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Main Results

We use tools of noncommutative geometry to obtain:

e Local index formula in conformal-diffeomorphism invariant
geometry.

e A new class of conformal invariants.

e Vafa-Witten inequality in the setting of twisted spectral
triples.
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Part 1 Background

. Twisted spectral triples in noncommutative geometry.

. Index map and Connes-Chern character of a twisted spectral
triple.

. Conformal invariants and local index formulas in conformal
geometry.

. Vafa-Witten inequality for twisted spectral triples.



Manifolds and Spectral triples

Let (M", g) be a compact Riemannian spin manifold (n even) with
spinor bundle $ = $7 @ $~. Then

M ~~ COO(M)a Lé(Mﬂg)?LDg

o C°°(M) acts by multiplication on LZ(M, 8).
° D, C(M,§) — C>°(M, §) is the Dirac operator of (M, g).
Conversely,

C(M), Lé(/\/l,$),lpg ~» Riemannian geometry of M.

e The algebra C°°(M) encodes space information.
e The operator LDg encodes geometric information.

- [, f] = c(df).
- d(x,y) = sup{|f(x) = f(y)| : I[P, Flll < 1}



Spectral Triples

Definition (Connes)

A spectral triple (A,H, D) consists of
1. A Z-graded Hilbert space H = H™ & H ™.
2. An involutive algebra A represented in H.

3. A selfadjoint unbounded operator D on H such that

3.1 D maps H* to HT.
3.2 (D4 i)71 is compact.
3.3 [D, a] is bounded for all a € A.

Example (Dirac Spectral Triple)
In the previous slide, (COO(I\/I), Lfg (M, 5) ,Dg> is a spectral triple:
e (M" g) compact Riemannian spin manifold (n even) with
spinor bundle § =$T @ $~.
* D, C(M,§) — C>(M, §) is the Dirac operator of (M, g).
e C>(M) acts by multiplication on L2(M, 8).



Group Actions on Manifolds

Fact
If G is a group of diffeomorphisms of a manifold M, then M /G
need not be Hausdorff.

Solution Provided by NCG

Trade the space M/G for the crossed product algebra,
(M) % 6 = {>" fyusi fy € (M)},
u;; = u;l = Uy-1, usf = (fo <;5*1)u¢.

Proposition (Green)

If G acts freely and properly, then C*°(M/G) is Morita equivalent
to C°(M) x G.



Geometry of Manifolds with Group Actions

Example (Equivariant Dirac Spectral Triple)

e (M", g) compact Riemannian spin manifold (n even) with
spinor bundle § = $ @ $~ with the action of a group G of
isometries preserving orientation and spin structure.

e C®(M) x G is the (discrete) crossed product.

° D, C*(M,§) — C=(M,$) is the Dirac operator of (M, g).
Then (COO(I\/I) x G, L2(M,$), ng) is a spectral triple.

Remark
When the group G acts by conformal diffeomorphisms on M,

commutators
P, al aceC*M)xG

are not bounded.
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Twisted Spectral Triples

Definition (Connes-Moscovici)

A spectral triple (A, H, D) consists of
1. A Z-graded Hilbert space H = H™ & H ™.
2. An involutive algebra A represented in H.

3. A selfadjoint unbounded operator D on H such that

3.1 D maps H* to HT.
3.2 (D £ i)"1is compact.
3.3 [D,a] is bounded for all a € A.



Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple (A, H, D) consists of
1. A Zo-graded Hilbert space H = HT @& H .
2. An involutive algebra A represented in H.

3. A selfadjoint unbounded operator D on H such that

3.1 D maps H* to HT.
3.2 (D4 i)~ is compact.
3.3 is bounded for all a € A.



Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple (A, H, D), consists of
1. A Zo-graded Hilbert space H = HT @& H .
2. An involutive algebra A represented in H.

