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Summary of results

Recall the following remarkable result.

Theorem (Atiyah-Hirzebruch, 1970)

Let N be a compact, connected even dimensional manifold and
K be a compact connected Lie group acting smoothly and
non-trivially on N. Suppose also that N has a K -invariant Spin
structure. Then the equivariant index of the Dirac operator on N
vanishes in the representation ring of K ,

IndexK (∂/ N) = 0 ∈ R(K ). (0.1)

In particular,
∫

N
Â(N) = 0.

Their result then inspired many, especially Witten who studied
two-dimensional quantum field theories and the index of the
Dirac operator on free loop space LN.
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Summary of results

Witten related this index to the rigidity of certain Dirac-type
operators on N and the elliptic genus, which was proved in
[Bott-Taubes], [Taubes]. Since then, there have been various
generalisations to many interesting new variants, some by
researchers in the audience.

Our goal in this note is to extend the theorem to the new
non-compact setting.

More precisely, let M be a complete Riemannian manifold, on
which a connected Lie group G acts properly and isometrically.
Suppose M/G is compact. Suppose M has a G-equivariant
Spin-structure. Let

IndexG(∂/M) ∈ K•(C∗r G)

be the equivariant index of the associated Spin-Dirac operator.
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Summary of results

Here K•(C∗r G) is the K -theory of the reduced group C∗-algebra
of G, and IndexG denotes the analytic assembly map used in
the Baum–Connes conjecture [Baum-Connes-Higson],
[Kasparov]. If G is compact, then K•(C∗r G) = R(G), and the
analytic assembly map is the usual equivariant index.

Atiyah and Hirzebruch’s result generalises as follows.

Theorem (Hochs-VM)
If there is a point in M whose stabiliser in G is not a maximal
compact subgroup of G, then

IndexG(∂/M) = 0,

if G has a property (*).
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Summary of results

From this theorem, we will deduce vanishing of characteristic
classes related to the Â class, as well as an application of it. In
another Corollary, we give an equivalent statement of Theorem
(Hochs-VM) that does not use C∗r G or the analytic assembly
map.

There are many group actions that satisfy the hypotheses of
Theorem (Hochs-VM). Indeed, let K < G be a maximal
compact subgroup, and suppose that G has the property
mentioned in Theorem (Hochs-VM). Then if K acts on a
compact Spin-manifold N as in the Atiyah-Hirzebruch Theorem,
then Theorem (Hochs-VM) applies to the action by G on the
fibred product G ×K N, as we will see.
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Summary of results

If K = S1, then it is proved in the theorem in Section 2.3 in
[Atiyah-Hirzebruch] that any compact oriented manifold X with∫

X
Â(X ) = 0 has the property that mX (for some m ∈ N) is

oriented cobordant to a compact Spin manifold N which has a
non-trivial S1-action on each of its components. Then the
action by K on N satisfies the hypotheses of the
Atiyah-Hirzebruch Theorem, so that the to the action by G on
G ×K N satisfies the conditions of Theorem (Hochs-VM).

Note that if N is a compact Spin-manifold with the trivial
K -action, the action by G on G/K × N does not satisfy the
hypotheses of Theorem (Hochs-VM): all stabilisers are
conjugate to K .
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Outline of proof

Let M be a smooth manifold, and let G be a connected Lie
group acting properly and co-compactly on M. Then roughly
speaking, the equivariant K-homology K G

• (M) consists of
equivalence classes of G-invariant elliptic operators, for
example the Dirac operator associated to a G-invariant
Riemannian metric which is G-spin.

Kasparov’s induction to the crossed product is a certain
canonical morphism,

jG : K G
• (M)→ KK•(C0(M)o G,C∗r (G)).

where KK•(A,C) is the K-homology of A and KK•(C,A) is the
K-theory of A. Moreover there is an intersection product,

KK•(C,A)× KK•(A,B)→ KK•(C,B)
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There is a dempotent in C0(M)o G defined as,

e(g, x) =
√

c(x)c(g−1.x), x ∈ M,g ∈ G,

where c is a cutoff function, that is a non-negative function
satisfying for all x ∈ M,∫

G
c(g−1x)dg = 1

Then [e] ∈ KK0(C,C0(M)oG) is independent of the choice of c
by convexity.

