On the Bombieri-De Giorgi-Giusti minimal graph and its applications

Juncheng Wei
Department of Mathematics
University of British Columbia

Singapore, December 12, 2014.

The minimal surface equation

$$
\begin{aligned}
& H_{\Gamma}:=\nabla \cdot\left(\frac{\nabla F}{\sqrt{1+|\nabla F|^{2}}}\right)=0 \text { in } \Omega \subset \mathbb{R}^{N-1} . \\
& \Gamma=\left\{\left(x^{\prime}, F\left(x^{\prime}\right)\right) \in \mathbb{R}^{N-1} \times \mathbb{R} / x^{\prime} \in \Omega \subset \mathbb{R}^{N-1}\right\}
\end{aligned}
$$

is a minimal surface (minimal graph) in \mathbb{R}^{N}
Euler-Lagrange equation for the area functional

$$
A(\Gamma)=\int_{\Omega} \sqrt{1+|\nabla F|^{2}} d x^{\prime}
$$

Problem (Bernstein, 1910): Are all (entire) solutions of the minimal surface equation

$$
H_{\Gamma}:=\nabla \cdot\left(\frac{\nabla F}{\sqrt{1+|\nabla F|^{2}}}\right)=0 \quad \text { in } \mathbb{R}^{N-1}
$$

just linear functions $F\left(x^{\prime}\right)=a \cdot x+b$?
Or: Is an entire minimal graph in \mathbb{R}^{N} necessarily a hyperplane?

True for $N \leq 8$:

- Bernstein (1910), Fleming (1962) $N=3$
- De Giorgi (1965) $N=4$
- Almgren (1966), $N=5$
- Simons (1968), $N=6,7,8$.

False for $N \geq 9$:

- Bombieri-De Giorgi-Giusti found a counterexample (Invent Math 1969).

The BDG minimal graph:

Explicit construction by super and sub-solutions, $N=9$, of a non-trivial solution of

$$
\begin{gathered}
\nabla \cdot\left(\frac{\nabla F}{\sqrt{1+|\nabla F|^{2}}}\right)=0 \quad \text { in } \mathbb{R}^{8} . \\
F: \mathbb{R}^{4} \times \mathbb{R}^{4} \rightarrow \mathbb{R}, \quad(\mathbf{u}, \mathbf{v}) \mapsto F(|\mathbf{u}|,|\mathbf{v}|) .
\end{gathered}
$$

In addition, $F(|\mathbf{u}|,|\mathbf{v}|)>0$ for $|\mathbf{v}|>|\mathbf{u}|$ and

$$
F(|\mathbf{u}|,|\mathbf{v}|)=-F(|\mathbf{v}|,|\mathbf{u}|) .
$$

Polar coordinates:

$$
|\mathbf{u}|=r \cos \theta, \quad|\mathbf{v}|=r \sin \theta, \quad \theta \in\left(0, \frac{\pi}{2}\right)
$$

We have that for large r,

$$
\begin{gathered}
F(r, \theta) \approx F_{0}(r, \theta)=r^{3} g(\theta) \\
g>0 \text { in }\left(\frac{\pi}{4}, \frac{\pi}{2}\right], \quad g\left(\frac{\pi}{2}-\theta\right)=-g(\theta), \quad g^{\prime}\left(\frac{\pi}{2}\right)=0 . \\
g(\theta) \sim \cos (2 \theta)
\end{gathered}
$$

and g is such that

$$
\nabla \cdot\left(\frac{\nabla F_{0}}{\left|\nabla F_{0}\right|}\right)=0 \quad \text { in } \mathbb{R}^{8}
$$

Equivalent to an ODE for g

$$
\begin{gathered}
\frac{21 g \sin ^{3} 2 \theta}{\sqrt{9 g^{2}+g^{\prime 2}}}+\left(\frac{g^{\prime} \sin ^{3} 2 \theta}{\sqrt{9 g^{2}+g^{\prime 2}}}\right)^{\prime}=0 \quad \text { in }\left(\frac{\pi}{4}, \frac{\pi}{2}\right) \\
g\left(\frac{\pi}{4}\right)=0=g^{\prime}\left(\frac{\pi}{2}\right)
\end{gathered}
$$

This problem has a solution $g>0$ in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right]$.

