{E}}}(\xi\otimes\zeta)=\xi\otimes D\zeta+c(
abla^{\mathcal{E}})(\xi\otimes\zeta),$$

where $c(\nabla^{\mathcal{E}})$ is the composition,

$$\mathcal{E}\otimes \mathcal{H} \xrightarrow{\nabla^{\mathcal{E}}\otimes \operatorname{id}_{\mathcal{H}}} \mathcal{E}\otimes \Omega^1_D(\mathcal{A})\otimes \mathcal{H} \xrightarrow{\operatorname{id}_{\mathcal{E}}\otimes c} \mathcal{E}\otimes \mathcal{H},$$

where $c(\omega \otimes \zeta) = \omega(\zeta)$ (recall that $\Omega^1_D(\mathcal{A}) \subset \mathcal{L}(\mathcal{H})$).

Operators Coupling with σ -connections Definition (PW0)

Let $\nabla^{\mathcal{E}}$ be a σ -connection on \mathcal{E} . Then the coupled operator $D_{\nabla^{\mathcal{E}}} : \mathcal{E} \otimes_{\mathcal{A}} \operatorname{dom} D \to \mathcal{E}^{\sigma} \otimes_{\mathcal{A}} \mathcal{H}$ is given by

$$D_{
abla^{\mathcal{E}}}(\xi\otimes\zeta)=\sigma^{\mathcal{E}}(\xi)\otimes D\zeta+c(
abla^{\mathcal{E}})(\xi\otimes\zeta),$$

where $c(\nabla^{\mathcal{E}})$ is the composition,

$$\mathcal{E}\otimes \mathcal{H}\xrightarrow{\nabla^{\mathcal{E}}\otimes \operatorname{id}_{\mathcal{H}}} \mathcal{E}^{\sigma}\otimes \Omega^{1}_{D,\sigma}(\mathcal{A})\otimes \mathcal{H}\xrightarrow{\operatorname{id}_{\mathcal{E}^{\sigma}}\otimes c} \mathcal{E}^{\sigma}\otimes \mathcal{H},$$

where $c(\omega \otimes \zeta) = \omega(\zeta)$.

Operators Coupling with σ -connections Definition (PW0)

Let $\nabla^{\mathcal{E}}$ be a σ -connection on \mathcal{E} . Then the coupled operator $D_{\nabla^{\mathcal{E}}} : \mathcal{E} \otimes_{\mathcal{A}} \operatorname{dom} D \to \frac{\mathcal{E}^{\sigma}}{\mathcal{E}^{\sigma}} \otimes_{\mathcal{A}} \mathcal{H}$ is given by

$$D_{
abla^{\mathcal{E}}}(\xi\otimes\zeta)=\sigma^{\mathcal{E}}(\xi)\otimes D\zeta+c(
abla^{\mathcal{E}})(\xi\otimes\zeta),$$

where $c(\nabla^{\mathcal{E}})$ is the composition,

$$\mathcal{E}\otimes\mathcal{H}\xrightarrow{\nabla^{\mathcal{E}}\otimes \mathsf{id}_{\mathcal{H}}} \mathcal{E}^{\sigma}\otimes\Omega^{1}_{D,\sigma}(\mathcal{A})\otimes\mathcal{H}\xrightarrow{\mathsf{id}_{\mathcal{E}^{\sigma}}\otimes c} \mathcal{E}^{\sigma}\otimes\mathcal{H},$$

where $c(\omega \otimes \zeta) = \omega(\zeta)$.

Example

For a Dirac spectral triple $(C^{\infty}(M), L^2_g(M, \$), \mathcal{D}_g)$ and the projective module $\mathcal{E} = C^{\infty}(M, E)$,

$$D_{\nabla}\varepsilon = D_{\nabla}\varepsilon.$$

Index Map

Proposition (PW0)

The coupling of D with any σ -connection $\nabla^{\mathcal{E}}$ gives rise to a Fredholm operator $D_{\nabla^{\mathcal{E}}}$ with the form

$$D_{
abla}^{arphi} = egin{pmatrix} 0 & D_{
abla}^{arphi} \ D_{
abla}^{arphi} : \mathcal{E} \otimes \operatorname{\mathsf{dom}} D^{\pm} o \mathcal{E}^{\sigma} \otimes \mathcal{H}^{\mp}.$$

