Symplectic critical surfaces in Kähler surfaces

Joint with Han, Xiaoli and Sun Jun

December 9 2014

/₽ ► < Ξ ► <

Outline

3 Equations and Topological properties

伺 ト イ ヨ ト

Let *M* be a compact Kähler surface, let ω be the Kähler form.

For a compact oriented real surface Σ without boundary which is smoothly immersed in *M*, one defines, following Chern and Wolfson, the Kähler angle α of Σ in *M* as

 $\omega|_{\Sigma} = \cos \alpha \, d\mu_{\Sigma},$

where $d\mu_{\Sigma}$ is the area element of Σ .

As a function on Σ , α is continuous everywhere and is smooth possibly except at the complex or anti-complex points of Σ , i.e. where $\alpha = 0$ or π .

We say that, Σ is a holomorphic curve if $\cos \alpha \equiv 1$, Σ is a Lagrangian surface if $\cos \alpha \equiv 0$, Σ is a symplectic surface if $\cos \alpha > 0$.

► 4 3 ► ►

Since

$$\cos \alpha d\mu_{\Sigma} = \omega|_{\Sigma},$$

and

 $d\omega = 0$,

one gets that

$$l := \int_{\Sigma} \cos \alpha d\mu_{\Sigma}$$
 is homotopy invariant.

ヘロト 人間ト 人間ト 人間ト

Recall that the area functional is

$$A = \int_{\Sigma} d\mu_{\Sigma}.$$

It is clear that

$$\cos\alpha\leq 1\leq\frac{1}{\cos\alpha},$$

it follows that

$$\int_{\Sigma} \cos \alpha d\mu_{\Sigma} \leq A \leq L.$$

We have

$$l \leq A \leq L.$$

(4回) (4回) (4回)

We (Han-Li) consider a new functional:

$$L_{\beta} = \int_{\Sigma} \frac{1}{\cos^{\beta} \alpha} d\mu_{\Sigma}.$$

It is obvious that holomorphic curves minimize the functional if $\beta > 0$.

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

The first variation formula

Theorem

Let *M* be a Kähler surface. The first variational formula of the functional L_{β} is, for any smooth vector field *X* on Σ ,

$$\delta_{X}L_{\beta} = -(\beta+1)\int_{\Sigma} \frac{X \cdot H}{\cos^{\beta} \alpha} d\mu \qquad (2.1)$$
$$+\beta(\beta+1)\int \frac{X \cdot (J(J\nabla \cos \alpha)^{\top}))^{\perp}}{\Delta u} d\mu, \qquad (2.2)$$

where **H** is the mean curvature vector of Σ in *M*, and ()^{\top} means tangential components of (), ()^{\perp} means the normal components of (). The Euler-Lagrange equation of the functional L_{β} is

 J_{Σ}

$$\cos^3 \alpha \boldsymbol{H} - \beta (J (J \nabla \cos \alpha)^\top)^\perp = 0.$$
 (2.3)

 $\cos^{\beta+3}\alpha$

Remarks

We call it a β -symplectic critical surface.

$$\cos^3 \alpha \mathbf{H} - \beta (J (J \nabla \cos \alpha)^\top)^\perp = 0$$

• $\beta = 0$, we get minimal surface equation;

• If
$$\beta \to \infty$$
, we get $\cos \alpha = constant$.

Proposition

If a β -symplectic critical surface is minimal, then $\cos \alpha \equiv Constant$.

ヘロト ヘ週ト ヘヨト ヘヨト

Let $\{e_1, e_2, v_3, v_4\}$ be a orthonormal frame around $p \in \Sigma$ such that *J* takes the form

$$J = \begin{pmatrix} 0 & \cos \alpha & \sin \alpha & 0 \\ -\cos \alpha & 0 & 0 & -\sin \alpha \\ -\sin \alpha & 0 & 0 & \cos \alpha \\ 0 & \sin \alpha & -\cos \alpha & 0 \end{pmatrix}.$$

Then

$$(J(J\nabla\cos\alpha)^{\top})^{\perp}$$

= $\cos\alpha\sin^2\alpha\partial_1\alpha v_4 + \cos\alpha\sin^2\alpha\partial_2\alpha v_3$
= $\cos\alpha\sin^2\alpha(\partial_1\alpha v_4 + \partial_2\alpha v_3).$

Set $\vec{V} = \partial_2 \alpha v_3 + \partial_1 \alpha v_4$.

