Symplectic critical surfaces in Kähler surfaces

Joint with Han, Xiaoli and Sun Jun

December 9 2014

Joint with Han, Xiaoli and Sun Jun Symplectic critical surfaces in Kähler surfaces

イロト (母) イヨトイヨ

3 Equations and Topological properties

4 The Second variation formula

イロト (母) イヨトイヨ

Let *M* be a compact Kähler surface, let ω be the Kähler form.

For a compact oriented real surface Σ without boundary which is smoothly immersed in *M*, one defines, following Chern and Wolfson, the Kähler angle α of Σ in *M* as

 $\omega|_{\Sigma} = \cos \alpha d\mu_{\Sigma}$,

where $d\mu_{\Sigma}$ is the area element of Σ .

∢ ロ ▶ (伊) (ミ) (ミ)

As a function on Σ , α is continuous everywhere and is smooth possibly except at the complex or anti-complex points of Σ , i.e. where $\alpha = 0$ or π .

We say that, Σ is a holomorphic curve if $cos α ≡ 1$, Σ is a Lagrangian surface if cos $\alpha \equiv 0$, Σ is a symplectic surface if $cos α > 0$.

A . . 2 .

Since

$$
\cos \alpha d\mu_{\Sigma} = \omega|_{\Sigma},
$$

and

 $d\omega = 0$,

one gets that

$$
l := \int_{\Sigma} \cos \alpha d\mu_{\Sigma} \text{ is homotopy invariant.}
$$

イロト (個) (注) (注)

Þ

 290

Recall that the area functional is

$$
A=\int_{\Sigma}d\mu_{\Sigma}.
$$

It is clear that

$$
\cos\alpha\leq 1\leq \frac{1}{\cos\alpha},
$$

it follows that

$$
\int_{\Sigma}\cos \alpha d\mu_{\Sigma}\leq A\leq L.
$$

We have

$$
l \leq A \leq L.
$$

*ロト→ 御ト→ 君ト→ 君ト

つへへ

∍

We (Han-Li) consider a new functional:

$$
L_{\beta} = \int_{\Sigma} \frac{1}{\cos^{\beta} \alpha} d\mu_{\Sigma}.
$$

It is obvious that holomorphic curves minimize the functional if $\beta > 0$.

イロト (例) イミト (手)

The first variation formula

Theorem

Let M be a Kahler ¨ surface. The first variational formula of the functional L^β *is, for any smooth vector field X on* Σ*,*

$$
\delta_X L_\beta = -(\beta + 1) \int_{\Sigma} \frac{X \cdot H}{\cos^\beta \alpha} d\mu
$$
\n
$$
+ \beta (\beta + 1) \int_{\Sigma} \frac{X \cdot (J(J\nabla \cos \alpha)^\top)^\perp}{\cos^{\beta+3} \alpha} d\mu, \qquad (2.2)
$$

where H is the mean curvature vector of Σ *in M*, and $()^{\top}$ means *tangential components of* $()$, $()^{\perp}$ *means the normal components of* $()$. *The Euler-Lagrange equation of the functional L*^β *is*

$$
\cos^3 \alpha H - \beta (J (J \nabla \cos \alpha)^{\top})^{\perp} = 0. \tag{2.3}
$$

Remarks

We call it a β -symplectic critical surface.

$$
\cos^3 \alpha \mathbf{H} - \beta (J (J \nabla \cos \alpha)^\top)^\perp = 0
$$

 $\theta = 0$, we get minimal surface equation;

• If
$$
\beta \rightarrow \infty
$$
, we get $\cos \alpha = constant$.

