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The minimal surface equation

HΓ := ∇ ·
(

∇F√
1 + |∇F |2

)
= 0 in Ω ⊂ RN−1.

Γ = {(x ′, F (x ′)) ∈ RN−1 × R / x ′ ∈ Ω ⊂ RN−1}
is a minimal surface (minimal graph) in RN

Euler-Lagrange equation for the area functional

A(Γ) =

∫

Ω

√
1 + |∇F |2 dx ′



Problem (Bernstein, 1910): Are all (entire) solutions of the
minimal surface equation

HΓ := ∇ ·
(

∇F√
1 + |∇F |2

)
= 0 in RN−1.

just linear functions F (x ′) = a · x + b?

Or: Is an entire minimal graph in RN necessarily a hyperplane?



True for N ≤ 8:

• Bernstein (1910), Fleming (1962) N = 3

• De Giorgi (1965) N = 4

• Almgren (1966), N = 5

• Simons (1968), N = 6, 7, 8.



False for N ≥ 9:

• Bombieri-De Giorgi-Giusti found a counterexample
(Invent Math 1969).



The BDG minimal graph:

Explicit construction by super and sub-solutions, N = 9, of a
non-trivial solution of

∇ ·
(

∇F√
1 + |∇F |2

)
= 0 in R8.

F : R4 × R4 → R, (u, v) 7→ F (|u|, |v|).
In addition, F (|u|, |v|) > 0 for |v| > |u| and

F (|u|, |v|) = −F (|v|, |u|).



Polar coordinates:

|u| = r cos θ, |v| = r sin θ, θ ∈ (0,
π

2
)

We have that for large r ,

F (r , θ) ≈ F0(r , θ) = r3g(θ)

g > 0 in (
π

4
,
π

2
], g(

π

2
− θ) = −g(θ), g ′(

π

2
) = 0.

g(θ) ∼ cos(2θ)

and g is such that

∇ ·
( ∇F0

|∇F0|
)

= 0 in R8.

Equivalent to an ODE for g



21g sin3 2θ√
9g2 + g ′2

+

(
g ′ sin3 2θ√
9g2 + g ′2

)′
= 0 in

(π

4
,
π

2

)
,

g
(π

4

)
= 0 = g ′

(π

2

)
.

This problem has a solution g > 0 in (π
4 , π

2 ].





Asymptotic behavior of F

Asymptotic behavior of BDG surface x9 = F (r , θ), θ ∈ (π
4 , π

2 ):
σ ∈ (0, 1)

F (r , θ) = r3g(θ) + O(r−σ) as r → +∞.

(del Pino, Kowalczyk, Wei, 2011)

F (r , θ) = r3g(θ) + O(r−1) as r → +∞.

(Daskalopoulous, del Pino, Davila, Wei, 2014)



H ′(F0)[φ] = L(φ) = ∇ ·
(

∇φ√
1 + |∇F0|2

− (∇F0 · ∇φ)∇F0

(1 + |∇F0|2) 3
2

)
.

Degenerate in the direction of ∇F0.

Key idea: New Orthogonal Coordinate System

t = F0 = r3g(θ)

s = (
r7 sin3(2θ)gθ

56
√

9g2 + g2
θ

)
1
7

These coordinates correspond to “geographical” orthogonal
coordinates for the graph of F0. The coordinate t is simply its
height and s measures a weighted length along the level sets.



Variation #1: the Allen-Cahn equation, De Giorgi’s
conjecture

(AC) ∆u + u − u3 = 0 in Rn

Euler-Lagrange equation for the energy functional

J(u) =
1

2

∫
|∇u|2 +

1

4

∫
(1− u2)2

u = +1 and u = −1 are global minimizers of the energy
representing, in the gradient theory of phase transitions, two
distinct phases of a material. Problem: to find solutions where the
two phases ±1 coexist.