Asymptotic behavior of F

Asymptotic behavior of BDG surface $x_{9}=F(r, \theta), \theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$: $\sigma \in(0,1)$

$$
F(r, \theta)=r^{3} g(\theta)+O\left(r^{-\sigma}\right) \quad \text { as } r \rightarrow+\infty .
$$

(del Pino, Kowalczyk, Wei, 2011)

$$
F(r, \theta)=r^{3} g(\theta)+O\left(r^{-1}\right) \quad \text { as } r \rightarrow+\infty
$$

(Daskalopoulous, del Pino, Davila, Wei, 2014)

$$
H^{\prime}\left(F_{0}\right)[\phi]=L(\phi)=\nabla \cdot\left(\frac{\nabla \phi}{\sqrt{1+\left|\nabla F_{0}\right|^{2}}}-\frac{\left(\nabla F_{0} \cdot \nabla \phi\right) \nabla F_{0}}{\left(1+\left|\nabla F_{0}\right|^{2}\right)^{\frac{3}{2}}}\right) .
$$

Degenerate in the direction of ∇F_{0}.
Key idea: New Orthogonal Coordinate System

$$
\begin{gathered}
t=F_{0}=r^{3} g(\theta) \\
s=\left(\frac{r^{7} \sin ^{3}(2 \theta) g_{\theta}}{56 \sqrt{9 g^{2}+g_{\theta}^{2}}}\right)^{\frac{1}{7}}
\end{gathered}
$$

These coordinates correspond to "geographical" orthogonal coordinates for the graph of F_{0}. The coordinate t is simply its height and s measures a weighted length along the level sets.

Variation \#1: the Allen-Cahn equation, De Giorgi's conjecture

$$
\begin{equation*}
\Delta u+u-u^{3}=0 \quad \text { in } \mathbb{R}^{n} \tag{AC}
\end{equation*}
$$

Euler-Lagrange equation for the energy functional

$$
J(u)=\frac{1}{2} \int|\nabla u|^{2}+\frac{1}{4} \int\left(1-u^{2}\right)^{2}
$$

$u=+1$ and $u=-1$ are global minimizers of the energy representing, in the gradient theory of phase transitions, two distinct phases of a material. Problem: to find solutions where the two phases ± 1 coexist.

The case $N=1$.
The function

$$
w(t):=\tanh \left(\frac{t}{\sqrt{2}}\right)
$$

connects monotonically -1 and +1 and solves

$$
w^{\prime \prime}+w-w^{3}=0, \quad w(\pm \infty)= \pm 1, \quad w^{\prime}>0
$$

For any $p, \nu \in \mathbb{R}^{N},|\nu|=1$, the functions

$$
u(x):=w(z), \quad z=(x-p) \cdot \nu
$$

solve equation (AC). $z=$ normal coordinate to the hyperplane through p, unit normal ν.

De Giorgi's conjecture (1978): Let u be a bounded solution of equation

$$
\begin{equation*}
\Delta u+u-u^{3}=0 \quad \text { in } \mathbb{R}^{N} \tag{AC}
\end{equation*}
$$

which is monotone in one direction, say $\partial_{x_{N}} u>0$. Then, at least when $N \leq 8$, there exist p, ν such that

$$
u(x)=w((x-p) \cdot \nu)
$$

This statement is equivalent to:
At least when $N \leq 8$, all level sets of u, $[u=\lambda]$ must be hyperplanes.

De Giorgi's Conjecture: u bounded solution of (AC), $\partial_{x_{N}} u>0$ then level sets $[u=\lambda]$ are hyperplanes.

- True for $N=2$. Ghoussoub and Gui (Math Ann 1998).
- True for $N=3$. Ambrosio and Cabré (JAMS 2000).
- True for $4 \leq N \leq 8$ Savin (Ann of Math 2009), if in addition

$$
\lim _{x_{N} \rightarrow \pm \infty} u\left(x^{\prime}, x_{N}\right)= \pm 1 \quad \text { for all } \quad x^{\prime} \in \mathbb{R}^{N-1}
$$

(A new proof by Kelei Wang, Arxiv 2014)

Connection between solutions of (AC) and minimal surfaces arises (Modica-Mortola, 1977).
In entire space (AC) is equivalent to

$$
\begin{equation*}
\varepsilon^{2} \Delta u+\left(1-u^{2}\right) u=0 \quad \text { in } \mathbb{R}^{N} \tag{AC}
\end{equation*}
$$

A sequence of solutions to $(A C)_{\varepsilon}$ in a bounded domain, which are local minimizers and have suitably bounded energy must approach a function that takes only the values ± 1 in two complementary regions separated by a (generalized) minimal surface.