Proposition

If a β-symplectic critical surface is minimal, then $\cos \alpha \equiv$ *Constant.*

イロト (個) イミトイモト

 $2Q$

Let $\{e_1, e_2, v_3, v_4\}$ be a orthonormal frame around $p \in \Sigma$ such that *J* takes the form

$$
J = \left(\begin{array}{cccc} 0 & \cos\alpha & \sin\alpha & 0 \\ -\cos\alpha & 0 & 0 & -\sin\alpha \\ -\sin\alpha & 0 & 0 & \cos\alpha \\ 0 & \sin\alpha & -\cos\alpha & 0 \end{array}\right).
$$

Then

$$
(J(J\nabla\cos\alpha)^{\top})^{\perp}
$$

= $\cos\alpha \sin^2\alpha \partial_1 \alpha v_4 + \cos\alpha \sin^2\alpha \partial_2 \alpha v_3$
= $\cos\alpha \sin^2\alpha (\partial_1 \alpha v_4 + \partial_2 \alpha v_3).$

Set $\vec{V} = \partial_2 \alpha v_3 + \partial_1 \alpha v_4$.

イロト (例) イミト (手)

Furthermore, we have

$$
\partial_1 \cos \alpha = \omega (\bar{\nabla}_{e_1} e_1, e_2) + \omega (e_1, \bar{\nabla}_{e_1} e_2)
$$

= $h_{11}^{\alpha} \langle J v_{\alpha}, e_2 \rangle + h_{12}^{\alpha} \langle J e_1, v_{\alpha} \rangle$
= $(h_{11}^4 + h_{12}^3) \sin \alpha.$

Similarly, we can get that,

$$
\partial_2 \cos \alpha = (h_{22}^3 + h_{12}^4) \sin \alpha.
$$

Note that

$$
\partial_i \cos \alpha = -\sin \alpha \partial_i \alpha
$$
, for $i = 1, 2$.

Then

$$
\vec{V} = -(h_{22}^3 + h_{12}^4)v_3 - (h_{11}^4 + h_{12}^3)v_4.
$$

 290

∍

And consequently the Euler-Lagrange equation of the function L_{β} is

$$
\cos^2 \alpha H - \beta \sin^2 \alpha V = 0. \tag{2.4}
$$

∢ ロ ▶ (伊) (ミ) (ミ

つくい

Proposition

For a β-symplectic critical surface with $β ≥ 0$ *, the Euler-Lagrange equation is an elliptic system modulo tangential diffeomorphisms of* Σ*.*

Examples in **C** 2

We consider the β -symplectic critical surfaces of the following form.

$$
F(r, \theta) = (r \cos \theta, r \sin \theta, f(r), 0).
$$
 (2.5)

The equation

$$
\cos^3 \alpha \mathbf{H} = \beta (J (J \nabla \cos \alpha)^\top)^\perp
$$

is equivalent to

$$
r(1 + \beta(f')^{2})f'' + (1 + (f')^{2})f' = 0.
$$
 (2.6)

Set $h = f'$, then (2.6) can be written as

$$
r(1 + \beta h^2)h' + (1 + h^2)h = 0,
$$
\n(2.7)

which in turn implies that

$$
(r(1+h^2)^{\frac{\beta-1}{2}}h')' \equiv 0. \tag{2.8}
$$

For simplicity, we will consider the special solution of the form

$$
rh(1+h^2)^{\frac{\beta-1}{2}} \equiv 1,
$$
\n(2.9)

which implies that for $r > 0$

$$
h(1+h^2)^{\frac{\beta-1}{2}} = \frac{1}{r} > 0.
$$
 (2.10)

イロト (例) イミト (手)

つくい

 $\theta = 0$, we get the catenoid, minimal surface. $\theta = 1$, we get

$$
F(u, v) = (v \cos u, v \sin u, -\ln v, 0),
$$

$$
u \in [0, 2\pi], v > 0.
$$

It is in fact a surface $z = -\frac{1}{2}$ $\frac{1}{2}$ log($x^2 + y^2$) in **R**³, we consider it as a surface in **C** 2 .

 $\theta \rightarrow \infty$, we get the plane.

In fact, for
$$
\beta \geq 1
$$
,

$$
\frac{1}{r} = h(1+h^2)^{\frac{\beta-1}{2}} \ge h\left(1+\frac{\beta-1}{2}h^2\right) \ge \frac{\beta-1}{2}h^3,
$$

we see that for each $r > 0$,

$$
0 \le h(r) \le \sqrt[3]{\frac{2}{(\beta - 1)r}}.\tag{2.11}
$$

 Ω

 $AB = 4B + 4B$

This means that $f' = h$ converges to 0 uniformly on each compact subset of \mathbb{C}^2 . Therefore, we see that *f* converges to a constant uniformly on each compact subset of **C** 2 .

