


Main Results

We use tools of noncommutative geometry to obtain:

• Local index formula in conformal-diffeomorphism invariant
geometry.

• A new class of conformal invariants.

• Vafa-Witten inequality in the setting of twisted spectral
triples.
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Part 1 Background

1. Twisted spectral triples in noncommutative geometry.

2. Index map and Connes-Chern character of a twisted spectral
triple.

3. Conformal invariants and local index formulas in conformal
geometry.

4. Vafa-Witten inequality for twisted spectral triples.



Manifolds and Spectral triples

Let (Mn, g) be a compact Riemannian spin manifold (n even) with
spinor bundle /S = /S+ ⊕ /S−. Then

M  C∞(M), L2
g (M, /S), /Dg .

• C∞(M) acts by multiplication on L2
g (M, /S).

• /Dg : C∞(M, /S)→ C∞(M, /S) is the Dirac operator of (M, g).

Conversely,

C∞(M), L2
g (M, /S), /Dg  Riemannian geometry of M.

• The algebra C∞(M) encodes space information.

• The operator /Dg encodes geometric information.

- [/Dg , f ] = c(df ).
- d(x , y) = supf {|f (x)− f (y)| : ‖[/Dg , f ]‖ ≤ 1}.



Spectral Triples

Definition (Connes)

A spectral triple (A,H,D) consists of

1. A Z2-graded Hilbert space H = H+ ⊕H−.

2. An involutive algebra A represented in H.

3. A selfadjoint unbounded operator D on H such that

3.1 D maps H± to H∓.
3.2 (D ± i)−1 is compact.
3.3 [D, a] is bounded for all a ∈ A.

Example (Dirac Spectral Triple)

In the previous slide,
(

C∞(M), L2
g (M, /S) , /Dg

)
is a spectral triple:

• (Mn, g) compact Riemannian spin manifold (n even) with
spinor bundle /S = /S+ ⊕ /S−.

• /Dg : C∞(M, /S)→ C∞(M, /S) is the Dirac operator of (M, g).

• C∞(M) acts by multiplication on L2
g (M, /S).



Group Actions on Manifolds

Fact
If G is a group of diffeomorphisms of a manifold M, then M/G
need not be Hausdorff.

Solution Provided by NCG

Trade the space M/G for the crossed product algebra,

C∞c (M) o G =
{∑

fφuφ; fφ ∈ C∞c (M)
}
,

u∗φ = u−1φ = uφ−1 , uφf = (f ◦ φ−1)uφ.

Proposition (Green)

If G acts freely and properly, then C∞(M/G ) is Morita equivalent
to C∞c (M) o G .



Geometry of Manifolds with Group Actions

Example (Equivariant Dirac Spectral Triple)

• (Mn, g) compact Riemannian spin manifold (n even) with
spinor bundle /S = /S+ ⊕ /S− with the action of a group G of
isometries preserving orientation and spin structure.

• C∞(M) o G is the (discrete) crossed product.

• /Dg : C∞(M, /S)→ C∞(M, /S) is the Dirac operator of (M, g).

Then
(

C∞(M) o G , L2
g (M, /S), /Dg

)
is a spectral triple.

Remark
When the group G acts by conformal diffeomorphisms on M,
commutators

[/Dg , a] a ∈ C∞(M) o G

are not bounded.



Conformal Geometry



Conformal Geometry



Twisted Spectral Triples

Definition (Connes-Moscovici)

A spectral triple consists of

1. A Z2-graded Hilbert space H = H+ ⊕H−.

2. An involutive algebra A represented in H.

3. A selfadjoint unbounded operator D on H such that

3.1 D maps H± to H∓.
3.2 (D ± i)−1 is compact.
3.3 is bounded for all a ∈ A.



Twisted Spectral Triples

Definition (Connes-Moscovici)