3. A selfadjoint unbounded operator D on H such that

3.1 D maps H* to HT.
3.2 (D4 i)~ is compact.
3.3 is bounded for all a € A.



Twisted Spectral Triples

Definition (Connes-Moscovici)
A twisted spectral triple (A, H, D), consists of
1. A Z>-graded Hilbert space H = HT ®& H ™.
2. An involutive algebra A represented in ‘H together with an

automorphism o : A — A such that o(a)* = o~1(a*) for all
ae A

3. A selfadjoint unbounded operator D on H such that
3.1 D maps H* to HF.
3.2 (D4 )71 is compact.
3.3 is bounded for all a € A.



Twisted Spectral Triples

Definition (Connes-Moscovici)
A twisted spectral triple (A, H, D), consists of
1. A Zo-graded Hilbert space H = Ht ® H ™.

2. An involutive algebra A represented in H together with an
automorphism o : A — A such that o(a)* = o~1(a*) for all
aec A

3. A selfadjoint unbounded operator D on H such that
3.1 D maps H* to HT.

3.2 (D £ i)"1is compact.
3.3 [D,a], := Da— o(a)D is bounded for all a € A.



Conformal Deformations of Spectral Triples

Example (Connes-Moscovici)

e An ordinary spectral triple (A, H, D).

e A positive element k € A withinner automorphism
o(a) = k?ak=2, a c A.

Then (A, H, kDk), is a twisted spectral triple.



Conformal Change of Metric

Example

e (M", g) compact Riemannian spin manifold (n even) with
spinor bundle § =$" @ §~.

° D, C*(M,$§) — C(M,$) is the Dirac operator of (M, g).

e C°°(M) acts by multiplication on LE(M,$).

Consider a conformal change of metric,
g =k g, k € C®(M), k> 0.

Then the Dirac spectral triple <C°°(I\/I), Lg(/\/l,;;),ng) is unitarily

equivalent to (COO(M), L2(M, $), \/HDg\/@ (i.e., the spectral
triples are intertwined by a unitary operator).



Further examples

1. (Conformal Dirac spectral triple, Connes-Moscovici)

- G is a group of conformal diffeomorphisms of (M, g).
- D, is the Dirac operator.
- o is an automorphism of C°>°(M) % G given by

og(fry) = €M fuy, feC®M),¢pcdG.

Then
(COO(I\/I) G, Lg(/vl,,fs),@g)

is a twisted spectral triple.

Og

2. Twisted spectral triples over NC tori associated to conformal
weights (Connes-Tretkoff).

3. Twisted spectral triples associated to some quantum
statistical systems (e.g., Connes-Bost systems).



Overview of Noncommutative Geometry

Classical

NCG

Manifold M

Vector Bundle E over M

K-Theory K°(M)
de Rham Cohomology H¢"(M)
de Rham Homology He, (M)

Atiyah-Singer Index Formula
indDz = [ A(RM) A Ch(E)

Spectral Triple (A, H, D)

Projective Module & over A
E=eAd, ec My(A), e’ =e

K-Theory Ky(A)
Cyclic Homology HPy(A)
Cyclic Cohomology HP?(A)

Connes-Chern Character Ch(D)
ind Dg = (Ch(D), Ch(&))



Part 2 Index Theory of Twisted Spectral Triples

. Twisted spectral triples in noncommutative geometry.

. Index map and Connes-Chern character of a twisted spectral
triple.

. Conformal invariants and local index formulas in conformal
geometry.

. Vafa-Witten inequality for twisted spectral triples.



Connections over a Spectral Triple

e (A, H,D) is a spectral triple.
e & is a finitely generated projective (right) module over A.
e Differential 1 forms:

Qb(A) = Span{ad(b); a,b € A} C L(H),
where d(a) = [D, a] = Da — aD.

Definition
A connection on £ is a linear map V¢ : £ — £ @4 Q%(A) such
that

Vé(¢a)=¢®@d(a)+ (VE¢)a Vaec AVEEE.