Furthermore, we have

$$\begin{aligned} \partial_1 \cos \alpha &= \omega(\bar{\nabla}_{e_1}e_1, e_2) + \omega(e_1, \bar{\nabla}_{e_1}e_2) \\ &= h_{11}^{\alpha} \langle J v_{\alpha}, e_2 \rangle + h_{12}^{\alpha} \langle J e_1, v_{\alpha} \rangle \\ &= (h_{11}^4 + h_{12}^3) \sin \alpha. \end{aligned}$$

Similarly, we can get that,

$$\partial_2 \cos \alpha = (h_{22}^3 + h_{12}^4) \sin \alpha.$$

Note that

$$\partial_i \cos \alpha = -\sin \alpha \partial_i \alpha$$
, for $i = 1, 2$.

Then

$$\vec{V} = -(h_{22}^3 + h_{12}^4)v_3 - (h_{11}^4 + h_{12}^3)v_4$$

荷とくほとくほと

And consequently the Euler-Lagrange equation of the function L_{β} is

$$\cos^2 \alpha H - \beta \sin^2 \alpha V = 0. \tag{2.4}$$

Proposition

For a β -symplectic critical surface with $\beta \ge 0$, the Euler-Lagrange equation is an elliptic system modulo tangential diffeomorphisms of Σ .

Examples in \mathbb{C}^2

We consider the β -symplectic critical surfaces of the following form.

$$F(r,\theta) = (r\cos\theta, r\sin\theta, f(r), 0). \tag{2.5}$$

The equation

$$\cos^3 \alpha \mathbf{H} = \beta (J (J \nabla \cos \alpha)^\top)^\perp$$

is equivalent to

$$r(1+\beta(f')^2)f'' + (1+(f')^2)f' = 0.$$
(2.6)

Set h = f', then (2.6) can be written as

$$r(1+\beta h^2)h' + (1+h^2)h = 0, \qquad (2.7)$$

which in turn implies that

$$(r(1+h^2)^{\frac{\beta-1}{2}}h')' \equiv 0.$$
(2.8)

For simplicity, we will consider the special solution of the form

$$rh(1+h^2)^{\frac{\beta-1}{2}} \equiv 1,$$
 (2.9)

which implies that for r > 0

$$h(1+h^2)^{\frac{\beta-1}{2}} = \frac{1}{r} > 0.$$
 (2.10)

(日)

- $\beta = 0$, we get the catenoid, minimal surface.
- $\beta = 1$, we get

$$F(u,v) = (v \cos u, v \sin u, -\ln v, 0),$$
$$u \in [0, 2\pi], \quad v > 0.$$

It is in fact a surface $z = -\frac{1}{2}\log(x^2 + y^2)$ in **R**³, we consider it as a surface in **C**².

• $\beta \to \infty$, we get the plane.

In fact, for
$$\beta \geq 1$$
,

$$\frac{1}{r} = h(1+h^2)^{\frac{\beta-1}{2}} \ge h\left(1+\frac{\beta-1}{2}h^2\right) \ge \frac{\beta-1}{2}h^3,$$

we see that for each r > 0,

$$0 \le h(r) \le \sqrt[3]{\frac{2}{(\beta - 1)r}}.$$
 (2.11)

A > 4 > >

This means that f' = h converges to 0 uniformly on each compact subset of \mathbb{C}^2 . Therefore, we see that *f* converges to a constant uniformly on each compact subset of \mathbb{C}^2 .

We prove a Liouville theorem for β -symplectic critical surfaces in \mathbb{C}^2 .

Theorem

If Σ is a complete β -symplectic critical surface in \mathbb{C}^2 with area quadratic growth, and $\cos^2 \alpha > \frac{1}{2}$, then it is a holomorphic curve.

Theorem

If Σ is a closed symplectic surface which is smoothly immersed in M with the Kähler angle α , then α satisfies the following equation ,

$$\Delta \cos \alpha = \cos \alpha (-|h_{1k}^3 - h_{2k}^4|^2 - |h_{1k}^4 + h_{2k}^3|^2) + \sin \alpha (H_{,1}^4 + H_{,2}^3) - \frac{\sin^2 \alpha}{\cos \alpha} (K_{1212} + K_{1234}). \quad (3.1)$$

where *K* is the curvature operator of *M* and $H^{\alpha}_{,i} = \langle \bar{\nabla}^{N}_{e_{i}} H, v_{\alpha} \rangle$.

Theorem

Suppose that *M* is Kähler surface and Σ is a β -symplectic critical surface in *M* with Kähler angle α , then $\cos \alpha$ satisfies,

$$\Delta \cos \alpha = \frac{2\beta \sin^2 \alpha}{\cos \alpha (\cos^2 \alpha + \beta \sin^2 \alpha)} |\nabla \alpha|^2 - 2\cos \alpha |\nabla \alpha|^2 - \frac{\cos^2 \alpha \sin^2 \alpha}{\cos^2 \alpha + \beta \sin^2 \alpha} Ric(Je_1, e_2).$$
(3.2)

(日)

Corollary

Assume M is Kahler-Einstein surface with scalar curvature K, then $\cos \alpha$ satisfies,

$$\Delta \cos \alpha = \frac{2\beta \sin^2 \alpha}{\cos \alpha (\cos^2 \alpha + \beta \sin^2 \alpha)} |\nabla \alpha|^2 - 2\cos \alpha |\nabla \alpha|^2 - \frac{K}{4} \frac{\cos^3 \alpha \sin^2 \alpha}{\cos^2 \alpha + \beta \sin^2 \alpha}.$$
(3.3)

Corollary

Any β -symplectic critical surface in a Kähler-Einstein surface with nonnegative scalar curvature is a holomorphic curve for $\beta \ge 0$.