A spectral triple (A,H,D) consists of

1. A Z2-graded Hilbert space H = H+ ⊕H−.

2. An involutive algebra A represented in H.

3. A selfadjoint unbounded operator D on H such that

3.1 D maps H± to H∓.
3.2 (D ± i)−1 is compact.
3.3 [D,a] is bounded for all a ∈ A.



Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple (A,H,D) consists of

1. A Z2-graded Hilbert space H = H+ ⊕H−.

2. An involutive algebra A represented in H.

3. A selfadjoint unbounded operator D on H such that

3.1 D maps H± to H∓.
3.2 (D ± i)−1 is compact.
3.3 is bounded for all a ∈ A.



Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple (A,H,D)σ consists of

1. A Z2-graded Hilbert space H = H+ ⊕H−.

2. An involutive algebra A represented in H.

3. A selfadjoint unbounded operator D on H such that

3.1 D maps H± to H∓.
3.2 (D ± i)−1 is compact.
3.3 is bounded for all a ∈ A.



Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple (A,H,D)σ consists of

1. A Z2-graded Hilbert space H = H+ ⊕H−.

2. An involutive algebra A represented in H together with an
automorphism σ : A → A such that σ(a)∗ = σ−1(a∗) for all
a ∈ A.

3. A selfadjoint unbounded operator D on H such that

3.1 D maps H± to H∓.
3.2 (D ± i)−1 is compact.
3.3 is bounded for all a ∈ A.



Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple (A,H,D)σ consists of

1. A Z2-graded Hilbert space H = H+ ⊕H−.

2. An involutive algebra A represented in H together with an
automorphism σ : A → A such that σ(a)∗ = σ−1(a∗) for all
a ∈ A.

3. A selfadjoint unbounded operator D on H such that

3.1 D maps H± to H∓.
3.2 (D ± i)−1 is compact.
3.3 [D, a]σ := Da− σ(a)D is bounded for all a ∈ A.



Conformal Deformations of Spectral Triples

Example (Connes-Moscovici)

• An ordinary spectral triple (A,H,D).

• A positive element k ∈ A withinner automorphism
σ(a) = k2ak−2, a ∈ A.

Then (A,H, kDk)σ is a twisted spectral triple.



Conformal Change of Metric

Example

• (Mn, g) compact Riemannian spin manifold (n even) with
spinor bundle /S = /S+ ⊕ /S−.

• /Dg : C∞(M, /S)→ C∞(M, /S) is the Dirac operator of (M, g).

• C∞(M) acts by multiplication on L2
g (M, /S).

Consider a conformal change of metric,

ĝ = k−2g , k ∈ C∞(M), k > 0.

Then the Dirac spectral triple
(

C∞(M), L2
ĝ (M, /S), /D ĝ

)
is unitarily

equivalent to
(

C∞(M), L2
g (M, /S),

√
k /Dg

√
k
)

(i.e., the spectral

triples are intertwined by a unitary operator).



Further examples

1. (Conformal Dirac spectral triple, Connes-Moscovici)

- G is a group of conformal diffeomorphisms of (M, g).
- /Dg is the Dirac operator.
- σ is an automorphism of C∞(M) o G given by

σg (fvφ) = e2hφ fvφ, f ∈ C∞(M), φ ∈ G .

Then (
C∞(M) o G , L2

g (M, /S), /Dg

)
σg

is a twisted spectral triple.

2. Twisted spectral triples over NC tori associated to conformal
weights (Connes-Tretkoff).

3. Twisted spectral triples associated to some quantum
statistical systems (e.g., Connes-Bost systems).



Overview of Noncommutative Geometry

Classical NCG

Manifold M Spectral Triple (A,H,D)

Vector Bundle E over M Projective Module E over A
E = eAq, e ∈ Mq(A), e2 = e

K -Theory K 0(M) K -Theory K0(A)

de Rham Cohomology Hev (M) Cyclic Homology HP0(A)

de Rham Homology Hev (M) Cyclic Cohomology HP0(A)

Atiyah-Singer Index Formula Connes-Chern Character Ch(D)

ind /DE =
∫

Â(RM) ∧ Ch(E ) ind DE = 〈Ch(D),Ch(E)〉



Part 2 Index Theory of Twisted Spectral Triples

1. Twisted spectral triples in noncommutative geometry.

2. Index map and Connes-Chern character of a twisted spectral
triple.

3. Conformal invariants and local index formulas in conformal
geometry.

4. Vafa-Witten inequality for twisted spectral triples.



Connections over a Spectral Triple

• (A,H,D) is a spectral triple.

• E is a finitely generated projective (right) module over A.

• Differential 1 forms:

Ω1
D(A) = Span{ad(b); a, b ∈ A} ⊂ L(H),

where d(a) = [D, a] = Da− aD.