Finally by composing induction to the crossed product and the
intersection product with [e], we get the equivariant index

IndexG(ξ) = jG(ξ)⊗C0(M)oG [e] ∈ K•(C∗r (G)).
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Outline of proof

Let M be a smooth manifold, and let G be a connected Lie
group acting properly on M. Let K < G be maximal compact.

Theorem (Abels slice theorem for proper actions)
There is a smooth, K -invariant submanifold N ⊂ M, such that
the map [g,n] 7→ gn is a G-equivariant diffeomorphism

G ×K N ∼= M (0.2)

Here the left hand side is the quotient of G × N by the action by
K given by

k · (g,n) = (gk−1, kn),

for k ∈ K , g ∈ G and n ∈ N.

We call (0.2) an associated Abels fibration of M, as it is a fibre
bundle over G/K with fibre N. From now on, fix a choice of N
as in Abels’Theorem.
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Outline of proof

The fixed point set NK of the action by K on N is related to the
proper action by G on M in the following way.

Lemma

One has
M(K ) = G · NK ∼= G/K × NK ,

where M(K ) = set of points in M with stabilisers conjugate to K .

Proof.
Let m ∈ M(K ), and write m = [g,n] for g ∈ G and n ∈ N, under
the correspondence (0.2). Then Gm = gKng−1. So Gm is
conjugate to K if and only if Kn is. Since Kn < K , it is conjugate
to K precisely if it equals K .
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Outline of proof
Now fix a K -invariant inner product on the Lie algebra g of G,
and let p ⊂ g be the orthogonal complement to the Lie algebra k

of K . Suppose Ad : K → SO(p) lifts to

Ãd : K → Spin(p). (0.3)

This is always possible if one replaces G by a double cover.

Indeed, consider the diagram

K̃ Ãd //

πK

��

Spin(p)

π 2:1
��

K Ad // SO(p),

where

K̃ := {(k ,a) ∈ K × Spin(p);Ad(k) = π(a)};

πK (k ,a) := k ; Ãd(k ,a) := a,

for k ∈ K and a ∈ Spin(p).
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Ãd : K → Spin(p). (0.3)

This is always possible if one replaces G by a double cover.
Indeed, consider the diagram

K̃ Ãd //
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Then for all k ∈ K ,

π−1
K (k) ∼= π−1(Ad(k)) ∼= Z2,

so πK is a double covering map. Since G/K is contractible, K̃ is
the maximal compact subgroup of a double cover of G.

This explains the relevant assumption in Theorem (Hochs-VM).
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Outline of proof

Suppose M has a G-equivariant Spin-structure PM → M. In
[Hochs-VM], an induction procedure of equivariant
Spinc-structures from N to M is described, and which can be
adapted to the Spin setting, which we will denote by IndM

N .

We will use the fact that any G-equivariant Spin-structure on M
can be obtained via this induction procedure.

Lemma

There is an induced K -equivariant Spin-structure PN → N such
that

PM = IndM
N (PN).
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Suppose M/G is compact.
The quantisation commutes with induction techniques of
[Hochs][Hochs-VM], suitably adapted to the Spin-setting, allow
us to deduce our main result from Atiyah and Hirzebruch’s
Theorem.

This involves the

Theorem (Chabert-Echterhoff-Nest)
The Dirac induction map

D-IndG
K : R(K )−→K•(C∗r G),

is an isomorphism for almost connected Lie groups

We will use the fact that it relates the equivariant indices of the
Spin-Dirac operators ∂/ N on N and ∂/M on M, associated to the
Spin-structures PN and PM , respectively, to each other.
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Theorem (Spin Quantisation commutes with Induction)
The following diagram commutes:

K G
• (M)

IndexG // K•(C∗G)

K K
• (N)

K-IndG
K

OO

IndexK // R(K ).

D-IndG
K

OO

That is,

D-IndG
K
(
IndexK (∂/ N)

)
= IndexG(∂/M) ∈ K•(C∗r G).

Here K K
• (N) and K G

• (M) are the equivariant K -homology
groups of N and M, respectively. Then there is a map

K-IndG
K : K K

• (N)→ K G
• (M), with K-IndG

K [∂/ N ] = [∂/M ].
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Proof of Theorem (Hochs-VM). In the setting of Theorem
(Hochs-VM)., let N ⊂ M be as in Abels’ Theorem. Consider the
induced K -equivariant Spin-structure on N. By Proposition
(Spin Quantisation commutes with Induction) we have

IndexG(∂/M) = D-IndG
K
(
IndexK (∂/ N)

)
.