The case N = 1.
The function

w(t) := tanh

(
t√
2

)

connects monotonically −1 and +1 and solves

w ′′ + w − w3 = 0, w(±∞) = ±1, w ′ > 0.

For any p, ν ∈ RN , |ν| = 1, the functions

u(x) := w(z), z = (x − p) · ν

solve equation (AC). z = normal coordinate to the hyperplane
through p, unit normal ν.



De Giorgi’s conjecture (1978): Let u be a bounded solution of
equation

(AC) ∆u + u − u3 = 0 in RN ,

which is monotone in one direction, say ∂xN
u > 0. Then, at

least when N ≤ 8, there exist p, ν such that

u(x) = w( (x − p) · ν).

This statement is equivalent to:

At least when N ≤ 8, all level sets of u, [u = λ] must be
hyperplanes.



De Giorgi’s Conjecture: u bounded solution of (AC), ∂xN
u > 0

then level sets [u = λ] are hyperplanes.

• True for N = 2. Ghoussoub and Gui (Math Ann 1998).

• True for N = 3. Ambrosio and Cabré (JAMS 2000).

• True for 4 ≤ N ≤ 8 Savin (Ann of Math 2009), if in addition

lim
xN→±∞

u(x ′, xN) = ±1 for all x ′ ∈ RN−1.

(A new proof by Kelei Wang, Arxiv 2014)



Connection between solutions of (AC) and minimal surfaces arises
(Modica-Mortola, 1977).

In entire space (AC) is equivalent to

ε2∆u + (1− u2)u = 0 in RN (AC )ε

A sequence of solutions to (AC )ε in a bounded domain, which are
local minimizers and have suitably bounded energy must approach
a function that takes only the values ±1 in two complementary
regions separated by a (generalized) minimal surface.



We take the opposite view:

Given an embedded minimal surface Γ in RN that splits its
complement into two components Ω± we want to find uε such that

ε2∆u + (1− u2)u = 0 in RN (AC )ε

and uε → ±1 in Ω±.

For Γ a BDG graph in R9 we find:



Theorem (del Pino, Kowalczyk, Wei; Ann. of Math 2011)

Let Γ be a BDG minimal graph in R9, ν its upward unit normal.
For all small ε > 0, there exists a bounded solution uε of (AC )ε,
monotone in the x9-direction, with

uε(x) = tanh

(
z√
2ε

)
+ O(ε), x = y + zν(y), y ∈ Γ, |z | < δ,

lim
x9→±∞

uε(x
′, x9) = ±1 for all x ′ ∈ R8.

uε is a “counterexample” to De Giorgi’s conjecture in dimension 9
(hence in any dimension higher).



The infinite dimensional gluing method:

Local coordinates near Γ:

x = y + zν(y), y ∈ Γ, |z | < δ

Then

∆x = ∂zz + ∆Γz − HΓz (y) ∂z

Γz := {y + zν(y) / y ∈ Γ}.
∆Γz is the Laplace-Beltrami operator on Γz (applied to functions
of y) and HΓz (y) its mean curvature. Let k1, . . . , k8 be principal
curvatures of Γ. Then

HΓz =
8∑

i=1

ki

1− zki



Let f (u) = u − u3 the equation

S(u) := ε2∆u + f (u) = 0 in R9

becomes, for

u(y , z) := u(x), x = y + zν(y), y ∈ Γε, |z | < δ.

S(u) = ε2(∂2
z u + ∆Γz u − HΓz (y) ∂zu) + f (u) = 0.