Define the index of $D_{\nabla \varepsilon}$ to be ind $D_{\nabla \varepsilon} = \frac{1}{2} \left(\text{ind } D_{\nabla \varepsilon}^+ - \text{ind } D_{\nabla \varepsilon}^- \right)$. Proposition (Connes-Moscovici, PW0) The Fredholm indices,

$$\operatorname{ind} D_{\nabla^{\mathcal{E}}}^{\pm} := \dim \ker D_{\nabla^{\mathcal{E}}}^{\pm} - \dim \ker \left(D_{\nabla^{\mathcal{E}}}^{\pm} \right)^{*},$$

depend only on the K-theory class of \mathcal{E} . There is a additive map

$$\operatorname{ind}_{D,\sigma}: \mathcal{K}_0(\mathcal{A}) \to \frac{1}{2}\mathbb{Z} \quad \operatorname{ind}_{D,\sigma}[\mathcal{E}] = \operatorname{ind}_{\mathcal{D}_{\nabla}^{\mathcal{E}}} \forall (\mathcal{E}, \nabla^{\mathcal{E}}).$$

Connes-Chern Character

Theorem (Connes-Moscovici, PW0)

Assume $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ is p-summable, i.e., $\operatorname{Tr} |D|^{-p} < \infty$ for some $p \geq 1$. Then there is an even periodic cyclic cohomology class $\operatorname{Ch}(D)_{\sigma} \in \operatorname{HP}^{0}(\mathcal{A})$, called the Connes-Chern character, such that

$$\operatorname{\mathsf{ind}} D_{\nabla^{\mathcal{E}}} = \langle \operatorname{\mathsf{Ch}}(D)_{\sigma}, \operatorname{\mathsf{Ch}}(\mathcal{E}) \rangle \quad \forall (\mathcal{E}, \nabla^{\mathcal{E}}),$$

where $Ch(\mathcal{E})$ is the Chern character in the periodic cyclic homology $HP_0(\mathcal{A})$.

(日) (同) (三) (三) (三) (○) (○)

Part 3 An Application to Conformal Geometry

- 1. Twisted spectral triples in noncommutative geometry.
- 2. Index map and Connes-Chern character of a twisted spectral triple.
- 3. Conformal invariants and local index formulas in conformal geometry.

4. Vafa-Witten inequality for twisted spectral triples.

Local Index Formula in NCG

Theorem (Connes-Moscovici)

Let $(\mathcal{A}, \mathcal{H}, D)$ be an ordinary spectral triple. Under suitable conditions, the Connes-Chern character Ch(D) may be represented by a cocycle $\varphi^{CM} = (\varphi_{2q}^{CM})$ whose components are given by "heat-kernel techniques". This cocycle is called the CM cocycle.

Proposition (Connes-Moscovici, Ponge)

For a Dirac spectral triple $(C^{\infty}(M), L^2_g(M, \$), \mathcal{D}_g)$, we have

$$\varphi_{2q}^{\mathsf{CM}}(f^0,\ldots,f^{2q})=\frac{(2i\pi)^{-n}}{(2q)!}\int_M f^0df^1\wedge\cdots\wedge df^{2q}\wedge\hat{A}(R^M),$$

where

$$\hat{A}\left(R^{M}
ight) := \det^{\frac{1}{2}}\left[\frac{R^{TM}/2}{\sinh\left(R^{TM}/2
ight)}
ight]$$

CM Cocycle and Twisted Spectral Triples

Open Question

Construct a version of the CM cocycle for twisted spectral triples.

Remark

Moscovici derived an Ansatz for such a cocycle, but the Ansatz has been verified only for a narrow class of examples.