Definition
A connection on E is a linear map ∇E : E → E ⊗A Ω1

D(A) such
that

∇E(ξa) = ξ ⊗ d(a) +
(
∇Eξ

)
a ∀a ∈ A ∀ξ ∈ E .

Example

Any connection ∇E on a vector bundle E over M defines a
connection ∇E on E = C∞(M,E ).



σ-Connections, Set up

Setup/Notation

• (A,H,D)σ twisted spectral triple.

• E finitely generated projective (right) module over A.

• Twisted differential forms:

Ω1
D,σ(A) = Span{adσb; a, b ∈ A} ⊂ L(H),

where dσ(a) = [D, a]σ = Da− σ(a)D.

Definition
A σ-translate of E is a finitely generated projective module Eσ
together with a linear isomorphism σE : E → Eσ such that

σE(ξa) = σE(ξ)σ(a) ∀ξ ∈ E ∀a ∈ A.



σ-Connections

Definition ()

A on a finitely generated projective module E is a linear map
∇E : E → ⊗A Ω1

D,σ(A) such that

∇E(ξa) = ⊗ a +
(
∇Eξ

)
a ∀a ∈ A ∀ξ ∈ E ,

where .

Example

If E = eAq with e = e2 ∈ Mq(A), then

1. Eσ = σ(e)Aq is a σ-translate.

2. We have the Grassmanian σ-connection,

∇E0ξ := σ(e)dσξ, ξ ∈ E .



σ-Connections

Definition (Connes-Moscovici)

A connection on a finitely generated projective module E is a linear
map ∇E : E → E ⊗A Ω1

D,σ(A) such that

∇E(ξa) = ξ ⊗ da +
(
∇Eξ

)
a ∀a ∈ A ∀ξ ∈ E ,

where da = [D, a].

Example

If E = eAq with e = e2 ∈ Mq(A), then

1. Eσ = σ(e)Aq is a σ-translate.

2. We have the Grassmanian σ-connection,

∇E0ξ := σ(e)dσξ, ξ ∈ E .



σ-Connections

Definition (PW0)

A σ-connection on a finitely generated projective module E is a
linear map ∇E : E → Eσ ⊗A Ω1

D,σ(A) such that

∇E(ξa) = σE(ξ)⊗ dσa +
(
∇Eξ

)
a ∀a ∈ A ∀ξ ∈ E ,

where dσa = [D, a]σ = Da− σ(a)D.

Example

If E = eAq with e = e2 ∈ Mq(A), then

1. Eσ = σ(e)Aq is a σ-translate.

2. We have the Grassmanian σ-connection,

∇E0ξ := σ(e)dσξ, ξ ∈ E .



σ-Connections

Definition (PW0)

A σ-connection on a finitely generated projective module E is a
linear map ∇E : E → Eσ ⊗A Ω1

D,σ(A) such that

∇E(ξa) = σE(ξ)⊗ dσa +
(
∇Eξ

)
a ∀a ∈ A ∀ξ ∈ E ,

where dσa = [D, a]σ = Da− σ(a)D.

Example

If E = eAq with e = e2 ∈ Mq(A), then

1. Eσ = σ(e)Aq is a σ-translate.

2. We have the Grassmanian σ-connection,

∇E0ξ := σ(e)dσξ, ξ ∈ E .



Operators Coupling with σ-connections

Definition (PW0)

Let ∇E be a σ-connection on E . Then the coupled operator
D∇E : E ⊗A dom D → Eσ ⊗A H is given by

D∇E (ξ ⊗ ζ) = σE(ξ)⊗ Dζ + c(∇E)(ξ ⊗ ζ),

where c(∇E) is the composition,

E ⊗H ∇E⊗idH−−−−−→ Eσ ⊗ Ω1
D,σ(A)⊗H idEσ ⊗c−−−−−→ Eσ ⊗H,

where c(ω ⊗ ζ) = ω(ζ).

Example

For a Dirac spectral triple (C∞(M), L2
g (M, /S), /Dg ) and the

projective module E = C∞(M,E ),

D∇E = D∇E .