(日)

By the equations obtained by Micallef-Wolfson, we see that, on a β -symplectic critical surface we have

$$\frac{\partial \sin \alpha}{\partial \bar{\zeta}} = (\sin \alpha)h,$$

where *h* is a smooth complex function, ζ is a local complex coordinate on Σ , and consequently, we have

Proposition

A non holomorphic β -symplectic critical surface in a Kähler surface has at most finite complex points.

Theorem

Suppose that Σ is a non holomorphic β -symplectic critical surface in a Kähler surface M. Then

$$\chi(\Sigma) + \chi(\nu) = -P,$$

and

$$c_1(M)([\Sigma]) = -P,$$

where $\chi(\Sigma)$ is the Euler characteristic of Σ , $\chi(v)$ is the Euler characteristic of the normal bundle of Σ in M, $c_1(M)$ is the first Chern class of M, $[\Sigma] \in H_2(M, \mathbb{Z})$ is the homology class of Σ in M, and P is the number of complex tangent points.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem gives a proof of Webster's formula for β -symplectic surfaces:

Corollary

Suppose that Σ is a β -symplectic critical surface in a Kähler surface *M*. Then

$$\chi(\Sigma) + \chi(\nu) = c_1(M)([\Sigma]).$$

(日)

Consider

$$F_{t,\varepsilon}: \Sigma \times (-\delta, \delta) \times (-a, a) \to M$$

with $F_{0,0} = F$, where $F : \Sigma \to M$ is a β -symplectic critical surface. Let

$$\frac{\partial F_{t,0}}{\partial t}|_{t=0} = \mathbf{X}, \ \frac{\partial F_{0,\varepsilon}}{\partial \varepsilon}|_{\varepsilon=0} = \mathbf{Y}, \ \text{and} \ \frac{\partial^2 F_{t,\varepsilon}}{\partial t \partial \varepsilon}|_{t=0,\varepsilon=0} = \mathbf{Z}.$$

Denote

$$\mathbf{v}_{\beta,t,\varepsilon} = \frac{\det^{(\beta+1)/2}(g_{t,\varepsilon})}{\omega^{\beta}(\partial F_{t,\varepsilon}/\partial x^1, \partial F_{t,\varepsilon}/\partial x^2)}$$

so that

$$L_{\beta}(\phi_{t,\varepsilon}) = \int_{\Sigma} v_{\beta,t,\varepsilon} dx^1 \wedge dx^2.$$

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

It is easy to see that

$$\frac{\partial}{\partial t}|_{t=0,\varepsilon=0} g_{ij} = \langle \overline{\nabla}_{e_i} \mathbf{X}, e_j \rangle + \langle e_i, \overline{\nabla}_{e_j} \mathbf{X} \rangle, \qquad (4.1)$$

$$\frac{\partial}{\partial \varepsilon} |_{t=0,\varepsilon=0} g_{ij} = \langle \overline{\nabla}_{e_i} \mathbf{Y}, e_j \rangle + \langle e_i, \overline{\nabla}_{e_j} \mathbf{Y} \rangle, \qquad (4.2)$$

and

-

$$\frac{\partial^2}{\partial t \partial \varepsilon} |_{t=0,\varepsilon=0} g_{ij} = \langle \overline{\nabla}_{e_i} \mathbf{Z} + \overline{R}(\mathbf{Y}, e_i) \mathbf{X}, e_j \rangle + \langle e_i, \overline{\nabla}_{e_j} \mathbf{Z} + \overline{R}(\mathbf{Y}, e_j) \mathbf{X} \rangle + \langle \overline{\nabla}_{e_i} \mathbf{X}, \overline{\nabla}_{e_j} \mathbf{Y} \rangle + \langle \overline{\nabla}_{e_i} \mathbf{Y}, \overline{\nabla}_{e_j} \mathbf{X} \rangle.$$
(4.3)

Here, \overline{R} is the curvature tensor on M.

