Symplectic critical surfaces in Kédhler surfaces

Joint with Han, Xjaoli and Sun Jun

December 9 2014

Joint with Han, Xiaoli and Sun Jun Symplectic critical surfaces in Kahler surfaces



Outline

0 Symplectic surfaces
e Symplectic critical surfaces
9 Equations and Topological properties

@ The Second variation formula

Joint with Han, Xiaoli and Sun Jun Sy ic criti faces in Kahler surfaces



Symplectic surfaces

Let M be a compact Kihler surface, let @ be the Kihler form.

For a compact oriented real surface ¥ without boundary which is
smoothly immersed in M, one defines, following Chern and Wolfson,
the Kdhler angle & of X in M as

|y = cosaduy,

where dUy is the area element of X.
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Symplectic surfaces

As a function on X, ¢ is continuous everywhere and is smooth
possibly except at the complex or anti-complex points of ¥, i.e. where
a=0orm.

We say that,

¥ is a holomorphic curve if cosa =1,
¥ is a Lagrangian surface if cos o = 0,
¥ is a symplectic surface if cos o0 > 0.
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Since

cosodly = oy,

and

one gets that
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Symplectic surfaces

Recall that the area functional is
A= / d[.tz.
)

It is clear that

cosa <1< ,
cos o

it follows that
/cos aduy <A<L.
b

We have
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Symplectic critical surfaces

We (Han-Li) consider a new functional:

L —/#d
B~ JscosBa He

It is obvious that holomorphic curves minimize the functional if
B >0.
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Symplectic critical surfaces

The first variation formula

Let M be a Kdihler surface. The first variational formula of the
JSunctional Lg is, for any smooth vector field X on £,

H
SxLy = f(/s+1)/ SEP @1

Z COS'B o

. COS T
“3(5“)/2)( (J(IVeosa)T))

cosBP+3 o

du, (22

where H is the mean curvature vector of £ in M, and ()T means
tangential components of (), ()= means the normal components of ().
The Euler-Lagrange equation of the functional Lg is

cos’ aH — B(J(JVcosa) ")t =0. (2.3)
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Symplectic critical surfaces

Remarks

We call it a B-symplectic critical surface.

cos’aH—B(J(JVcosa) )t =0

@ 3 =0, we get minimal surface equation;

o If B — oo, we get cos & = constant.

Proposition

If a B-symplectic critical surface is minimal, then cos @ = Constant.
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Symplectic critical surfaces

Let {e;,e2,v3,v4} be a orthonormal frame around p € ¥ such that J
takes the form

0 coso  sinQ 0
J_ | —cosa 0 0 —sino
| —sina 0 0 cos o
0 sinx —coso 0
Then
(J(JVcosa) ")+

= cosasin® ad; ovs + cos oL sin® 0dh otvs
= cosasinza(81aV4+82aV3).

SetV = hovs + diovy.
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Symplectic critical surfaces

Furthermore, we have

dicosa = w(?e]el,ez)+(l)(€1,ve]€2)
B (Jvg,e) +hS (Jer,vg)
— (h‘l‘l + h?z) sin Q.

Similarly, we can get that,

drcosao = (h3, + hiy)sina.

Note that
d;cosot = —sinad;a, for i=1,2.

Then
V = —(h3,+hiy)vs — (hi, + hiy)vs.
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Symplectic critical surfaces

And consequently the Euler-Lagrange equation of the function Lg is

cos> aH — Bsin>aV = 0. (2.4)

Proposition

For a B-symplectic critical surface with 3 > 0, the Euler-Lagrange
equation is an elliptic system modulo tangential diffeomorphisms of X.
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Symplectic critical surfaces

Examples in C?

We consider the B-symplectic critical surfaces of the following form.

F(r,0) = (rcos6,rsin0,f(r),0). (2.5)

The equation
cos’aH = B(J(JVcosa) ' )*

is equivalent to

r(1+ B+ (1+ (F)))f =0. (2.6)
Set h = f’, then (2.6) can be written as
r(14BhH + (14+h*)h =0, 2.7)

which in turn implies that

1+ 0y =o. 2.8)
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For simplicity, we will consider the special solution of the form

o\ Bt
rh(1+h7) 2 =1, (2.9)
which implies that for » > 0
-1 1
h1+1)' =2 >0 2.10)
r

@ 3 =0, we get the catenoid, minimal surface.
o =1, weget
F(u,v) = (vcosu,vsinu,—1Inv,0),
uel0,2x], v>0.

It is in fact a surface z = —J log(x* +?) in R?, we consider it as
a surface in C2.
® f3 — oo, we get the plane.
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Symplectic critical surfaces

In fact, for B > 1,

we see that for each r > 0,

0<h(r)< f/ﬁ. (2.11)

This means that f* = h converges to 0 uniformly on each compact
subset of C2. Therefore, we see that f converges to a constant
uniformly on each compact subset of C2.
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Symplectic critical surfaces

We prove a Liouville theorem for B-symplectic critical surfaces in C2.