Operators Coupling with σ-connections

Definition
Let ∇E be a connection on E . Then the coupled operator
D∇E : E ⊗A dom D → E ⊗A H is given by

D∇E (ξ ⊗ ζ) = ξ ⊗ Dζ + c(∇E)(ξ ⊗ ζ),

where c(∇E) is the composition,

E ⊗H ∇E⊗idH−−−−−→ E ⊗ Ω1
D(A)⊗H idE ⊗c−−−−→ E ⊗H,

where c(ω ⊗ ζ) = ω(ζ) (recall that Ω1
D(A) ⊂ L(H)).

Definition (PW0)

Let ∇E be a σ-connection on E . Then the coupled operator
D∇E : E ⊗A dom D → Eσ ⊗A H is given by

D∇E (ξ ⊗ ζ) = σE(ξ)⊗ Dζ + c(∇E)(ξ ⊗ ζ),

where c(∇E) is the composition,

E ⊗H ∇E⊗idH−−−−−→ Eσ ⊗ Ω1
D,σ(A)⊗H idEσ ⊗c−−−−−→ Eσ ⊗H,

where c(ω ⊗ ζ) = ω(ζ).

Example

For a Dirac spectral triple (C∞(M), L2
g (M, /S), /Dg ) and the

projective module E = C∞(M,E ),

D∇E = D∇E .



Operators Coupling with σ-connections

Definition (PW0)

Let ∇E be a σ-connection on E . Then the coupled operator
D∇E : E ⊗A dom D → Eσ ⊗A H is given by

D∇E (ξ ⊗ ζ) = σE(ξ)⊗ Dζ + c(∇E)(ξ ⊗ ζ),

where c(∇E) is the composition,

E ⊗H ∇E⊗idH−−−−−→ Eσ ⊗ Ω1
D,σ(A)⊗H idEσ ⊗c−−−−−→ Eσ ⊗H,

where c(ω ⊗ ζ) = ω(ζ).
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For a Dirac spectral triple (C∞(M), L2
g (M, /S), /Dg ) and the

projective module E = C∞(M,E ),

D∇E = D∇E .



Operators Coupling with σ-connections

Definition (PW0)

Let ∇E be a σ-connection on E . Then the coupled operator
D∇E : E ⊗A dom D → Eσ ⊗A H is given by

D∇E (ξ ⊗ ζ) = σE(ξ)⊗ Dζ + c(∇E)(ξ ⊗ ζ),

where c(∇E) is the composition,

E ⊗H ∇E⊗idH−−−−−→ Eσ ⊗ Ω1
D,σ(A)⊗H idEσ ⊗c−−−−−→ Eσ ⊗H,

where c(ω ⊗ ζ) = ω(ζ).

Example

For a Dirac spectral triple (C∞(M), L2
g (M, /S), /Dg ) and the

projective module E = C∞(M,E ),

D∇E = D∇E .



Index Map

Proposition (PW0)

The coupling of D with any σ-connection ∇E gives rise to a
Fredholm operator D∇E with the form

D∇E =

(
0 D−∇E

D+
∇E 0

)
, D±∇E : E ⊗ dom D± → Eσ ⊗H∓.

Define the index of D∇E to be ind D∇E = 1
2

(
ind D+

∇E − ind D−∇E
)
.

Proposition (Connes-Moscovici, PW0)

The Fredholm indices,

ind D±∇E := dim ker D±∇E − dim ker
(
D±∇E

)∗
,

depend only on the K -theory class of E . There is a additive map

indD,σ : K0(A)→ 1

2
Z indD,σ[E ] = ind D∇E ∀(E ,∇E).



Connes-Chern Character

Theorem (Connes-Moscovici, PW0)

Assume (A,H,D)σ is p-summable, i.e., Tr |D|−p <∞ for some
p ≥ 1. Then there is an even periodic cyclic cohomology class
Ch(D)σ ∈ HP0(A), called the Connes-Chern character, such that

ind D∇E = 〈Ch(D)σ,Ch(E)〉 ∀(E ,∇E),

where Ch(E) is the Chern character in the periodic cyclic homology
HP0(A).



Part 3 An Application to Conformal Geometry

1. Twisted spectral triples in noncommutative geometry.

2. Index map and Connes-Chern character of a twisted spectral
triple.

3. Conformal invariants and local index formulas in conformal
geometry.

4. Vafa-Witten inequality for twisted spectral triples.



Local Index Formula in NCG

Theorem (Connes-Moscovici)

Let (A,H,D) be an ordinary spectral triple. Under suitable
conditions, the Connes-Chern character Ch(D) may be represented
by a cocycle ϕCM = (ϕCM

2q ) whose components are given by
“heat-kernel techniques”. This cocycle is called the CM cocycle.