Example

Any connection V£ on a vector bundle E over M defines a
connection V€ on £ = C*®(M, E).



o-Connections, Set up

Setup/Notation

e (A, H,D), twisted spectral triple.
e £ finitely generated projective (right) module over A.
e Twisted differential forms:

QBG(A) = Span{ad,b; a,be A} C L(H),
where d,(a) = [D, a], = Da— o(a)D.
Definition
A o-translate of £ is a finitely generated projective module £

together with a linear isomorphism ¢ : £ — £ such that

of(€a) = of(6)o(a) VeEeEVac A
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o-Connections

Definition (Connes-Moscovici)

A connection on a finitely generated projective module £ is a linear
map V¢ : € — € @4 QL _(A) such that

Vé(ta)=¢@da+ (V¥¢)a Vac AVEEE,

where da = [D, a].



o-Connections

Definition (PW0)
A o-connection on a finitely generated projective module £ is a
linear map V¢ : & — £7 @4 Q} _(A) such that

Vé(a) =0 (&)@ d,a+ (VEE)a  Vac AVEEE,

where d,a = [D, a], = Da— o(a)D.



o-Connections

Definition (PW0)
A o-connection on a finitely generated projective module £ is a
linear map V¢ : £ — £7 @4 QB,U(.A) such that

Vé(a) =0 (&)@ d,a+ (VEE)a  Vac AVEEE,
where d,a = [D, a], = Da— o(a)D.

Example
If £ = eA9 with e = e € My(A), then
1. £7 = o(e).A9 is a o-translate.

2. We have the Grassmanian o-connection,

Ve == o(e)d,¢, ¢ek.



Operators Coupling with o-connections



Operators Coupling with o-connections

Definition
Let V¢ be a connection on £. Then the coupled operator
Dge : £E @ 4dom D — £ ® 4 H is given by

Dye(€® () = €@ D¢+ c(VE)(€@ Q).
where ¢(V¢) is the composition,

£Qi i
EoH LM coql(A)oH L5 e,

where c(w ® ¢) = w(¢) (recall that Q}(A) C L(H)).



Operators Coupling with o-connections
Definition (PW0)

Let V€ be a o-connection on £. Then the coupled operator
Dge : E®@a4domD — £7 @4 H is given by

Dye (£ ® () = 0°(£) ® D¢+ ¢(VE) (€ ® (),

where ¢(V¢) is the composition,

i idgo ®c
£ oM 2 27 00l (A)oH 22 7o,

where c(w ® () = w({).



Operators Coupling with o-connections
Definition (PW0)
Let V€ be a o-connection on £. Then the coupled operator

Dge : £E @ 4dom D — £7 ® 4 H is given by

Dye(§®¢) = 0°(§) ® D¢+ c(VE)(E @ ),
where ¢(V¢) is the composition,

i idgo ®c
£ oM 2 27 00l (A)oH 22 7o,

where c(w ® () = w({).

Example

For a Dirac spectral triple (C*°(M), LE(M,$),4Dg) and the
projective module £ = C*(M, E),

Dvé‘ - DvE .



Index Map
Proposition (PWO0)

The coupling of D with any o-connection V¢ gives rise to a
Fredholm operator Dge with the form

0 D_E + . + o
Dvg:<D$£ g), Dvg.5®domD — ETQHT.

Define the index of Dye to be ind Dge = 3 (ind D&, —ind D_, ) .
Proposition (Connes-Moscovici, PW0)
The Fredholm indices,

ind D2, := dim ker DS, — dimker (D2, )",

depend only on the K-theory class of £. There is a additive map

indD7a:Ko(A)—>%Z indp.o[€] = ind Dge (€, VE).



Connes-Chern Character

Theorem (Connes-Moscovici, PWO0)

Assume (A, H, D)y is p-summable, i.e., Tr|D|7P < oo for some
p > 1. Then there is an even periodic cyclic cohomology class
Ch(D), € HP(A), called the Connes-Chern character, such that

ind Dge = (Ch(D),,Ch()) V(&, V%),

where Ch(E) is the Chern character in the periodic cyclic homology
HPo(A).



Part 3 An Application to Conformal Geometry

. Twisted spectral triples in noncommutative geometry.

. Index map and Connes-Chern character of a twisted spectral
triple.

. Conformal invariants and local index formulas in conformal
geometry.