We take the opposite view:
Given an embedded minimal surface Γ in \mathbb{R}^{N} that splits its complement into two components $\Omega_{ \pm}$we want to find u_{ε} such that

$$
\begin{equation*}
\varepsilon^{2} \Delta u+\left(1-u^{2}\right) u=0 \quad \text { in } \mathbb{R}^{N} \tag{AC}
\end{equation*}
$$

and $u_{\varepsilon} \rightarrow \pm 1$ in $\Omega_{ \pm}$.
For Γ a $B D G$ graph in \mathbb{R}^{9} we find:

Theorem (del Pino, Kowalczyk, Wei; Ann. of Math 2011) Let Γ be a $B D G$ minimal graph in \mathbb{R}^{9}, ν its upward unit normal. For all small $\varepsilon>0$, there exists a bounded solution u_{ε} of $(A C)_{\varepsilon}$, monotone in the x_{9}-direction, with

$$
\begin{gathered}
u_{\varepsilon}(x)=\tanh \left(\frac{z}{\sqrt{2} \varepsilon}\right)+O(\varepsilon), \quad x=y+z \nu(y), \quad y \in \Gamma,|z|<\delta, \\
\lim _{x_{9} \rightarrow \pm \infty} u_{\varepsilon}\left(x^{\prime}, x_{9}\right)= \pm 1 \text { for all } x^{\prime} \in \mathbb{R}^{8} .
\end{gathered}
$$

u_{ε} is a "counterexample" to De Giorgi's conjecture in dimension 9 (hence in any dimension higher).

The infinite dimensional gluing method:
Local coordinates near 「:

$$
x=y+z \nu(y), \quad y \in \Gamma,|z|<\delta
$$

Then

$$
\Delta_{x}=\partial_{z z}+\Delta_{\Gamma z}-H_{\Gamma_{z}}(y) \partial_{z}
$$

$$
\Gamma^{z}:=\{y+z \nu(y) / y \in \Gamma\} .
$$

$\Delta_{\Gamma^{z}}$ is the Laplace-Beltrami operator on Γ^{z} (applied to functions of y) and $H_{\Gamma}^{z}(y)$ its mean curvature. Let k_{1}, \ldots, k_{8} be principal curvatures of Γ. Then

$$
H_{\Gamma z}=\sum_{i=1}^{8} \frac{k_{i}}{1-z k_{i}}
$$

Let $f(u)=u-u^{3}$ the equation

$$
S(u):=\varepsilon^{2} \Delta u+f(u)=0 \quad \text { in } \mathbb{R}^{9}
$$

becomes, for

$$
\begin{aligned}
& u(y, z):=u(x), \quad x=y+z \nu(y), \quad y \in \Gamma_{\varepsilon},|z|<\delta \\
& S(u)=\varepsilon^{2}\left(\partial_{z}^{2} u+\Delta_{\Gamma_{z}} u-H_{\Gamma^{z}}(y) \partial_{z} u\right)+f(u)=0 .
\end{aligned}
$$

For a small function h defined on Γ (to be determined) we set

$$
u_{0}(y, z)=w\left(\frac{z}{\varepsilon}+\varepsilon h(y)\right)
$$

where $w(t)=\tanh (t / \sqrt{2})$, so that $w^{\prime \prime}(t)+f(w(t))=0$
$u_{0}(y, z)=w(t), t=\frac{z}{\varepsilon}-\varepsilon h(y)$. We compute the error

$$
S\left(u_{0}\right)=\varepsilon^{4}\left|\nabla_{\Gamma^{z}} h(y)\right|^{2} w^{\prime \prime}(t)-w^{\prime}(t)\left(\varepsilon^{3} \Delta_{\Gamma^{z}} h(y)+\varepsilon H_{\Gamma^{z}}(y)\right)
$$

Since $H_{\Gamma}{ }^{z}=\sum_{i=1}^{8} \frac{k_{i}}{1-k_{i} z}, H_{\Gamma}=0, z=\varepsilon(t+\varepsilon h)$, we get

$$
\varepsilon H_{\Gamma_{z}}(y)=\varepsilon^{2}(t+\varepsilon h(y)) \underbrace{\sum_{i=1}^{8} k_{i}(y)^{2}}_{\left|A_{\Gamma}(y)\right|^{2}}+\varepsilon^{3}(t+\varepsilon h(y))^{2} \sum_{i=1}^{8} k_{i}^{3}(y)+\cdots
$$

$$
S\left(u_{0}\right)=-\varepsilon^{3}\left[\left(\Delta_{\Gamma} h+\left|A_{\Gamma}\right|^{2} h\right) w^{\prime}+\sum_{i=1}^{8} k_{i}^{3}(y) t^{2} w^{\prime}\right]-\varepsilon^{2}\left|A_{\Gamma}\right|^{2} t w^{\prime}+h . o . t
$$