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

Assume that $\mathbf{X} = \mathbf{Y}$ is a normal vector field,

$$= \frac{\beta + 1}{\cos^{\beta} \alpha} J_{0}(\mathbf{X}) - \frac{\beta(\beta + 1)}{\cos^{\beta + 1} \alpha} \overline{\nabla}_{\nabla \cos \alpha} \mathbf{X} \\ - \frac{\beta^{2}(\beta + 1)^{2}}{\cos^{\beta + 6} \alpha} \langle \mathbf{X}, (J(J\nabla \cos \alpha)^{\top})^{\perp} \rangle (J(J\nabla \cos \alpha)^{\top})^{\perp} \\ - 2 \frac{\beta^{2}(\beta + 1)}{\cos^{\beta + 4} \alpha} [\omega(\overline{\nabla}_{e_{1}}\mathbf{X}, e_{2}) + \omega(e_{1}, \overline{\nabla}_{e_{2}}\mathbf{X})] (J(J\nabla \cos \alpha)^{\top})^{\perp} \\ - \frac{\beta(\beta + 1)}{\cos^{\beta + 2} \alpha} [\nabla_{e_{1}} \cos \alpha (J\overline{\nabla}_{e_{2}}\mathbf{X})^{\perp} - \nabla_{e_{2}} \cos \alpha (J\overline{\nabla}_{e_{1}}\mathbf{X})^{\perp}] \\ - \beta(\beta + 1) \nabla_{e_{1}} \frac{\bar{\omega}(\overline{\nabla}_{e_{1}}\mathbf{X}, e_{2}) + \bar{\omega}(e_{1}, \overline{\nabla}_{e_{2}}\mathbf{X})}{\cos^{\beta + 2} \alpha} (Je_{2})^{\perp} \\ + \beta(\beta + 1) \nabla_{e_{2}} \frac{\bar{\omega}(\overline{\nabla}_{e_{1}}\mathbf{X}, e_{2}) + \bar{\omega}(e_{1}, \overline{\nabla}_{e_{2}}\mathbf{X})}{\cos^{\beta + 2} \alpha} (Je_{1})^{\perp} \\ := - \int_{\Sigma} \langle J_{\beta}\mathbf{X}, \mathbf{X} \rangle d\mu,$$

Theorem

If we choose $X = x_3e_3 + x_4e_4$ and $Y = -J_vX = x_4e_3 - x_3e_4$, then the second variation formula is

$$\begin{split} H_{\beta}(X) + H_{\beta}(Y) \\ &= -2(\beta+1)\int_{\Sigma}\frac{R|X|^{2}\sin^{2}\alpha}{\cos^{\beta}\alpha}d\mu \\ &+ (\beta+1)\int_{\Sigma}\frac{|\bar{\partial}X|^{2}(2\cos^{2}\alpha+\beta\sin^{2}\alpha)}{\cos^{\beta+2}\alpha}d\mu \\ &- (\beta+1)\int_{\Sigma}\frac{(2\cos^{2}\alpha+\beta\sin^{2}\alpha)(\cos^{2}\alpha+\beta\sin^{2}\alpha)}{\cos^{\beta+4}\alpha}|X|^{2}|\nabla\alpha|^{2}d\mu \end{split}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣

As applications of the stability inequality above, we can obtain some rigidity results for stable β -symplectic critical surfaces.

Corollary

Let *M* be a Kähler surface with positive scalar curvature *R*. If Σ is a stable β -symplectic critical surface in *M* with $\beta \ge 0$, whose normal bundle admits a nontrivial section *X* with

$$\frac{|\bar{\partial}X|^2}{|X|^2} \leq \frac{\cos^2\alpha + \beta\sin^2\alpha}{\cos^2\alpha} |\nabla\alpha|^2,$$

then Σ is a holomorphic curve.

Corollary

Let *M* be a Kähler surface with positive scalar curvature *R*. If Σ is a stable β -symplectic critical surface in *M* with $\beta \ge 0$ and $\chi(v) \ge g$, where $\chi(v)$ is the Euler characteristic of the normal bundle v of Σ in *M* and *g* is the genus of Σ , then Σ is a holomorphic curve.

(日)

we define the set

$$S: = \{\beta \in [0,\infty) \mid \exists \text{ strictly stable } \beta - \text{symplecitc critical surface } \Sigma$$

with $\int_{\Sigma} |A|^2 d\mu \le C(s)\}$

where *A* is the second fundamental form of Σ in *M*, and *C*(*s*) is a positive continuous function.

Theorem

The set S is open and closed in $[0,\infty)$. In other words, $S = [0,\infty)$.

Convergence?

Conjecture Let M be a Kähler surface. There is a holomorphic curve in the homotopy class of a symplectic stable minimal surface in M.

There does exist symplectic stable minimal surfaces which are not holomorphic (Claudi).

Joint with Han, Xiaoli and Sun Jun

Thanks for your attention

イロト イポト イヨト イヨト