Conformal Dirac Spectral Triple

Setup

- 1. M^n is a compact spin oriented manifold (*n* even).
- 2. C is a conformal structure on M.
- 3. *G* is a group of conformal diffeomorphisms preserving *C*. Thus, given any metric $g \in C$ and $\phi \in G$,

$$\phi_*g=k_\phi^{-2}g$$
 with $k_\phi\in C^\infty(M),\;k_\phi>0.$

4. $C_c^{\infty}(M) \rtimes G$ is the crossed-product algebra, i.e.,

$$C^{\infty}(M)
times G = \left\{ \sum f_{\phi} u_{\phi}; \ f_{\phi} \in C^{\infty}(M)
ight\}, \ u_{\phi}^* = u_{\phi}^{-1} = u_{\phi^{-1}}, \qquad u_{\phi}f = (f \circ \phi^{-1})u_{\phi}.$$

Conformal Dirac Spectral Triple Lemma (Connes-Moscovici) For $\phi \in G$ define $U_{\phi} : L_g^2(M, \$) \to L_g^2(M, \$)$ by $U_{\phi} \xi = k_{\phi}^{-\frac{n}{2}} \phi_* \xi \quad \forall \xi \in L_g^2(M, \$).$

Then U_{ϕ} is a unitary operator, and

$$U_{\phi} D_{g} U_{\phi}^{*} = \sqrt{k_{\phi}} D_{g} \sqrt{k_{\phi}}.$$

Theorem (Connes-Moscovici)

The datum of any metric $g \in C$ defines a twisted spectral triple $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)_{\sigma_g}$ given by

- 1. The Dirac operator \mathcal{D}_g associated to g.
- 2. The representation $fu_{\phi} \to fU_{\phi}$ of $C^{\infty}(M) \rtimes G$ in $L^2_g(M, \$)$.
- 3. The automorphism $\sigma_g(fu_\phi) := k_\phi^{-1} fu_\phi$.

Conformal Connes-Chern Character

Main Theorem (PW1)

- 1. The Connes-Chern character $Ch(\mathcal{D}_g)_{\sigma_g} \in HP^0(C^{\infty}(M) \rtimes G)$ is an invariant of the conformal class C.
- 2. For any even cyclic homology class $\eta \in HP_0(C^{\infty}(M) \rtimes G)$, the pairing,

$$\langle \mathsf{Ch}(\mathcal{D}_g)_{\sigma_g}, \eta \rangle,$$

is a scalar conformal invariant.

Definition

The conformal Connes-Chern character $Ch(\mathcal{C}) \in HP^0(C^{\infty}(M) \rtimes G)$ is the Connes-Chern character $Ch(\mathcal{D}_g)_{\sigma_g}$ for any metric $g \in \mathcal{C}$.

Computation of Ch(C)

Theorem (Ferrand, Obata)

If the conformal structure C is non-flat, then G is a compact Lie group, and so C contains a G-invariant metric.

Fact

If $g \in C$ be G-invariant, then $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)_{\sigma_g}$ is an ordinary spectral triple (equivariant Dirac spectral triple, $\sigma_g = 1$).

Consequence

When C is non-flat, we are reduced to the computation of the Connes-Chern character of $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)$ where G is a group of isometries.

Local Index Formula in Conformal Geometry

Setup

- C is a nonflat conformal structure on M.
- g is a G-invariant metric in C.

Notation

Let $\phi \in G$. Then

M^φ is the fixed-point set of *φ*; this is a disconnected sums of submanifolds.

$$M^{\phi} = \bigsqcup M^{\phi}_a$$
, dim $M^{\phi}_a = a$

• $\mathcal{N}^{\phi} = (TM^{\phi})^{\perp}$ is the normal bundle (vector bundle over M^{ϕ}).

Local Index Formula in Conformal Geometry

Main Theorem (PW2)

Let g be any G-invariant metric in C,

1. The Connes-Chern character $Ch(\not D_g)_{\sigma_g}$ is represented by the CM cocycle $\varphi^{CM} = (\varphi_{2q}^{CM})$.

2. We have

$$\varphi_{2q}^{\mathsf{CM}}(f^{0}u_{\phi_{0}},\cdots,f^{2q}u_{\phi_{2q}}) = \frac{(-i)^{\frac{n}{2}}}{(2q)!}\sum_{a}(2\pi)^{-\frac{a}{2}}\int_{M_{a}^{\phi}}\hat{A}(R^{TM^{\phi}})\wedge\nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right)\wedge f^{0}d\tilde{f}^{1}\wedge\cdots\wedge d\tilde{f}^{2q},$$

where $\phi := \phi_0 \circ \cdots \circ \phi_{2q}$, and $\tilde{f}^j := f^j \circ \phi_0^{-1} \circ \cdots \circ \phi_{j-1}^{-1}$, and

$$u_{\phi}\left(R^{\mathcal{N}^{\phi}}
ight):=\mathsf{det}^{-rac{1}{2}}\left[1-\phi_{|\mathcal{N}^{\phi}}'e^{-R^{\mathcal{N}^{\phi}}}
ight].$$