We prove a Liouville theorem for β -symplectic critical surfaces in \mathbb{C}^2 .

Theorem

If Σ *is a complete* β*-symplectic critical surface in* **C** ² *with area quadratic growth, and* $cos^2 \alpha > \frac{1}{2}$ $\frac{1}{2}$, then it is a holomorphic curve.

伊 ▶ イヨ ▶ イヨ

Theorem

If Σ *is a closed symplectic surface which is smoothly immersed in M with the Kahler ¨ angle* ^α*, then* ^α *satisfies the following equation ,*

$$
\Delta \cos \alpha = \cos \alpha (-|h_{1k}^3 - h_{2k}^4|^2 - |h_{1k}^4 + h_{2k}^3|^2)
$$

+
$$
\sin \alpha (H_{,1}^4 + H_{,2}^3) - \frac{\sin^2 \alpha}{\cos \alpha} (K_{1212} + K_{1234}).
$$
 (3.1)

where K is the curvature operator of M and $H^{\alpha}_{,i} = \langle \bar{\nabla}^N_{e_i} H, v_{\alpha} \rangle$.

∢ ロ ▶ (伊) (ミ) (ミ

Theorem

Suppose that M is Kähler surface and $Σ$ *is a* $β$ -*symplectic critical* $surface in M with Kähler angle α , then $\cos \alpha$ satisfies,$

$$
\Delta \cos \alpha = \frac{2\beta \sin^2 \alpha}{\cos \alpha (\cos^2 \alpha + \beta \sin^2 \alpha)} |\nabla \alpha|^2 - 2\cos \alpha |\nabla \alpha|^2
$$

$$
-\frac{\cos^2 \alpha \sin^2 \alpha}{\cos^2 \alpha + \beta \sin^2 \alpha} Ric(Je_1, e_2).
$$
(3.2)

イロト (例) イミト (手)

 $2Q$

Corollary

Assume M is Kahler-Einstein surface with scalar curvature K, then cos^α *satisfies,*

$$
\Delta \cos \alpha = \frac{2\beta \sin^2 \alpha}{\cos \alpha (\cos^2 \alpha + \beta \sin^2 \alpha)} |\nabla \alpha|^2 - 2\cos \alpha |\nabla \alpha|^2
$$

$$
-\frac{K}{4} \frac{\cos^3 \alpha \sin^2 \alpha}{\cos^2 \alpha + \beta \sin^2 \alpha}.
$$
(3.3)

Corollary

Any β*-symplectic critical surface in a Kahler ¨ -Einstein surface with nonnegative scalar curvature is a holomorphic curve for* $\beta > 0$ *.*

イロト イ伊ト イヨト イヨト

By the equations obtained by Micallef-Wolfson, we see that, on a β -symplectic critical surface we have

$$
\frac{\partial \sin \alpha}{\partial \bar{\zeta}} = (\sin \alpha)h,
$$

where *h* is a smooth complex function, ζ is a local complex coordinate on Σ , and consequently, we have

Proposition

A non holomorphic β*-symplectic critical surface in a Kahler ¨ surface has at most finite complex points.*

 Ω

④何 ト ④ 目 ト ④ 目

Theorem

Suppose that Σ *is a non holomorphic* β*-symplectic critical surface in a Kahler ¨ surface M. Then*

$$
\chi(\Sigma)+\chi(\nu)=-P,
$$

and

$$
c_1(M)([\Sigma]) = -P,
$$

where $\chi(\Sigma)$ *is the Euler characteristic of* Σ , $\chi(\nu)$ *is the Euler characteristic of the normal bundle of* Σ *in* M , $c_1(M)$ *is the first Chern class of M*, $[\Sigma] \in H_2(M, \mathbb{Z})$ *is the homology class of* Σ *in M*, and P *is the number of complex tangent points.*

∢ ロ ▶ (伊) (ミ) (ミ

Theorem gives a proof of Webster's formula for β -symplectic surfaces:

Corollary

Suppose that Σ *is a* β*-symplectic critical surface in a Kahler ¨ surface M. Then*

$$
\chi(\Sigma)+\chi(\nu)=c_1(M)([\Sigma]).
$$

∢ ロ ▶ ∢ 伊 ▶ ∢ ヨ ▶

Consider

$$
F_{t,\varepsilon}:\Sigma\times(-\delta,\delta)\times(-a,a)\to M
$$

with $F_{0,0} = F$, where $F : \Sigma \to M$ is a β -symplectic critical surface. Let

$$
\frac{\partial F_{t,0}}{\partial t}\mid_{t=0}=\mathbf{X},\ \frac{\partial F_{0,\varepsilon}}{\partial \varepsilon}\mid_{\varepsilon=0}=\mathbf{Y},\ \text{and}\ \frac{\partial^2 F_{t,\varepsilon}}{\partial t \partial \varepsilon}\mid_{t=0,\varepsilon=0}=\mathbf{Z}.
$$

Denote

$$
v_{\beta,t,\varepsilon} = \frac{\det^{(\beta+1)/2}(g_{t,\varepsilon})}{\omega^{\beta}(\partial F_{t,\varepsilon}/\partial x^1, \partial F_{t,\varepsilon}/\partial x^2)}
$$

so that

$$
L_{\beta}(\phi_{t,\varepsilon})=\int_{\Sigma}v_{\beta,t,\varepsilon}dx^1\wedge dx^2.
$$

イロト (例) イミト (手)

つへへ

∍

It is easy to see that

$$
\frac{\partial}{\partial t}|_{t=0,\varepsilon=0} g_{ij} = \langle \overline{\nabla}_{e_i} \mathbf{X}, e_j \rangle + \langle e_i, \overline{\nabla}_{e_j} \mathbf{X} \rangle, \tag{4.1}
$$

$$
\frac{\partial}{\partial \varepsilon} \mid_{t=0,\varepsilon=0} g_{ij} = \langle \overline{\nabla}_{e_i} \mathbf{Y}, e_j \rangle + \langle e_i, \overline{\nabla}_{e_j} \mathbf{Y} \rangle, \tag{4.2}
$$

and

$$
\frac{\partial^2}{\partial t \partial \varepsilon} |_{t=0,\varepsilon=0} g_{ij} = \langle \overline{\nabla}_{e_i} \mathbf{Z} + \bar{R}(\mathbf{Y}, e_i) \mathbf{X}, e_j \rangle + \langle e_i, \overline{\nabla}_{e_j} \mathbf{Z} + \bar{R}(\mathbf{Y}, e_j) \mathbf{X} \rangle + \langle \overline{\nabla}_{e_i} \mathbf{X}, \overline{\nabla}_{e_j} \mathbf{Y} \rangle + \langle \overline{\nabla}_{e_i} \mathbf{Y}, \overline{\nabla}_{e_j} \mathbf{X} \rangle.
$$
(4.3)

Here, \bar{R} is the curvature tensor on M .

すロト (御) すきとすきと

 $2Q$

э

Assume that $X = Y$ is a normal vector field,

$$
= \frac{\beta+1}{\cos^{\beta}\alpha}J_0(\mathbf{X}) - \frac{\beta(\beta+1)}{\cos^{\beta+1}\alpha}\overline{\nabla}^{\perp}_{\nabla\cos\alpha}\mathbf{X}
$$

\n
$$
- \frac{\beta^2(\beta+1)^2}{\cos^{\beta+6}\alpha}\langle \mathbf{X}, (J(J\nabla\cos\alpha)^{\top})^{\perp}\rangle (J(J\nabla\cos\alpha)^{\top})^{\perp}
$$

\n
$$
- 2\frac{\beta^2(\beta+1)}{\cos^{\beta+4}\alpha}[\omega(\overline{\nabla}_{e_1}\mathbf{X}, e_2) + \omega(e_1, \overline{\nabla}_{e_2}\mathbf{X})](J(J\nabla\cos\alpha)^{\top})^{\perp}
$$