. Vafa-Witten inequality for twisted spectral triples.



Local Index Formula in NCG

Theorem (Connes-Moscovici)

Let (A, H, D) be an ordinary spectral triple. Under suitable
conditions, the Connes-Chern character Ch(D) may be represented
by a cocycle M = (gogc';") whose components are given by
“heat-kernel techniques”. This cocycle is called the CM cocycle.

Proposition (Connes-Moscovici, Ponge)
For a Dirac spectral triple (C**(M), Lz(M, $),0,), we have

(2im)~"
(2q)!

P50, F29) = /MfodflA---Adf2qA2\(RM),

where

R 1 ™
A <RM> — det? [Sirﬂ:?(RT/"”2/2)] .



CM Cocycle and Twisted Spectral Triples

Open Question
Construct a version of the CM cocycle for twisted spectral triples.

Remark

Moscovici derived an Ansatz for such a cocycle, but the Ansatz has
been verified only for a narrow class of examples.



Conformal Dirac Spectral Triple

Setup

1. M" is a compact spin oriented manifold (n even).
2. C is a conformal structure on M.

3. G is a group of conformal diffeomorphisms preserving C.
Thus, given any metric g € C and ¢ € G,

¢+8 = k;,°g with ks € C(M), ks> 0.
4. CX(M) x G is the crossed-product algebra, i.e.,

C®(M) % G = {Z fyug; fy € C”(M)},

uy = u;l = Ug-1, ugf = (Fo ¢ 1)uy.



Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)
For ¢ € G define Uy : Lz,(l\/l,$) — Lé(M,,ﬁ') by

Upl = ky 20l VE € LE(M, §).
Then Uy is a unitary operator, and

UsDyUs = oD R

Theorem (Connes-Moscovici)
The datum of any metric g € C defines a twisted spectral triple
(c(M) x G, L2(M.8).p,) given by
Og
1. The Dirac operator [D g associated to g.
2. The representation fug — fUy of C*°(M) x G in L3(M, 3).
3. The automorphism og(fuy) := k(;lfugﬁ.



Conformal Connes-Chern Character

Main Theorem (PW1)

1. The Connes-Chern character Ch(D, )., € HPO(C>®(M) x G)
is an invariant of the conformal class C.

2. For any even cyclic homology class n € HPo(C*(M) x G),
the pairing,

(Ch®g)og:m),

is a scalar conformal invariant.

Definition
The conformal Connes-Chern character Ch(C) € HP?(C>(M) x G)
is the Connes-Chern character Ch(D,),, for any metric g € C.



Computation of Ch(C)

Theorem (Ferrand, Obata)

If the conformal structure C is non-flat, then G is a compact Lie
group, and so C contains a G-invariant metric.

Fact

If g € C be G-invariant, then (COO(M) x G, Lg(M,$),LDg)Ug is an

ordinary spectral triple (equivariant Dirac spectral triple, oo = 1).

Consequence

When C is non-flat, we are reduced to the computation of the
Connes-Chern character of (C‘X’(I\/I) x G, Lfg(/\/l,$),lpg> where G
is a group of isometries.



Local Index Formula in Conformal Geometry

Setup

e C is a nonflat conformal structure on M.

e g is a G-invariant metric in C.

Notation
Let € G. Then

e M? is the fixed-point set of ¢; this is a disconnected sums of
submanifolds.
M = |MS,  dim M = a.

o N'® = (TM®)L is the normal bundle (vector bundle over M?).



Local Index Formula in Conformal Geometry

Main Theorem (PW2)
Let g be any G-invariant metric in C,
1. The Connes-Chern character Ch(D, ),
CM cocycle ™M = (L5M).
2. We have

. is represented by the

@2q (f Uggs f2qu¢72q) =

(=) i Z (2r) Z/ AR™" YA, (RN¢>Ade?1A---Ad?2q,

whered>::<boo-~0¢>2qvand?jizfjoﬁbalo "0

¢
Ve (RNd)) = det 2 [1 — ¢W¢e*RN ] .