Proposition (Connes-Moscovici, Ponge)

For a Dirac spectral triple (C∞(M), L2
g (M, /S), /Dg ), we have

ϕCM
2q (f 0, . . . , f 2q) =

(2iπ)−n

(2q)!

∫
M

f 0df 1 ∧ · · · ∧ df 2q ∧ Â(RM),

where

Â
(

RM
)

:= det
1
2

[
RTM/2

sinh (RTM/2)

]
.



CM Cocycle and Twisted Spectral Triples

Open Question

Construct a version of the CM cocycle for twisted spectral triples.

Remark
Moscovici derived an Ansatz for such a cocycle, but the Ansatz has
been verified only for a narrow class of examples.



Conformal Dirac Spectral Triple

Setup

1. Mn is a compact spin oriented manifold (n even).

2. C is a conformal structure on M.

3. G is a group of conformal diffeomorphisms preserving C.
Thus, given any metric g ∈ C and φ ∈ G ,

φ∗g = k−2φ g with kφ ∈ C∞(M), kφ > 0.

4. C∞c (M) o G is the crossed-product algebra, i.e.,

C∞(M) o G =
{∑

fφuφ; fφ ∈ C∞(M)
}
,

u∗φ = u−1φ = uφ−1 , uφf = (f ◦ φ−1)uφ.



Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)

For φ ∈ G define Uφ : L2
g (M, /S)→ L2

g (M, /S) by

Uφξ = k
− n

2
φ φ∗ξ ∀ξ ∈ L2

g (M, /S).

Then Uφ is a unitary operator, and

Uφ /DgU∗φ =
√

kφ /Dg

√
kφ.

Theorem (Connes-Moscovici)

The datum of any metric g ∈ C defines a twisted spectral triple(
C∞(M) o G , L2

g (M, /S), /Dg

)
σg

given by

1. The Dirac operator /Dg associated to g.

2. The representation fuφ → fUφ of C∞(M) o G in L2
g (M, /S).

3. The automorphism σg (fuφ) := k−1φ fuφ.



Conformal Connes-Chern Character

Main Theorem (PW1)

1. The Connes-Chern character Ch(/Dg )σg ∈ HP0(C∞(M) o G )
is an invariant of the conformal class C.

2. For any even cyclic homology class η ∈ HP0(C∞(M) o G ),
the pairing,

〈Ch(/Dg )σg , η〉,

is a scalar conformal invariant.

Definition
The conformal Connes-Chern character Ch(C) ∈ HP0(C∞(M)oG )
is the Connes-Chern character Ch(/Dg )σg for any metric g ∈ C.



Computation of Ch(C)

Theorem (Ferrand, Obata)

If the conformal structure C is non-flat, then G is a compact Lie
group, and so C contains a G-invariant metric.

Fact
If g ∈ C be G -invariant, then

(
C∞(M) o G , L2

g (M, /S), /Dg

)
σg

is an

ordinary spectral triple (equivariant Dirac spectral triple, σg = 1).

Consequence

When C is non-flat, we are reduced to the computation of the

Connes-Chern character of
(

C∞(M) o G , L2
g (M, /S), /Dg

)
where G

is a group of isometries.



Local Index Formula in Conformal Geometry

Setup

• C is a nonflat conformal structure on M.

• g is a G -invariant metric in C.

Notation
Let φ ∈ G . Then

• Mφ is the fixed-point set of φ; this is a disconnected sums of
submanifolds.
Mφ =

⊔
Mφ

a , dim Mφ
a = a.

• N φ = (TMφ)⊥ is the normal bundle (vector bundle over Mφ).



Local Index Formula in Conformal Geometry

Main Theorem (PW2)

Let g be any G -invariant metric in C,

1. The Connes-Chern character Ch(/Dg )σg is represented by the

CM cocycle ϕCM = (ϕCM
2q ).

2. We have

ϕCM
2q (f 0uφ0 , · · · , f

2quφ2q) =

(−i)
n
2

(2q)!