(日) (同) (三) (三) (三) (○) (○)

Local Index Formula in Conformal Geometry

Remark The *n*-th degree component is given by

$$\varphi_n(f^0 U_{\phi_0}, \cdots, f^n U_{\phi_n}) = \begin{cases} \int_M f^0 d\tilde{f}^1 \wedge \cdots \wedge d\tilde{f}^n & \text{if } \phi_0 \circ \cdots \circ \phi_n = 1, \\ 0 & \text{if } \phi_0 \circ \cdots \circ \phi_n \neq 1. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This represents Connes' transverse fundamental class of M/G.

Equivariant CM cocycles

Remark

- When G is a group of isometries, the Connes-Chern character of $(C^{\infty}(M) \rtimes G, L^2_g(M, \$), \mathcal{D}_g)$ is computed by using CM or JLO representatives and a differential version of the local equivariant index theorem (Azmi, Chern-Hu).
- We produce a new approach to equivariant heat kernel asymptotics that proves the local equivariant index theorem and computes the JLO cocycle in the same shot. The approach combines
 - Getzler's rescaling.
 - Greiner-Hadamard's approach to the heat kernel asymptotics.

Cyclic Homology of $C^{\infty}(M) \rtimes G$

Theorem (Brylinski-Nistor, Crainic) Along the conjugacy classes of G,

$$HP_0(C^{\infty}(M) \rtimes G) \simeq \bigoplus_{\langle \phi \rangle} \bigoplus_{a} H^{ev}_{G^{\phi}}(M^{\phi}_a),$$

where G^{ϕ} is the centralizer of ϕ and $H_{G^{\phi}}^{ev}(M_a^{\phi})$ is the G^{ϕ} -invariant even de Rham cohomology of M_a^{ϕ} .

Lemma

Any closed form $\omega \in \Omega^*_{G^{\phi}}$ defines a cyclic cycle η_{ω} on $C^{\infty}(M) \rtimes G$ via the transformation,

$$f^0 df^1 \wedge \cdots \wedge df^k \to U_{\phi} \tilde{f}^0 \otimes \tilde{f}^1 \otimes \cdots \otimes \tilde{f}^k, \qquad f^j \in C^{\infty}(M^{\phi}_a)^{G^{\phi}},$$

where \tilde{f}^{j} is a G^{ϕ} -invariant smooth extension of f^{j} to M.

Conformal Invariants

Main Theorem (PW1)

Assume that the conformal structure $\ensuremath{\mathcal{C}}$ is non-flat. Then

- 1. For any closed even form $\omega \in \Omega^{ev}_{G^{\phi}}(M^{\phi}_{a})$, the pairing $\langle Ch(\mathcal{C}), \eta_{\omega} \rangle$ is a conformal invariant.
- 2. For any G-invariant metric $g \in \mathcal{C}$, we have

$$\langle \mathsf{Ch}(\mathcal{C}), \eta_{\omega} \rangle = \int_{M_a^{\phi}} \hat{A}(R^{\mathcal{T}M^{\phi}}) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge \omega.$$

Remark

Branson-Orsted proved that for $\omega = 1$ the above integral is independent of the choice of any metric $g \in C$ preserved by ϕ .

Part 4 Another Application to Conformal Geometry

- 1. Twisted spectral triples in noncommutative geometry.
- 2. Index map and Connes-Chern character of a twisted spectral triple.
- 3. Conformal invariants and local index formulas in conformal geometry.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

4. Vafa-Witten inequality for twisted spectral triples.

Vafa-Witten Inequality

Theorem (Vafa-Witten)

Let (M^n, g) be a compact spin Riemannian manifold. Then there exists a constant C > 0 such that, for any Hermitian vector bundle E over M and Hermitian connection ∇^E on E, we have

$$|\lambda_1(
atlefta_{
abla^E})| \leq C,$$

where $\lambda_1(\mathcal{D}_{\nabla^E})$ is the smallest eigenvalue of the coupled Dirac operator \mathcal{D}_{∇^E} .