T 1, and



Local Index Formula in Conformal Geometry

Remark
The n-th degree component is given by

" FOFLA - AdF" ifggo-- 0, =1,
(pn(fOU%,--. ,f U¢>n) _{ g‘M b0 ¢

if o0 gy # 1.

This represents Connes’ transverse fundamental class of M/G.



Equivariant CM cocycles

Remark

e When G is a group of isometries, the Connes-Chern character
of (COO(M) x G, Lé(M,$),LDg> is computed by using CM or
JLO representatives and a differential version of the local
equivariant index theorem (Azmi, Chern-Hu).

e We produce a new approach to equivariant heat kernel
asymptotics that proves the local equivariant index theorem

and computes the JLO cocycle in the same shot. The
approach combines

- Getzler's rescaling.
- Greiner-Hadamard's approach to the heat kernel asymptotics.



Cyclic Homology of C*(M) x G

Theorem (Brylinski-Nistor, Crainic)

Along the conjugacy classes of G,

HPo(C®(M) » G) ~ D €D HEY (M2),
@ 2

where G? is the centralizer of ¢ and Hg‘;(Mg’) is the G®-invariant
even de Rham cohomology of M.

Lemma

Any closed form w € Q7. defines a cyclic cycle n,, on C*°(M) x G
via the transformation,

@

)

FOdFE N NdfF = U0 o ff,  Fec™®(M))°¢

where f/ is a G®-invariant smooth extension of f/ to M.



Conformal Invariants

Main Theorem (PW1)
Assume that the conformal structure C is non-flat. Then

1. For any closed even form w € Q‘E"AM?), the pairing

(Ch(C), nw) is a conformal invariant.
2. For any G-invariant metric g € C, we have

<Ch(C),nw>:/ ARTM™Y A v (RW)AW.

Mg

Remark
Branson-Orsted proved that for w = 1 the above integral is
independent of the choice of any metric g € C preserved by ¢.



Part 4 Another Application to Conformal Geometry

1. Twisted spectral triples in noncommutative geometry.

2. Index map and Connes-Chern character of a twisted spectral
triple.

3. Conformal invariants and local index formulas in conformal
geometry.

4. Vafa-Witten inequality for twisted spectral triples.



Vafa-Witten Inequality

Theorem (Vafa-Witten)

Let (M", g) be a compact spin Riemannian manifold. Then there
exists a constant C > 0 such that, for any Hermitian vector bundle
E over M and Hermitian connection VE on E, we have

M @ye)l < C,

where A\1([Dye) is the smallest eigenvalue of the coupled Dirac
operator [Dyk.



Vafa-Witten Inequality: Sketch of Proof

Pick (F,VF) and (F',VF') so that F & F' ~ FO is trivial.
Two connections on F%: Vg =d and Vi ~ VF @ vF.

Tr := Dyegy, — Dyegy, is bounded, and so by the max-min
principle,

M@yegy,)| < M(Pyegy,|) + IITEI-
Moreover || Tr|| does not depend on (E, VE).
We have [A1(Pye)| = P‘l(wvfepvo)‘-
If indDgegyr = dim kerlDJvr,:—@VF —dim kerthE@VF # 0, then
{0} C kerDyegyr C kerDyegy, and )‘l(w)v%m‘) =0.

Thus, indDgegor 7 0= [M(Pge)| < || TF|-



Vafa-Witten Inequality: Sketch of Proof

e From
indPgegyr # 0= [M@ye)l < [T,

the proof is completed by constructing a finite family
(F1, V), ..., (Fn, VFV) such that

V(E,VE) 3(F;, V) such that indPyegor # 0.

e This last step is carried out by using Poincaré duality:
There is a natural bilinear pairing K°(M) x K°(M) — Z,

([E], [F]) — ind Dyeer.

dim K%(M)®Q < oo and the pairing is nondegenerate over Q.



Poincaré Duality
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Poincaré Duality

Definition (Connes-Moscovici)

Two ordinary spectral triples (A1, H, D) and (A2, H, D) are in
Poincaré duality when



Poincaré Duality

Definition (Connes-Moscovici)
Two ordinary spectral triples (A1, H, D) and (A2, H, D) are in
Poincaré duality when

e [a1,az] = [[D, a1],a2] =0 for all aj € A;.