We want ϕ so that

$$
0=S\left(u_{0}+\phi(t, y)\right) \approx \varepsilon^{2} \Delta_{\Gamma} \phi+\phi_{t t}+f^{\prime}(w(t)) \phi+S\left(u_{0}\right)
$$

Writing $\phi=\varepsilon^{2} \phi_{2}(t, y)+\varepsilon^{3} \phi_{3}(t, y)+\cdots$ we formally find

$$
\begin{gathered}
\partial_{t}^{2} \phi_{2}+f^{\prime}(w(t)) \phi_{2}=\left|A_{\Gamma}(y)\right|^{2} t w^{\prime}(t) \\
\partial_{t}^{2} \phi_{3}+f^{\prime}(w(t)) \phi_{3}=\left(\Delta_{\Gamma} h+\left|A_{\Gamma}\right|^{2} h\right) w^{\prime}+\sum_{i=1}^{8} k_{i}^{3}(y) t^{2} w^{\prime}
\end{gathered}
$$

Need solvability conditions:

$$
\psi^{\prime \prime}(t)+f^{\prime}(w(t)) \psi=p(t) \in L^{\infty}(\mathbb{R})
$$

has a bounded solution if and only if $\int_{\mathbb{R}} p w^{\prime} d t=0$. Need a condition in h :

To solve for ϕ_{3} need that

$$
\left(\Delta_{\Gamma} h+\left|A_{\Gamma}\right|^{2} h\right) \int_{-\infty}^{\infty}\left|w^{\prime}\right|^{2} d t+\sum_{i=1}^{8} k_{i}^{3} \int_{-\infty}^{\infty} t^{2}\left|w^{\prime}\right|^{2} d t=0 \forall y \in \Gamma
$$

This determines h :

$$
\Delta_{\Gamma} h+\left|A_{\Gamma}\right|^{2} h=\sum_{i=1}^{8} k_{i}^{3}(y)=g(y)
$$

The Jacobi operator of Γ can be accurately analyzed thanks to the precise asymptotics we have for Γ. In particular we have at main order $g(y)=\alpha(\theta) / r^{3}$ and we can essentially solve by a function of the form $h=\beta(\theta) / r$.

An important example for $N=3$: finite Morse index solutions.

Theorem (del Pino, Kowalczyk, Wei (JDG 2013))
Let Γ be a complete, embedded minimal surface in \mathbb{R}^{3} with finite total curvature: $\int_{\Gamma}|K|<\infty, K$ Gauss curvature.
If Γ is non-degenerate then for small $\varepsilon>0$ there is a solution u_{ε} to $(A C)_{\varepsilon}$ with

$$
u_{\varepsilon}(x) \approx w(z / \varepsilon), \quad x=y+z \nu(y)
$$

In addition $i\left(u_{\varepsilon}\right)=i(\Gamma)$ where i denotes Morse index.
Examples: nondegeneracy and Morse index are known for the catenoid and Costa-Hoffmann-Meeks surfaces (Nayatani (1990), Morabito, (2008)).
$\Gamma=$ a catenoid: $\quad \exists u_{\varepsilon}(x)=w(z)+O(\varepsilon), x=y+z \nu(y)$.

Catenoid
u_{ε} axially symmetric: $u_{\varepsilon}(x)=u_{\varepsilon}\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right), x_{3}$ rotation axis coordinate. $i\left(u_{\varepsilon}\right)=1$
$\Gamma=$ CHM surface genus $\ell \geq 1$:
$\exists u_{\varepsilon}(x)=w(z / \varepsilon)+O(\varepsilon), x=y+z \nu(y) . i\left(u_{\varepsilon}\right)=2 \ell+3$.

The above gluing procedure suggests the following correspondence

Study of Entire Solutions of
Allen-Cahn Equation
$\Delta u+u-u^{3}=0$
in \mathbb{R}^{N}
Theory of
Minimal Surfaces

It is attempting to think about

$$
\Delta u+u=u^{3}=0 \quad \sim====\sim \quad \text { minimal surfaces }
$$

but this is not true: Let $N \geq 4$ and consider the N-dimensional catenoid:

$$
\begin{gathered}
F=F(r), \nabla\left(\frac{\nabla F}{\sqrt{1+|\nabla F|^{2}}}\right)=0, \\
F \sim 1+O\left(r^{2-N}\right)
\end{gathered}
$$

It is known that the N-dimensional catenoid has Morse index one.
Agudelo, del Pino, Wei, (J. Math. Pures Appl 2015): For every $N \geq 4$ and any sufficiently small $\epsilon>0$ there exist a solution u_{ϵ} to Allen-Cahn equation with $\left\{u_{\epsilon}=0\right\}$ being the largely dilated catenoid. For $\epsilon>0$ small and for dimensions $4 \leq N \leq 10$ the Morse index of $u_{\epsilon}=\infty$.