∑
a

(2π)−
a
2

∫
Mφ

a

Â(RTMφ
)∧νφ

(
RN

φ
)
∧f 0df̃ 1∧· · ·∧df̃ 2q,

where φ := φ0 ◦ · · · ◦ φ2q, and f̃ j := f j ◦ φ−10 ◦ · · · ◦ φ
−1
j−1, and

νφ

(
RN

φ
)

:= det−
1
2

[
1− φ′|Nφe−R

Nφ
]
.



Local Index Formula in Conformal Geometry

Remark
The n-th degree component is given by

ϕn(f 0Uφ0 , · · · , f
nUφn) =

{ ∫
M f 0df̃ 1 ∧ · · · ∧ df̃ n if φ0 ◦ · · · ◦ φn = 1,

0 if φ0 ◦ · · · ◦ φn 6= 1.

This represents Connes’ transverse fundamental class of M/G .



Equivariant CM cocycles

Remark

• When G is a group of isometries, the Connes-Chern character

of
(

C∞(M) o G , L2
g (M, /S), /Dg

)
is computed by using CM or

JLO representatives and a differential version of the local
equivariant index theorem (Azmi, Chern-Hu).

• We produce a new approach to equivariant heat kernel
asymptotics that proves the local equivariant index theorem
and computes the JLO cocycle in the same shot. The
approach combines

- Getzler’s rescaling.
- Greiner-Hadamard’s approach to the heat kernel asymptotics.



Cyclic Homology of C∞(M) o G

Theorem (Brylinski-Nistor, Crainic)

Along the conjugacy classes of G ,

HP0(C∞(M) o G ) '
⊕
〈φ〉

⊕
a

Hev
Gφ(Mφ

a ),

where Gφ is the centralizer of φ and Hev
Gφ(Mφ

a ) is the Gφ-invariant

even de Rham cohomology of Mφ
a .

Lemma
Any closed form ω ∈ Ω∗

Gφ defines a cyclic cycle ηω on C∞(M) o G
via the transformation,

f 0df 1 ∧ · · · ∧ df k → Uφf̃ 0 ⊗ f̃ 1 ⊗ · · · ⊗ f̃ k , f j ∈ C∞(Mφ
a )G

φ
,

where f̃ j is a Gφ-invariant smooth extension of f j to M.



Conformal Invariants

Main Theorem (PW1)

Assume that the conformal structure C is non-flat. Then

1. For any closed even form ω ∈ Ωev
Gφ(Mφ

a ), the pairing
〈Ch(C), ηω〉 is a conformal invariant.

2. For any G -invariant metric g ∈ C, we have

〈Ch(C), ηω〉 =

∫
Mφ

a

Â(RTMφ
) ∧ νφ

(
RN

φ
)
∧ ω.

Remark
Branson-Orsted proved that for ω = 1 the above integral is
independent of the choice of any metric g ∈ C preserved by φ.



Part 4 Another Application to Conformal Geometry

1. Twisted spectral triples in noncommutative geometry.

2. Index map and Connes-Chern character of a twisted spectral
triple.

3. Conformal invariants and local index formulas in conformal
geometry.

4. Vafa-Witten inequality for twisted spectral triples.



Vafa-Witten Inequality

Theorem (Vafa-Witten)

Let (Mn, g) be a compact spin Riemannian manifold. Then there
exists a constant C > 0 such that, for any Hermitian vector bundle
E over M and Hermitian connection ∇E on E , we have

|λ1(/D∇E )| ≤ C ,

where λ1(/D∇E ) is the smallest eigenvalue of the coupled Dirac
operator /D∇E .



Vafa-Witten Inequality: Sketch of Proof

• Pick (F ,∇F ) and (F ′,∇F ′) so that F ⊕ F ′ ' F 0 is trivial.

• Two connections on F 0: ∇0 = d and ∇1 ' ∇F ⊕∇F ′ .

• TF := D∇E⊗∇0
−D∇E⊗∇1

is bounded, and so by the max-min
principle, ∣∣λ1(/D∇E⊗∇0

)
∣∣ ≤ λ1(

∣∣/D∇E⊗∇1

∣∣) + ‖TF‖.

Moreover ‖TF‖ does not depend on (E ,∇E ).

• We have |λ1(/D∇E )| =
∣∣λ1(/D∇E⊗∇0

)
∣∣.

• If ind /D∇E⊗∇F = dim ker /D+
∇E⊗∇F − dim ker /D−∇E⊗∇F 6= 0, then

{0} ( ker /D∇E⊗∇F ⊂ ker /D∇E⊗∇1
and λ1(

∣∣/D∇E⊗∇1

∣∣) = 0.