\n
$$
- \frac{\beta(\beta+1)}{\cos^{\beta+2}\alpha}[\nabla_{e_1}\cos\alpha(J\nabla_{e_2}\mathbf{X})^{\perp} - \nabla_{e_2}\cos\alpha(J\nabla_{e_1}\mathbf{X})^{\perp}]
$$

\n
$$
- \beta(\beta+1)\nabla_{e_1}\frac{\omega(\overline{\nabla}_{e_1}\mathbf{X}, e_2) + \tilde{\omega}(e_1, \overline{\nabla}_{e_2}\mathbf{X})}{\cos^{\beta+2}\alpha}(Je_2)^{\perp}
$$

\n
$$
+ \beta(\beta+1)\nabla_{e_2}\frac{\omega(\overline{\nabla}_{e_1}\mathbf{X}, e_2) + \tilde{\omega}(e_1, \overline{\nabla}_{e_2}\mathbf{X})}{\cos^{\beta+2}\alpha}(Je_1)^{\perp}
$$

\n:=
$$
- \int_{\Sigma}\langle J_{\beta}\mathbf{X}, \mathbf{X}\rangle d\mu,
$$

 299

Theorem

If we choose $X = x_3e_3 + x_4e_4$ and $Y = -J_vX = x_4e_3 - x_3e_4$, then the *second variation formula is*

$$
II_{\beta}(X) + II_{\beta}(Y)
$$

= -2(β + 1) $\int_{\Sigma} \frac{R|X|^2 \sin^2 \alpha}{\cos^{\beta} \alpha} d\mu$
+ (β + 1) $\int_{\Sigma} \frac{|\overline{\partial}X|^2 (2\cos^2 \alpha + \beta \sin^2 \alpha)}{\cos^{\beta+2} \alpha} d\mu$
- (β + 1) $\int_{\Sigma} \frac{(2\cos^2 \alpha + \beta \sin^2 \alpha)(\cos^2 \alpha + \beta \sin^2 \alpha)}{\cos^{\beta+4} \alpha} |X|^2 |\nabla \alpha|^2 d\mu$.

イロト (例) イミト (手)

As applications of the stability inequality above, we can obtain some rigidity results for stable β-symplectic critical surfaces.

Corollary

Let M be a Kähler surface with positive scalar curvature R. If Σ *is a stable* β*-symplectic critical surface in M with* β ≥ 0*, whose normal bundle admits a nontrivial section X with*

$$
\frac{|\bar{\partial}X|^2}{|X|^2}\leq \frac{\cos^2\alpha+\beta\sin^2\alpha}{\cos^2\alpha}|\nabla\alpha|^2,
$$

then Σ *is a holomorphic curve.*

 Ω

∢ ロ ▶ (伊) (ミ) (ミ

Corollary

Let M be a Kähler surface with positive scalar curvature R. If Σ *is a stable* β*-symplectic critical surface in M with* β ≥ 0 *and* χ(ν) ≥ *g, where* $\chi(v)$ *is the Euler characteristic of the normal bundle* v *of* Σ *in M* and *g is the genus of* Σ *, then* Σ *is a holomorphic curve.*

∢ ロ ▶ ∢ 伊 ▶ ∢ ヨ ▶ ∢ ヨ ▶

we define the set

$$
S: = \{ \beta \in [0, \infty) \mid \exists \text{ strictly stable } \beta-\text{symplectic critical surface } \Sigma
$$

with $\int_{\Sigma} |A|^2 d\mu \le C(s) \}$

where *A* is the second fundamental form of Σ in *M*, and $C(s)$ is a positive continuous function.

Theorem

The set S is open and closed in [0,∞). *In other words,* $S = [0, \infty)$.

Convergence?

Conjecture *Let M be a Kahler ¨ surface. There is a holomorphic curve in the homotopy class of a symplectic stable minimal surface in M.*

There does exist symplectic stable minimal surfaces which are not holomorphic (Claudi). 伊 ▶ イヨ ▶ イヨ

Thanks for your attention

メロトメ部 トメミトメミト

 $2Q$

∍