For a small function h defined on Γ (to be determined) we set

u0(y , z) = w
(z

ε
+ εh(y)

)

where w(t) = tanh(t/
√

2), so that w ′′(t) + f (w(t)) = 0



u0(y , z) = w(t), t = z
ε − εh(y). We compute the error

S(u0) = ε4|∇Γz h(y)|2w ′′(t)− w ′(t)(ε3∆Γz h(y) + εHΓz (y))

Since HΓz =
∑8

i=1
ki

1−kiz
, HΓ = 0, z = ε(t + εh), we get

εHΓz (y) = ε2(t + εh(y))
8∑

i=1

ki (y)2

︸ ︷︷ ︸
|AΓ(y)|2

+ε3(t + εh(y))2
8∑

i=1

k3
i (y)+ · · ·

S(u0) = −ε3[(∆Γh+|AΓ|2h) w ′+
8∑

i=1

k3
i (y)t2w ′]−ε2|AΓ|2tw ′+h.o.t



We want φ so that

0 = S(u0 + φ(t, y)) ≈ ε2∆Γφ + φtt + f ′(w(t))φ + S(u0)

Writing φ = ε2φ2(t, y) + ε3φ3(t, y) + · · · we formally find

∂2
t φ2 + f ′(w(t))φ2 = |AΓ(y)|2tw ′(t)

∂2
t φ3 + f ′(w(t))φ3 = (∆Γh + |AΓ|2h) w ′ +

8∑

i=1

k3
i (y)t2w ′

Need solvability conditions:

ψ′′(t) + f ′(w(t))ψ = p(t) ∈ L∞(R)

has a bounded solution if and only if
∫
R pw ′dt = 0. Need a

condition in h:



To solve for φ3 need that

(∆Γh + |AΓ|2h)

∫ ∞

−∞
|w ′|2dt +

8∑

i=1

k3
i

∫ ∞

−∞
t2|w ′|2dt = 0 ∀y ∈ Γ

This determines h:

∆Γh + |AΓ|2h =
8∑

i=1

k3
i (y) = g(y)

The Jacobi operator of Γ can be accurately analyzed thanks to the
precise asymptotics we have for Γ. In particular we have at main
order g(y) = α(θ)/r3 and we can essentially solve by a function of
the form h = β(θ)/r .



An important example for N = 3: finite Morse index
solutions.

Theorem (del Pino, Kowalczyk, Wei (JDG 2013))

Let Γ be a complete, embedded minimal surface in R3 with finite
total curvature:

∫
Γ |K | < ∞,K Gauss curvature.

If Γ is non-degenerate then for small ε > 0 there is a solution uε to
(AC )ε with

uε(x) ≈ w(z/ε), x = y + zν(y).

In addition i(uε) = i(Γ) where i denotes Morse index.

Examples: nondegeneracy and Morse index are known for the catenoid
and Costa-Hoffmann-Meeks surfaces (Nayatani (1990), Morabito,
(2008)).



Γ = a catenoid: ∃ uε(x) = w(z) + O(ε), x = y + zν(y).

uε axially symmetric: uε(x) = uε(
√

x2
1 + x2

2 , x3), x3 rotation axis

coordinate. i(uε) = 1



Γ = CHM surface genus ` ≥ 1:

∃ uε(x) = w(z/ε) + O(ε), x = y + zν(y). i(uε) = 2` + 3.



The above gluing procedure suggests the following correspondence

Study of Entire Solutions of
Allen-Cahn Equation
∆u + u − u3 = 0

in RN

←→ Theory of
Minimal Surfaces



It is attempting to think about

∆u + u = u3 = 0 ∼====∼ minimal surfaces

but this is not true: Let N ≥ 4 and consider the N-dimensional
catenoid:

F = F (r), ∇(
∇F√

1 + |∇F |2 ) = 0,

F ∼ 1 + O(r2−N)

It is known that the N−dimensional catenoid has Morse index one.

Agudelo, del Pino, Wei, (J. Math. Pures Appl 2015): For every
N ≥ 4 and any sufficiently small ε > 0 there exist a solution uε to
Allen-Cahn equation with {uε = 0} being the largely dilated
catenoid. For ε > 0 small and for dimensions 4 ≤ N ≤ 10 the
Morse index of uε = ∞.