Variation \# 2: Overdetermined semilinear equation in an epigraph
A classical application of the method of moving planes was by Serrin in 1971. He considered the following overdetermined problem: Let Ω be a bounded domain and u be a solution of

$$
(S) \quad\left\{\begin{array}{l}
\Delta u+f(u)=0 \text { in } \Omega \\
u>0 \text { in } \Omega \\
u=0 \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu}=\text { Constant on } \partial \Omega
\end{array}\right.
$$

Then Ω must be a ball.

Serrin's Overdetermined Problem

We reformulate Serrin's problem: Find a domain Ω such that there exists a solution u to
(S) $\left\{\begin{array}{l}\Delta u+f(u)=0 \text { in } \Omega, \\ u=0 \text { on } \partial \Omega \\ \frac{\partial u}{\partial \nu}=\text { Constant on } \partial \Omega\end{array}\right.$

Serrin's result: The only bounded domain is ball.

Serrin's proof was based on the Alexandrov reflection principle, introduced in 1956 by Alexandrov to prove the following famous result:

A compact, connected, embedded hypersurface in RN whose mean curvature is constant, must necessarily be an Euclidean sphere.

The reflection maximum principle based procedure was used in 1979 by Gidas-Ni-Nirenberg to derive radial symmetry results for positive solutions of semilinear equations. The reflection principle, named after Gidas-Ni-Nirenberg as the moving plane method, has become a standard and powerful tool for the analysis of symmetries of solutions of nonlinear elliptic equations.

Serrin's Problem in Unbounded Domains

In this talk, we consider Serrin's problem when Ω is unbounded.
When $f(u)=0$,

$$
\left\{\begin{array}{l}
\Delta u=0 \text { in } \Omega \\
u=0 \text { on } \partial \Omega \\
\frac{\partial u}{\partial \nu}=\text { Constant on } \partial \Omega
\end{array}\right.
$$

this kind of domains are called exceptional domains and the function u is called root function.
Helen, Hauswirth, Pacard (PJM-2010) derived Weierstrass representation for such domains in \mathbb{R}^{3}.

In this talk, we consider $f \neq 0$ and Ω is unbounded.
A natural situation to consider is epigraphs:

$$
\Omega=\left\{x_{N}>\varphi\left(x^{\prime}\right)\right\}
$$

where $x^{\prime}=\left(x_{1}, \ldots, x_{N-1}\right)$.

With this notation, Serrin's problem becomes
(S) $\left\{\begin{array}{l}\Delta u+f(u)=0 \text { in } \Omega=\left\{x_{N}>\varphi\left(x^{\prime}\right)\right\} \\ u>0 \text { in }\left\{x_{N}>\varphi\left(x^{\prime}\right)\right\}, \\ u=0 \text { on } \partial \Omega=\left\{x_{N}=\varphi\left(x^{\prime}\right)\right\}, \\ \frac{\partial u}{\partial \nu}=C \text { on } \partial \Omega=\left\{x_{N}=\varphi\left(x^{\prime}\right)\right\}\end{array}\right.$

An Obvious Solution: $\varphi=0, u=u\left(x_{N}\right)$ which satisfies an ODE

$$
u^{\prime \prime}+f(u)=0, u(0)=0, u^{\prime}(0)=C
$$

The question is then: is this the only solution?

Berestycki-Cafferalli-Nirenberg Conjecture (1997):
The epigraph $\left\{x_{N}>\varphi\left(x^{\prime}\right)\right\}$ is a half plane and u depends on x_{N} only.

Previous Results

Yes, if φ satisfies

$$
\lim _{\left|x^{\prime}\right| \rightarrow+\infty}\left[\varphi\left(x^{\prime}+\tau\right)-\varphi\left(x^{\prime}\right)\right]=0, \forall \tau \in \mathbb{R}^{N-1}
$$

Berestycki, Cafferalli, Nirenberg (CPAM 1997)

Yes, if φ is globally Lipschitz, and $N=2,3$
Farina, Valdinoci (ARMA-2010)

Theorem (del Pino, Pacard, Wei, Arxiv 2014, to appear in Duke Math Journal)
In Dimension $N \geq 9$ there exists a solution to Problem (S) with $f(u)=u-u^{3}$, in an entire epigraph Ω which is not a half-space.