Vafa-Witten Inequality: Sketch of Proof

- Pick (F, ∇^F) and $(F', \nabla^{F'})$ so that $F \oplus F' \simeq F^0$ is trivial.
- Two connections on F^0 : $\nabla_0 = d$ and $\nabla_1 \simeq \nabla^F \oplus \nabla^{F'}$.
- $T_F := D_{\nabla^E \otimes \nabla_0} D_{\nabla^E \otimes \nabla_1}$ is bounded, and so by the max-min principle,

$$|\lambda_1(\not\!\!D_{
abla^E\otimes
abla_0})| \leq \lambda_1(|\not\!\!D_{
abla^E\otimes
abla_1}|) + ||T_F||.$$

Moreover $||T_F||$ does not depend on (E, ∇^E) .

- We have $|\lambda_1(\mathcal{D}_{\nabla^E})| = |\lambda_1(\mathcal{D}_{\nabla^E \otimes \nabla_0})|.$
- If $\operatorname{ind} \mathcal{P}_{\nabla^{\mathcal{E}} \otimes \nabla^{\mathcal{F}}} = \dim \ker \mathcal{P}_{\nabla^{\mathcal{E}} \otimes \nabla^{\mathcal{F}}}^+ \dim \ker \mathcal{P}_{\nabla^{\mathcal{E}} \otimes \nabla^{\mathcal{F}}}^- \neq 0$, then

• Thus, $\operatorname{ind} \mathcal{D}_{\nabla^E \otimes \nabla^F} \neq 0 \Longrightarrow |\lambda_1(\mathcal{D}_{\nabla^E})| \le ||T_F||.$

Vafa-Witten Inequality: Sketch of Proof

From

$$\operatorname{ind} \mathcal{D}_{\nabla^E \otimes \nabla^F} \neq 0 \Longrightarrow |\lambda_1(\mathcal{D}_{\nabla^E})| \le ||T||,$$

the proof is completed by constructing a finite family $(F_1, \nabla^{F_1}), \ldots, (F_N, \nabla^{F_N})$ such that

 $\forall (E, \nabla^E) \quad \exists (F_i, \nabla^{F_i}) \quad \text{such that } \text{ind} \mathcal{D}_{\nabla^E \otimes \nabla^{F_i}} \neq 0.$

• This last step is carried out by using Poincaré duality: There is a natural bilinear pairing $K^0(M) \times K^0(M) \to \mathbb{Z}$,

$$([E], [F]) \longrightarrow \operatorname{ind} D_{\nabla^{E \otimes F}}.$$

dim $K^0(M) \otimes \mathbb{Q} < \infty$ and the pairing is nondegenerate over \mathbb{Q} .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition (Connes-Moscovici)

Two ordinary spectral triples (A_1, H, D) and (A_2, H, D) are in *Poincaré duality* when

Definition (Connes-Moscovici)

Two ordinary spectral triples (A_1, H, D) and (A_2, H, D) are in *Poincaré duality* when

• $[a_1, a_2] = [[D, a_1], a_2] = 0$ for all $a_j \in A_j$.

Definition (Connes-Moscovici)

Two ordinary spectral triples (A_1, H, D) and (A_2, H, D) are in *Poincaré duality* when

- $[a_1, a_2] = [[D, a_1], a_2] = 0$ for all $a_j \in A_j$.
- The following bilinear form (·, ·)_D : K₀(A₁) × K₀(A₂) → ℤ is nondegenerate,

$$(\mathcal{E}_1, \mathcal{E}_2)_D := \operatorname{ind} D_{\nabla^{\mathcal{E}_1 \otimes \mathcal{E}_2}}.$$

Definition (Connes-Moscovici)

Two ordinary spectral triples (A_1, H, D) and (A_2, H, D) are in *Poincaré duality* when

- $[a_1, a_2] = [[D, a_1], a_2] = 0$ for all $a_j \in A_j$.
- The following bilinear form (·, ·)_D : K₀(A₁) × K₀(A₂) → ℤ is nondegenerate,

$$(\mathcal{E}_1, \mathcal{E}_2)_D := \operatorname{ind} D_{\nabla^{\mathcal{E}_1 \otimes \mathcal{E}_2}}.$$

Example A Dirac spectral triple $(C^{\infty}(M), L^{2}(M, \$), \mathcal{P}_{g})$ is in Poincaré duality with itself.