Variation # 2: Overdetermined semilinear equation in an
epigraph
A classical application of the method of moving planes was by
Serrin in 1971. He considered the following overdetermined
problem: Let Ω be a bounded domain and u be a solution of

(S)





∆u + f (u) = 0 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω
∂u
∂ν = Constant on ∂Ω

Then Ω must be a ball.



Serrin’s Overdetermined Problem

We reformulate Serrin’s problem: Find a domain Ω such that there
exists a solution u to

(S)





∆u + f (u) = 0 in Ω,
u = 0 on ∂Ω
∂u
∂ν = Constant on ∂Ω

Serrin’s result: The only bounded domain is ball.



Serrin’s proof was based on the Alexandrov reflection principle,
introduced in 1956 by Alexandrov to prove the following famous
result:

A compact, connected, embedded hypersurface in RN whose mean
curvature is constant, must necessarily be an Euclidean sphere.

The reflection maximum principle based procedure was used in
1979 by Gidas-Ni-Nirenberg to derive radial symmetry results for
positive solutions of semilinear equations. The reflection principle,
named after Gidas-Ni-Nirenberg as the moving plane method, has
become a standard and powerful tool for the analysis of
symmetries of solutions of nonlinear elliptic equations.



Serrin’s Problem in Unbounded Domains

In this talk, we consider Serrin’s problem when Ω is unbounded.
When f (u) = 0,





∆u = 0 in Ω,
u = 0 on ∂Ω
∂u
∂ν = Constant on ∂Ω

this kind of domains are called exceptional domains and the
function u is called root function.
Helen, Hauswirth, Pacard (PJM-2010) derived Weierstrass
representation for such domains in R3.



In this talk, we consider f 6= 0 and Ω is unbounded.
A natural situation to consider is epigraphs:

Ω = {xN > ϕ(x
′
)}

where x
′
= (x1, ..., xN−1).



With this notation, Serrin’s problem becomes

(S)





∆u + f (u) = 0 in Ω = {xN > ϕ(x
′
)}

u > 0 in {xN > ϕ(x
′
)},

u = 0 on ∂Ω = {xN = ϕ(x
′
)},

∂u
∂ν = C on ∂Ω = {xN = ϕ(x

′
)}



An Obvious Solution: ϕ = 0, u = u(xN) which satisfies an ODE

u
′′

+ f (u) = 0, u(0) = 0, u
′
(0) = C

The question is then: is this the only solution?

Berestycki-Cafferalli-Nirenberg Conjecture (1997):

The epigraph {xN > ϕ(x
′
)} is a half plane and u depends on xN only.



Previous Results

Yes, if ϕ satisfies

lim
|x ′ |→+∞

[ϕ(x
′
+ τ)− ϕ(x

′
)] = 0,∀τ ∈ RN−1

Berestycki, Cafferalli, Nirenberg (CPAM 1997)

Yes, if ϕ is globally Lipschitz, and N = 2, 3

Farina, Valdinoci (ARMA-2010)



Theorem (del Pino, Pacard, Wei, Arxiv 2014, to appear in
Duke Math Journal)

In Dimension N ≥ 9 there exists a solution to Problem (S) with
f (u) = u − u3, in an entire epigraph Ω which is not a half-space.



As before we consider the problem introducing a scaling parameter,

ε2∆u + f (u) = 0, u > 0 in Ω, u ∈ L∞(Ω) (S)ε

u = 0, ∂νu = constant on ∂Ω

The proof consists of finding the region Ω whose boundary is

∂Ω = {y + ε2h(y)ν(y) / y ∈ Γ}.

for h a small decaying function on Γ, with Γ a BDG graph.
The construction carries over for more general surfaces Γ

Let us set

u0(y , z) = w
(z

ε
− εh(y)

)
= w(t), x = y+zν(y) Ω = {t > 0}.



We look for a solution in t > 0 with u(t, y) = w(t) + φ(t, y).
Then at main order we should have

∂ttφ + ε2∆Γφ + f ′(w(t))φ = E

φ(0, y) = 0, φt(0, y) = α ∀y ∈ Γ

for a certain constant α.