As before we consider the problem introducing a scaling parameter,

$$
\begin{gather*}
\varepsilon^{2} \Delta u+f(u)=0, u>0 \quad \text { in } \Omega, u \in L^{\infty}(\Omega) \tag{S}\\
u=0, \quad \partial_{\nu} u=\mathrm{constant} \quad \text { on } \partial \Omega
\end{gather*}
$$

The proof consists of finding the region Ω whose boundary is

$$
\partial \Omega=\left\{y+\varepsilon^{2} h(y) \nu(y) / y \in \Gamma\right\} .
$$

for h a small decaying function on Γ, with Γ a BDG graph.
The construction carries over for more general surfaces Γ
Let us set
$u_{0}(y, z)=w\left(\frac{z}{\varepsilon}-\varepsilon h(y)\right)=w(t), \quad x=y+z \nu(y) \quad \Omega=\{t>0\}$.

We look for a solution in $t>0$ with $u(t, y)=w(t)+\phi(t, y)$. Then at main order we should have

$$
\begin{gathered}
\partial_{t t} \phi+\varepsilon^{2} \Delta_{\Gamma} \phi+f^{\prime}(w(t)) \phi=E \\
\phi(0, y)=0, \phi_{t}(0, y)=\alpha \quad \forall y \in \Gamma
\end{gathered}
$$

for a certain constant α.

$$
\begin{gathered}
E=\Delta u_{0}+f\left(u_{0}\right)= \\
\varepsilon^{4}\left|\nabla_{\Gamma^{2}} h(y)\right|^{2} w^{\prime \prime}(t)-\left[\varepsilon^{3} \Delta_{\Gamma^{2}} h(y)+\varepsilon H_{\Gamma 2}(y)\right] w^{\prime}(t),
\end{gathered}
$$

$$
E=\varepsilon H_{\Gamma}(y) w^{\prime}(t)+O\left(\varepsilon^{2}\right)
$$

Integrating the equation for ϕ against w^{\prime} we find
$-w^{\prime}(0) \phi_{t}(0, y)=\int_{0}^{\infty} E(y, t) w^{\prime}(t) d t=-\varepsilon H_{\Gamma}(y) \int_{0}^{\infty} w^{\prime}(t)^{2} d t+O\left(\varepsilon^{2}\right)$
We need

$$
H_{\Gamma} \equiv H=\text { constant }
$$

Namely 「 should be a constant mean curvature surface. Then we solve imposing $\alpha=\varepsilon\left(H / w^{\prime}(0)\right) \int_{0}^{\infty} w^{\prime}(t)^{2} d t$.

Let us assume that that Γ is a smooth surface such that

$$
H_{\Gamma} \equiv H=\text { constant }
$$

The approximation can then be improved as follows:
For $x=y+\varepsilon(t+\varepsilon h(y))$, we look now for a solution for $t>0$ with

$$
u(t, y)=w(t)+\phi(t, y), \quad \phi(0, y)=0
$$

Imposing $\alpha=\left(H / w^{\prime}(0)\right) \int_{0}^{\infty} w^{\prime}(t)^{2} d t$. we can solve

$$
\psi^{\prime \prime}+f^{\prime}(w(t)) \psi=H w^{\prime}(t), \quad t>0, \quad \psi(0)=0, \psi^{\prime}(0)=\alpha
$$

which is solvable with ψ bounded. Then the approximation $u_{1}(x)=w(t)+\varepsilon \psi(t)$ produces a new error of order ε^{2}. And the equation for $\phi=\varepsilon \psi(t)+\phi_{1}$ now becomes

$$
\begin{gathered}
\partial_{t t} \phi_{1}+\Delta_{\Gamma_{\varepsilon}} \phi_{1}+f^{\prime}(w(t)) \phi_{1}=E_{1}=O\left(\varepsilon^{2}\right) \\
\phi_{1}(0, y)=0, \phi_{1, t}(0, y)=0
\end{gathered}
$$

Then we proceed to the adjustment of h.