If X is a complete B-symplectic critical surface in C* with area
quadratic growth, and cos” o, > %, then it is a holomorphic curve.
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Equations and Topological properties

Theorem

If ¥ is a closed symplectic surface which is smoothly immersed in M
with the Kdhler angle a, then o satisfies the following equation ,

Acosa = cosa(—|hy, —hy|* — [hT + hae|*)

o 7
+sino(HY +H>) — o a(KIZIZ + Ki234). (3.1)
’ ’ cos O

where K is the curvature operator of M and H% = (VNH,vq).
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Equations and Topological properties

Theorem

Suppose that M is Kiihler surface and X is a B-symplectic critical
surface in M with Kdhler angle a, then cos o satisfies,

2B sin’ o
Acosa = P sin — IVa|? —2cos at|Va|?
cos a(cos? o + Bsin” o)
2 1y cin
cos” orsin® o
. Ric(Jer,e2). (3.2)

cos? o+ Bsin’ o
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Equations and Topological properties

Corollary

Assume M is Kahler-Einstein surface with scalar curvature K, then
cos i satisfies,
2Bsin’ o

Acosoe = — Vo> —2cos a|Va|?
cos a(cos? o + P sin” o)

K cos®asin’a
4 cos2 o+ Bsin’ o

(3.3)

Corollary

| \

Any B-symplectic critical surface in a Kdhler-Einstein surface with
nonnegative scalar curvature is a holomorphic curve for B > 0.
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Equations and Topological properties

By the equations obtained by Micallef-Wolfson, we see that, on a
B-symplectic critical surface we have

851—1306 = (sin@)h,
¢

where £ is a smooth complex function, ¢ is a local complex
coordinate on X, and consequently, we have

Proposition

A non holomorphic B-symplectic critical surface in a Kdihler surface
has at most finite complex points.
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Equations and Topo!

Theorem

Suppose that ¥ is a non holomorphic B-symplectic critical surface in
a Kdhler surface M. Then

X(X)+2x(v)=—P,

and
a(M)([X]) =-P,

where X (X) is the Euler characteristic of ¥, (V) is the Euler
characteristic of the normal bundle of £ in M, ¢\(M) is the first Chern
class of M, [X] € Hy(M,Z) is the homology class of ¥ in M, and P is
the number of complex tangent points.

Joint with Han, Xiaoli and Sun Jun Symplectic critical surfaces in Kahler surfaces




Equations and Topological properties

Theorem gives a proof of Webster’s formula for 3-symplectic
surfaces:

Suppose that X is a B-symplectic critical surface in a Kdhler surface
M. Then

X(Z)+x(v) = ci (M)([Z]).
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The Second variation formula

Consider
Fie:X2x(=06,0)x(—a,a) =M

with Fo o = F, where F : £ — M is a B-symplectic critical surface. Let

aFto aFO:; aths
= |i—o= — |e—0=Y d = |i—p.e—0=Z.
at ‘[70 ) ag ‘870 I an atag ‘[707870
Denote
b e,
Pt = B (JF,¢/0x",0F, ¢ /dx?)
so that

Lﬁ(‘Pt,e) :/Evﬁ7[7gd.xl Adx>.
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The Second variation formula

It is easy to see that

d

5, li=0e=0 85 = (VX)) + (€1, Ve X), 4.1)
p) _ _
e li=0.e=0 & = (Ve Y, €)) + (€1, Ve, Y), 4.2)
and
9?2 = -
396 li=0e=0 & = (V Z—|—R(Y e;))X, ej) + (e VejZ—i—R(Y,ej)X>
+(Ve, X, Ver> (Vo Y,V 6 X)- 4.3)

Here, R is the curvature tensor on M.
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The Second variation formula

Assume that X = Y is a normal vector field,

_ ﬁ—i—lJ(X) [3([3+1)§¢ X

cosP o  cosBtlg Vs
2 1 2
FBHDT  Gveosa) ) IV cos ) )
cosP+0 ¢
BB+, = ©
—ZW [a)(VelX, 82) + a)(e] s V€2X)] (J(JVCOS OC)T)L
B(B+1) — ©
T 0P g [V, cos a(JV ., X)* —V,, cos a(JV,, X)*]
D (Ve X,e2) +@(er, Ve, X)), |
BB+ v, 2V XL OETX) )
@ (V. X, er) + d(er, Ve, X) 1
p(p v, WXl et X) )
- f/<1ﬁx,x>du,
>
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The Second variation formula

If we choose X = x3e3 +x4eq4 and Y = —J, X = x4e3 — x3e4, then the
second variation formula is
1g(X)+11g(Y)
RIX12sin2
— 2(B+1)/27’ C(‘)SZ“; %d 2
I y|2 2 :
+(B+1)/E |0X] (Zizssﬁ(icz—;ﬂsm a)d[.L
_(B+ 1)/2 (2cos® o+ B sircl;olz}l(f(;sz o+ Bsin’ o) |X|2|V(x|2dft.
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The Second va n formula

As applications of the stability inequality above, we can obtain some
rigidity results for stable S-symplectic critical surfaces.

Corollary

Let M be a Kihler surface with positive scalar curvature R. If ¥ is a
stable B-symplectic critical surface in M with 3 > 0, whose normal
bundle admits a nontrivial section X with

|0X|? - cos? ot + Bsin’ a

Val?
X2 — cos2 Vel

then ¥ is a holomorphic curve.
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The Second variation formula

Let M be a Kihler surface with positive scalar curvature R. If ¥ is a
stable B-symplectic critical surface in M with B > 0 and x(v) > g,
where (V) is the Euler characteristic of the normal bundle v of ¥ in
M and g is the genus of X, then ¥ is a holomorphic curve.
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The Second variation formula

we define the set
S: = {B €]0,00) | 3 strictly stable B — symplecitc critical surface ¥
with / APdu < C(s)}
>

where A is the second fundamental form of X in M, and C(s) is a
positive continuous function.

The set S is open and closed in [0, ). In other words, S = [0, o).

Convergence?

Conjecture Let M be a Kdhler surface. There is a holomorphic curve
in the homotopy class of a symplectic stable minimal surface in M.

There does exist symplectic stable minimal surfaces which are not
holomorphic (Claudi).
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The Second variation formula

Thanks for your attention

Joint with Han, Xiaoli Sun Jun ic critical surfaces in Kihler surfaces