Poincaré Duality

Definition (Connes-Moscovici)
Two ordinary spectral triples (A1, H, D) and (A2, H, D) are in
Poincaré duality when
e [a1,az] = [[D, a1],a2] =0 for all aj € A;.
e The following bilinear form (-, )p : Ko(A1) x Ko(A2) — Z is
nondegenerate,

(51,52)0 :=ind DV51®52'



Poincaré Duality

Definition (Connes-Moscovici)
Two ordinary spectral triples (A1, H, D) and (A2, H, D) are in
Poincaré duality when
e [a1,az] = [[D, a1],a2] =0 for all aj € A;.
e The following bilinear form (-, )p : Ko(A1) x Ko(A2) — Z is
nondegenerate,

(81,52)0 = ind Dge 0e, .
Example

A Dirac spectral triple <C°°(I\/l), L2(M,$),4Dg) is in Poincaré
duality with itself.



Poincaré Duality

Definition (PW3)
Two twisted spectral triples (A1, H, D)., and (A2, H, D),, are in
Poincaré duality when
e [a1,a2] = [[D, a1]s,, a2],, = 0 for all aj € A;.
e The following bilinear form (-,*)p » : Ko(A1) x Ko(A2) = Z is
nondegenerate,

(51,52)D7(, = ind Dyé, 0¢, .



Poincaré Duality. Conformal Deformations

Example (PW3)
Consider the following data:

e (A1,H,D) and (A2, H, D) ordinary spectral triples in

Poincaré duality.

e Positive invertible elements k; € A;, j =1,2.

e Inner automorphisms oj(a) = kaakfz, ac A

o k= kiko.
Then the conformal deformations (A1, H, kDk),, and (A2, H, kDk),
are in Poincaré duality.

Remark
In the special case k; = 1, the ordinary spectral triple (A1, H, kDk)
has for Poincaré dual the twisted spectral triple (Az, H, kDk),.



Poincaré Duality. Further Examples

e Duals of discrete subgroups of Lie groups (Connes).

e Ordinary and twisted spectral triples over noncommutative
tori (Connes, PW3).

e Spectral triples describing the Standard Model of particle
physics (Chamseddine, Connes, Marcolli).

e Quantum projective line (D'Andrea-Landi).
e Quantum Podles spheres (Dabrowski-Sitarz, Wagner).

e Conformal deformations of the above.



Ordinary Spectral Triples

Theorem (PW3)

Let (A1, H, D) be an ordinary spectral triple such that
1. (A1, H, D) has a twisted Poincaré dual (Az,H,D),,.
2. dim Kp(A) ® Q < oo.

Then there is a constant C > 0 such that, for any Hermitian
finitely generated projective module £ over A1 and any Hermitian
connection V¢ on £, we have

[A1(Dge)| < €,
where \1(Dye) is the smallest eigenvalue of Dye.

Remark

This extends Moscovici's Vafa-Witten inequality for ordinary
spectral triples to the case where the Poincaré dual is a twisted
spectral triple.



Vafa-Witten Inequality in Conformal Geometry

Theorem (PW3)

Let (M, g) be an even dimensional compact Riemannian spin
manifold. Then there is a constant C > 0 such that, for any
conformal factor k € C*°(M), k > 0, and any Hermitian vector
bundle E equipped with a Hermitian connection VE, we have

[M(Dgve)| < Cllklloe, & :=k7g,

where ||k||oo is the maximum value of k.



Further Results

Remark (PW3)

The main theorem of this paper [PW3] is a more general one
where (A1,H, D)., is a twisted spectral triple.
As its corollaries, we also obtain versions of Vafa-Witten inequality
for
1. Conformal deformations of Connes' spectral triples for duals
for cocompact discrete subgroups of semisimple Lie groups.

2. Connes-Tretkoff's twisted spectral triples over
noncommutative tori associated to conformal weights (with
uniform control on the conformal weights).
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