Let us take the function h to have the following form:

$$
h(y)=h_{0}+\epsilon h_{1}+\epsilon^{2} h_{2}+\epsilon^{3} h_{3}
$$

Then we find, by successive approximation

$$
\begin{gathered}
\Delta_{\Gamma} h_{0}+\left|A_{\Gamma}\right|^{2} h_{0}=\sum_{i=1}^{8} k_{i}^{2}, \quad h_{0}=c_{0} \\
\Delta_{\Gamma} h_{1}+\left|A_{\Gamma}\right|^{2} h_{1}=\sum_{i=1}^{8} k_{i}^{3} \\
\Delta_{\Gamma} h_{2}+\left|A_{\Gamma}\right|^{2} h_{2}=\sum_{i=1}^{8} k_{i}^{4} \\
\Delta_{\Gamma} h_{2}+\left|A_{\Gamma}\right|^{2} h_{3}=\left|A_{\Gamma}\right|^{4}
\end{gathered}
$$

where $\mathcal{J}[h]=\Delta_{\Gamma} h+\left|A_{\Gamma}\right|^{2}$ is the Jacobi operator.

At $\infty, \Delta_{\Gamma} \sim \Delta,\left|A_{\Gamma}\right|^{2} \sim r^{-2}$. Thus we have a Hardy Type operator

$$
\mathcal{J} \sim \Delta+\frac{a(\theta)}{r^{2}}
$$

We will show that \mathcal{J} has indicial roots r^{-2} and r^{-3}. On the other hand,

$$
\begin{aligned}
k_{i} & =O\left(\frac{1}{r}\right) \\
\sum_{i} k_{i}^{3} & =O\left(\frac{1}{r^{3}}\right) \\
\sum_{i} k_{i}^{4} & =O\left(\frac{1}{r^{4}}\right) \\
\left|A_{\Gamma}\right|^{4} & =O\left(\frac{1}{r^{4}}\right)
\end{aligned}
$$

A new linear problem: Neumann to Dirichlet Map

Let us write $\mathbb{R}_{+}^{9}:=\mathbb{R}^{8} \times(0, \infty)$. We consider the problem of finding, for given functions $g(y, t), \beta(y)$, a solution (α, ϕ) to the problem

$$
\begin{aligned}
\Delta \phi+f^{\prime}(w(t)) \phi & =\alpha(y) w^{\prime}(t)+g(y, t) \quad \text { in } \mathbb{R}_{+}^{9}, \\
\phi(y, 0) & =0 \quad \text { for all } \quad y \in \mathbb{R}^{8}, \\
\partial_{t} \phi(y, 0) & =\beta(y) \quad \text { for all } \quad y \in \mathbb{R}^{8} .
\end{aligned}
$$

The principle behind Theorem 2 applies, more generally, to domains enclosed by a large dilation of an embedded CMC surface, provided that sufficient information about the surface (such as nondegeneracy) is available.

Theorem (del Pino, Pacard, Wei 2014)
Assume that $\Omega_{0} \subset M$ is a smooth bounded domain whose boundary $\partial \Omega_{0}$ is a non degenerate hypersurface whose mean curvature is constant. Then, Serrin's overdetermined problem is solvable in $\epsilon^{-1} \Omega_{O}$

Delaunay surfaces, etc.

Variation \#3: Translating solutions to the mean curvature flow. $\Sigma(t)$ in \mathbb{R}^{N+1} orientable, embedded evolves by mean curvature if it is parametrized by a family of diffeormorphisms of $\Sigma(0) Y(\cdot, t)$ where

$$
\begin{equation*}
\frac{\partial Y}{\partial t}=H_{\Sigma(t)}(Y) \nu(Y) \tag{MCF}
\end{equation*}
$$

An eternal solution is one defined at all times $t \in(-\infty, \infty)$. MCF typically develops singularities in finite time. An eternal solution usually arises as a limit after suitable scalings, blowing-up of the solution near a singularity.

Simplest eternal solutions: translating solutions, A self-translating solution of mean curvature flow with speed $c \in \mathbb{R}$ and direction $\mathrm{e} \in S^{N-1}$ is a solution to MCF of the form

$$
\Sigma(t)=c t e+\Sigma(0) .
$$

Graphical self-translating solution $e=e_{N+1}$

$$
F(x, t)=c t+F(x)
$$

$$
\nabla \cdot\left(\frac{\nabla F}{\sqrt{1+|\nabla F|^{2}}}\right)=\frac{c}{\sqrt{1+|\nabla F|^{2}}} \text { in } \mathbb{R}^{N} \text {. }
$$

A Bernstein problem for $(M C)_{c}$:
(B) Question by X.J. Wang (2009) Is it true that entire solutions of $(M C)_{c}$ for $c \geq 0$ need to be convex?

This statement for $c=0$ reduces to Bernstein's problem: If F solving $(M C)_{c}$ was necessarily convex, then so would be $-F$. Hence F would be a linear affine function.