E = ∆u0 + f (u0) =

ε4|∇Γz h(y)|2w ′′(t)− [ε3∆Γz h(y) + εHΓz (y)]w ′(t),

E = εHΓ(y) w ′(t) + O(ε2)

Integrating the equation for φ against w ′ we find

−w ′(0)φt(0, y) =

∫ ∞

0
E (y , t)w ′(t)dt = −εHΓ(y)

∫ ∞

0
w ′(t)2dt+O(ε2)

We need
HΓ ≡ H = constant

Namely Γ should be a constant mean curvature surface. Then
we solve imposing α = ε(H/w ′(0))

∫∞
0 w ′(t)2dt.



Let us assume that that Γ is a smooth surface such that

HΓ ≡ H = constant

The approximation can then be improved as follows:

For x = y + ε(t + εh(y)), we look now for a solution for t > 0 with

u(t, y) = w(t) + φ(t, y), φ(0, y) = 0.



Imposing α = (H/w ′(0))
∫∞
0 w ′(t)2dt. we can solve

ψ′′ + f ′(w(t))ψ = Hw ′(t), t > 0, ψ(0) = 0, ψ′(0) = α

which is solvable with ψ bounded. Then the approximation
u1(x) = w(t) + εψ(t) produces a new error of order ε2. And the
equation for φ = εψ(t) + φ1 now becomes

∂ttφ1 + ∆Γεφ1 + f ′(w(t))φ1 = E1 = O(ε2)

φ1(0, y) = 0, φ1,t(0, y) = 0

Then we proceed to the adjustment of h.



Let us take the function h to have the following form:

h(y) = h0 + εh1 + ε2h2 + ε3h3

Then we find, by successive approximation

∆Γh0 + |AΓ|2h0 =
8∑

i=1

k2
i , h0 = c0

∆Γh1 + |AΓ|2h1 =
8∑

i=1

k3
i

∆Γh2 + |AΓ|2h2 =
8∑

i=1

k4
i

∆Γh2 + |AΓ|2h3 = |AΓ|4

where J [h] = ∆Γh + |AΓ|2 is the Jacobi operator.



At ∞, ∆Γ ∼ ∆, |AΓ|2 ∼ r−2. Thus we have a Hardy Type operator

J ∼ ∆ +
a(θ)

r2

We will show that J has indicial roots r−2 and r−3. On the other
hand,

ki = O(
1

r
)

∑

i

k3
i = O(

1

r3
)

∑

i

k4
i = O(

1

r4
)

|AΓ|4 = O(
1

r4
)



A new linear problem: Neumann to Dirichlet Map

Let us write R9
+ := R8 × (0,∞). We consider the problem of

finding, for given functions g(y , t), β(y), a solution (α, φ) to the
problem

∆φ + f ′(w(t))φ =α(y) w ′(t) + g(y , t) in R9
+,

φ(y , 0) = 0 for all y ∈ R8,

∂tφ(y , 0) =β(y) for all y ∈ R8.



The principle behind Theorem 2 applies, more generally, to
domains enclosed by a large dilation of an embedded CMC surface,
provided that sufficient information about the surface (such as
nondegeneracy) is available.

Theorem (del Pino, Pacard, Wei 2014)

Assume that Ω0 ⊂ M is a smooth bounded domain whose
boundary ∂Ω0 is a non degenerate hypersurface whose mean
curvature is constant. Then, Serrin’s overdetermined problem is
solvable in ε−1ΩO

Delaunay surfaces, etc.



Variation #3: Translating solutions to the mean curvature
flow. Σ(t) in RN+1 orientable, embedded evolves by mean
curvature if it is parametrized by a family of diffeormorphisms of
Σ(0) Y (·, t) where

∂Y

∂t
= HΣ(t)(Y )ν(Y ) (MCF )

An eternal solution is one defined at all times t ∈ (−∞,∞). MCF
typically develops singularities in finite time. An eternal solution
usually arises as a limit after suitable scalings, blowing-up of the
solution near a singularity.