• Thus, ind /D∇E⊗∇F 6= 0 =⇒ |λ1(/D∇E )| ≤ ‖TF‖.



Vafa-Witten Inequality: Sketch of Proof

• From
ind /D∇E⊗∇F 6= 0 =⇒ |λ1(/D∇E )| ≤ ‖T‖,

the proof is completed by constructing a finite family
(F1,∇F1), . . . , (FN ,∇FN ) such that

∀(E ,∇E ) ∃(Fi ,∇Fi ) such that ind /D∇E⊗∇Fi 6= 0.

• This last step is carried out by using Poincaré duality:
There is a natural bilinear pairing K 0(M)× K 0(M)→ Z,

([E ], [F ]) −→ ind D∇E⊗F .

dim K 0(M)⊗Q <∞ and the pairing is nondegenerate over Q.



Poincaré Duality

Definition (PW3)

Two twisted spectral triples (A1,H,D)σ1 and (A2,H,D)σ2 are in
Poincaré duality when

• [a1, a2] = [[D, a1]σ1 , a2]σ2 = 0 for all aj ∈ Aj .

• The following bilinear form (·, ·)D,σ : K0(A1)×K0(A2)→ Z is
nondegenerate,

(E1, E2)D,σ := ind D∇E1⊗E2 .



Poincaré Duality
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Example

A Dirac spectral triple
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C∞(M), L2(M, /S), /Dg

)
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Poincaré Duality. Conformal Deformations

Example (PW3)

Consider the following data:

• (A1,H,D) and (A2,H,D) ordinary spectral triples in
Poincaré duality.

• Positive invertible elements kj ∈ Aj , j = 1, 2.

• Inner automorphisms σj(a) = k2
j ak−2j , a ∈ Aj .

• k = k1k2.

Then the conformal deformations (A1,H, kDk)σ1 and (A2,H, kDk)σ2
are in Poincaré duality.

Remark
In the special case k1 = 1, the ordinary spectral triple (A1,H, kDk)
has for Poincaré dual the twisted spectral triple (A2,H, kDk)σ2 .



Poincaré Duality. Further Examples

• Duals of discrete subgroups of Lie groups (Connes).

• Ordinary and twisted spectral triples over noncommutative
tori (Connes, PW3).

• Spectral triples describing the Standard Model of particle
physics (Chamseddine, Connes, Marcolli).

• Quantum projective line (D’Andrea-Landi).

• Quantum Podleś spheres (Da̧browski-Sitarz, Wagner).

• Conformal deformations of the above.



Ordinary Spectral Triples

Theorem (PW3)

Let (A1,H,D) be an ordinary spectral triple such that

1. (A1,H,D) has a twisted Poincaré dual (A2,H,D)σ2 .

2. dim K0(A)⊗Q <∞.

Then there is a constant C > 0 such that, for any Hermitian
finitely generated projective module E over A1 and any Hermitian
connection ∇E on E , we have

|λ1(D∇E )| ≤ C ,

where λ1(D∇E ) is the smallest eigenvalue of D∇E .

Remark
This extends Moscovici’s Vafa-Witten inequality for ordinary
spectral triples to the case where the Poincaré dual is a twisted
spectral triple.



Vafa-Witten Inequality in Conformal Geometry

Theorem (PW3)

Let (M, g) be an even dimensional compact Riemannian spin
manifold. Then there is a constant C > 0 such that, for any
conformal factor k ∈ C∞(M), k > 0, and any Hermitian vector
bundle E equipped with a Hermitian connection ∇E , we have∣∣λ1(Dĝ ,∇E )

∣∣ ≤ C‖k‖∞, ĝ := k−2g ,

where ‖k‖∞ is the maximum value of k.



Further Results

Remark (PW3)

The main theorem of this paper [PW3] is a more general one
where (A1,H,D)σ1 is a twisted spectral triple.
As its corollaries, we also obtain versions of Vafa-Witten inequality
for

1. Conformal deformations of Connes’ spectral triples for duals
for cocompact discrete subgroups of semisimple Lie groups.

2. Connes-Tretkoff’s twisted spectral triples over
noncommutative tori associated to conformal weights (with
uniform control on the conformal weights).