Connected to B. White's result (JAMS 2004): if $N<7$ blowing up of a mean convex flow around a singularity leads to a convex surface.

True for $N=2$ (X.-J. Wang Ann. of Math 2011). Solutions are radial.

Examples of self-translating graphs:

- A unique radially symmetric solution (for $c=1, N \geq 2$)

$$
F(|x|)=\frac{|x|^{2}}{2(N-1)}-\log |x|+O\left(|x|^{-1}\right) \quad \text { as }|x| \rightarrow \infty
$$

- X.-J. Wang Ann. of Math 2011: Examples for $N \geq 3$ of convex, non-radial solutions.

The answer to (B) is negative for $c>0$ and $N \geq 8$, in analogy to the result of Bombieri, De Giorgi and Giusti:

Theorem (Daskalopoulos, Dávila, del Pino, Wei (2014)) Assume that $N \geq 8$. Then there exists a non-convex entire solution to the equation

$$
\begin{aligned}
& \nabla \cdot\left(\frac{\nabla F}{\sqrt{1+|\nabla F|^{2}}}\right)=\frac{1}{\sqrt{1+|\nabla F|^{2}}} \text { in } \mathbb{R}^{N} . \\
& F(r, \theta)=r^{3} g(\theta)+r^{2} \beta(\theta)+O(r) \quad \text { as } r \rightarrow \infty
\end{aligned}
$$

Replacing $F_{\varepsilon}(x)$ with $\varepsilon^{-1} F_{\varepsilon}(\varepsilon x)$ we are reduced to finding a non-convex solution F_{ε} of the equation

$$
\nabla \cdot\left(\frac{\nabla F}{\sqrt{1+|\nabla F|^{2}}}\right)=\frac{\varepsilon}{\sqrt{1+|\nabla F|^{2}}} \quad \text { in } \mathbb{R}^{N}
$$

When $\varepsilon=0$ this is the equation of minimal graph:

$$
\nabla \cdot\left(\frac{\nabla F}{\sqrt{1+|\nabla F|^{2}}}\right)=0 \quad \text { in } \mathbb{R}^{N-1}
$$

The method: construction of ordered sub and super solutions for the equation

$$
M[F]:=\nabla \cdot\left(\frac{\nabla F}{\sqrt{1+|\nabla G|^{2}}}\right)-\frac{\varepsilon}{\sqrt{1+|\nabla F|^{2}}}=0 \quad \text { in } \mathbb{R}^{8},
$$

The equation $M[\bar{F}+\varphi]=0$ is at main order, for r large,

$$
L_{\bar{F}}[\varphi]=\frac{\varepsilon}{\sqrt{1+\left|\nabla F_{0}\right|^{2}}} \approx \frac{\varepsilon p_{1}(\theta)}{r^{2}}
$$

We can solve by barriers equations of the form

$$
L_{\bar{F}}[\varphi]=\mathrm{g}=O\left(r^{-4-\sigma}\right)
$$

where $\sigma>0$. The barrier procedure however does not work for decays $O\left(r^{-4}\right)$ or slower, and the main error term only has decay $O\left(r^{-2}\right)$.

To overcome this difficulty, we need to improve the approximation:
There is a smooth function $\varphi_{*}(r, \theta)=O\left(\varepsilon r^{2}\right)$ as $r \rightarrow \infty$ such that for some $\sigma>0$

$$
M\left[F+\varphi_{*}\right]=O\left(r^{-4-\sigma}\right)
$$

The function $\varphi_{*}(r, \theta)$ is found by setting first

$$
\varphi_{*}(r, \theta)=\varepsilon \varphi_{1}(r, \theta)+\varepsilon^{2} \varphi_{2}(r, \theta)+\varepsilon^{3} \varphi_{2}(r, \theta)+\cdots
$$

and solving (explicitly, up to fast decaying terms) the linear equations for the first 3 coefficients (which at main order separate variables).

Neck-connection

Near the Simons cone (the "neck part"), we use entire solutions to the heat equation to connect: we need to find an entire solution to the heat equation

$$
h_{t}-h_{x x}=0 ; x>1 ;-\infty<t<+\infty
$$

such that

$$
\begin{aligned}
& h(x ; t) \sim t^{\frac{2}{3}} \text { as } t \rightarrow+\infty \\
& h(x ; t) \sim-t^{\frac{2}{3}} \text { as } t \rightarrow-\infty
\end{aligned}
$$

This and a refinement of the asymptotic behavior of $\bar{F}-F_{0}$ yields the result.

Thanks for your attention!