Simplest eternal solutions: translating solutions,
A self-translating solution of mean curvature flow with speed
c ∈ R and direction e ∈ SN−1 is a solution to MCF of the form

Σ(t) = cte + Σ(0) .

Graphical self-translating solution e = eN+1

F (x , t) = ct + F (x)



∇ ·
(

∇F√
1 + |∇F |2

)
=

c√
1 + |∇F |2 in RN . (MC )c

A Bernstein problem for (MC )c :

(B) Question by X.J. Wang (2009) Is it true that entire solutions
of (MC )c for c ≥ 0 need to be convex?

This statement for c = 0 reduces to Bernstein’s problem: If F
solving (MC )c was necessarily convex, then so would be −F .
Hence F would be a linear affine function.

Connected to B. White’s result (JAMS 2004): if N < 7 blowing up
of a mean convex flow around a singularity leads to a convex
surface.

True for N = 2 (X.-J. Wang Ann. of Math 2011). Solutions are
radial.



Examples of self-translating graphs:

I A unique radially symmetric solution (for c = 1, N ≥ 2)

F (|x |) =
|x |2

2(N − 1)
− log |x |+ O(|x |−1) as |x | → ∞.

I X.-J. Wang Ann. of Math 2011: Examples for N ≥ 3 of
convex, non-radial solutions.



The answer to (B) is negative for c > 0 and N ≥ 8, in analogy to
the result of Bombieri, De Giorgi and Giusti:

Theorem (Daskalopoulos, Dávila, del Pino, Wei (2014))

Assume that N ≥ 8. Then there exists a non-convex entire
solution to the equation

∇ ·
(

∇F√
1 + |∇F |2

)
=

1√
1 + |∇F |2 in RN .

F (r , θ) = r3g(θ) + r2β(θ) + O(r) as r →∞.



Replacing Fε(x) with ε−1Fε(εx) we are reduced to finding a
non-convex solution Fε of the equation

∇ ·
(

∇F√
1 + |∇F |2

)
=

ε√
1 + |∇F |2 in RN . (MCG )ε

When ε = 0 this is the equation of minimal graph:

∇ ·
(

∇F√
1 + |∇F |2

)
= 0 in RN−1



The method: construction of ordered sub and super solutions for
the equation

M[F ] := ∇ ·
(

∇F√
1 + |∇G |2

)
− ε√

1 + |∇F |2 = 0 in R8,



The equation M[F̄ + ϕ] = 0 is at main order, for r large,

LF̄ [ϕ] =
ε√

1 + |∇F0|2
≈ εp1(θ)

r2

We can solve by barriers equations of the form

LF̄ [ϕ] = g = O(r−4−σ).

where σ > 0. The barrier procedure however does not work for
decays O(r−4) or slower, and the main error term only has decay
O(r−2).



To overcome this difficulty, we need to improve the approximation:

There is a smooth function ϕ∗(r , θ) = O(εr2) as r →∞ such that
for some σ > 0

M[F + ϕ∗] = O(r−4−σ).

The function ϕ∗(r , θ) is found by setting first

ϕ∗(r , θ) = εϕ1(r , θ) + ε2ϕ2(r , θ) + ε3ϕ2(r , θ) + · · ·

and solving (explicitly, up to fast decaying terms) the linear
equations for the first 3 coefficients (which at main order separate
variables).



Neck-connection

Near the Simons cone (the ”neck part”), we use entire solutions to
the heat equation to connect: we need to find an entire solution to
the heat equation

ht − hxx = 0; x > 1;−∞ < t < +∞

such that

h(x ; t) ∼ t
2
3 as t → +∞

h(x ; t) ∼ −t
2
3 as t → −∞

This and a refinement of the asymptotic behavior of F̄ − F0 yields
the result.



Thanks for your attention!