Definition (PW3)

Two twisted spectral triples $(A_1, H, D)_{\sigma_1}$ and $(A_2, H, D)_{\sigma_2}$ are in *Poincaré duality* when

- $[a_1, a_2] = [[D, a_1]_{\sigma_1}, a_2]_{\sigma_2} = 0$ for all $a_j \in \mathcal{A}_j$.
- The following bilinear form (·, ·)_{D,σ} : K₀(A₁) × K₀(A₂) → ℤ is nondegenerate,

$$(\mathcal{E}_1, \mathcal{E}_2)_{D, \sigma} := \operatorname{ind} D_{\nabla^{\mathcal{E}_1 \otimes \mathcal{E}_2}}.$$

Poincaré Duality. Conformal Deformations

Example (PW3)

Consider the following data:

- (A_1, H, D) and (A_2, H, D) ordinary spectral triples in Poincaré duality.
- Positive invertible elements $k_j \in A_j$, j = 1, 2.
- Inner automorphisms $\sigma_j(a) = k_j^2 a k_j^{-2}$, $a \in A_j$.
- $k = k_1 k_2$.

Then the conformal deformations $(A_1, H, kDk)_{\sigma_1}$ and $(A_2, H, kDk)_{\sigma_2}$ are in Poincaré duality.

Remark

In the special case $k_1 = 1$, the *ordinary* spectral triple (A_1, H, kDk) has for Poincaré dual the *twisted* spectral triple $(A_2, H, kDk)_{\sigma_2}$.

Poincaré Duality. Further Examples

- Duals of discrete subgroups of Lie groups (Connes).
- Ordinary and twisted spectral triples over noncommutative tori (Connes, PW3).
- Spectral triples describing the Standard Model of particle physics (Chamseddine, Connes, Marcolli).
- Quantum projective line (D'Andrea-Landi).
- Quantum Podleś spheres (Dąbrowski-Sitarz, Wagner).

• Conformal deformations of the above.

Ordinary Spectral Triples

Theorem (PW3)

Let $(\mathcal{A}_1, \mathcal{H}, D)$ be an ordinary spectral triple such that

- 1. (A_1, H, D) has a twisted Poincaré dual $(A_2, H, D)_{\sigma_2}$.
- 2. dim $K_0(\mathcal{A}) \otimes \mathbb{Q} < \infty$.

Then there is a constant C > 0 such that, for any Hermitian finitely generated projective module \mathcal{E} over \mathcal{A}_1 and any Hermitian connection $\nabla^{\mathcal{E}}$ on \mathcal{E} , we have

$$|\lambda_1(D_{\nabla^{\mathcal{E}}})| \leq C,$$

where $\lambda_1(D_{\nabla \varepsilon})$ is the smallest eigenvalue of $D_{\nabla \varepsilon}$.

Remark

This extends Moscovici's Vafa-Witten inequality for ordinary spectral triples to the case where the Poincaré dual is a *twisted* spectral triple.

Vafa-Witten Inequality in Conformal Geometry

Theorem (PW3)

Let (M, g) be an even dimensional compact Riemannian spin manifold. Then there is a constant C > 0 such that, for any conformal factor $k \in C^{\infty}(M)$, k > 0, and any Hermitian vector bundle E equipped with a Hermitian connection ∇^{E} , we have

$$\left|\lambda_1(D_{\hat{g},\nabla^E})\right| \leq C \|k\|_{\infty}, \qquad \hat{g} := k^{-2}g,$$

where $||k||_{\infty}$ is the maximum value of k.

Further Results

Remark (PW3)

The main theorem of this paper [PW3] is a more general one where $(A_1, \mathcal{H}, D)_{\sigma_1}$ is a twisted spectral triple. As its corollaries, we also obtain versions of Vafa-Witten inequality for

- 1. Conformal deformations of Connes' spectral triples for duals for cocompact discrete subgroups of semisimple Lie groups.
- 2. Connes-Tretkoff's twisted spectral triples over noncommutative tori associated to conformal weights (with uniform control on the conformal weights).

* 臣

(湯)|(周日)

99

CRICCE PROVIDER BHISM

adelaide.edu.au