The stabiliser of a point m ∈ M is a maximal compact subgroup
of G if and only if m ∈ M(K ). Hence, by Lemma 4, the condition
on the stabilisers of the action by G on M is equivalent to the
action by K on N being nontrivial. So the Atiyah-Hirzebruch
Theorem implies that

IndexK (∂/ N) = 0,

and the result follows. �



Outline of proof

Proof of Theorem (Hochs-VM). In the setting of Theorem
(Hochs-VM)., let N ⊂ M be as in Abels’ Theorem. Consider the
induced K -equivariant Spin-structure on N. By Proposition
(Spin Quantisation commutes with Induction) we have

IndexG(∂/M) = D-IndG
K
(
IndexK (∂/ N)

)
.

The stabiliser of a point m ∈ M is a maximal compact subgroup
of G if and only if m ∈ M(K ). Hence, by Lemma 4, the condition
on the stabilisers of the action by G on M is equivalent to the
action by K on N being nontrivial. So the Atiyah-Hirzebruch
Theorem implies that

IndexK (∂/ N) = 0,

and the result follows. �



Consequences

Let c ∈ C∞c (M) be a cutoff function, that is a non-negative
function satisfying ∫

G
c(g−1m)dg = 1

for all m ∈ M.

Let τ : C∗G→ C be the von Neumann trace determined by

τ
(
R(f )∗R(f )

)
=

∫
G
|f (g)|2dg,

for f ∈ L1(G) ∩ L2(G), where R denotes the right regular
representation. This induces a morphism τ∗ : K•(C∗G)→ R.
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The following fact follows immediately from Theorem
(Hochs-VM) and Theorem 6.12 in [Hang Wang].

Corollary

Under the hypotheses of Theorem (Hochs-VM), one has

0 = τ∗(IndexG(∂/M)) =

∫
M

c · Â(M). (0.4)

Note that the right hand side of (0.4) is independent of the
choice of cutoff function c, cf. [Hang Wang].
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As an application of Corollary 8, one has the following
generalisation of the second theorem in Section 2.2 of
[Atiyah-Hirzebruch].

Corollary

Let M be a complete, connected, oriented Riemannian manifold

with w2(M) = 0 and suppose that
∫

M
c · Â(M) 6= 0. Then any

closed subgroup G (in the compact–open topology) of the
group of all orientation preserving isometries of M is a discrete
group, if there is a point in M whose stabiliser in G is not a
maximal compact subgroup of G.
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Proof.
In this setting, the Myer–Steenrod theorem implies that G is a
Lie group. The action on M by the identity component G0 of G
satisfies the conditions of Theorem (Hochs-VM). So if G0 is

nontrivial, then
∫

M
c · Â(M) = 0 by an earlier Corollary.

Let G be a connected Lie group acting properly on a manifold
M. Then by Abels’ Theorem, there is a proper equivariant
projection map p : M → G/K , where K is a maximal compact
subgroup of G. The map p∗ induced on K -homology relates the
equivariant indices on M and G/K by the diagram

K G
• (M)

IndexG //

p∗
��

K•(C∗r G).

K G
• (G/K )

IndexG

∼=
88
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Consequences

It was shown in [Chabert-Echterhoff-Nest], Theorem 1.1, that
the equivariant index on G/K defines an isomorphism
K G
• (G/K ) ∼= K•(C∗r G). Using this, we deduce an equivalent

statement of Theorem (Hochs-VM) that does not use C∗r G or
the equivariant index.

Corollary

Under the hypotheses of Theorem (Hochs-VM), one has

p∗[∂/M ] = 0 ∈ K G
• (G/K ).
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p∗[∂/M ] = 0 ∈ K G
• (G/K ).



Outlook and relation to elliptic and Witten genera

Define Âc(M;E) =

∫
M

c · Â(M)Ch(E) where c is a cutoff

function. Then it can be shown that Âc(M;E) is independent of
the choice of c.

Define the corresponding Witten type genus as

ϕc
W (M) = Âc(M;

∞⊗
n=1

Sqn(TM))λ(g) ∈ R[[q]]

where λ(g) =
∏∞

n=1(1− qn)4k and St(E) =
∑

j Sj(E)t j denote
the symmetric powers of E .
That is,

ϕc
W (M) =

(
Âc(M) + Âc(M;TM)q + · · ·

)
λ(g) ∈ R[[q]]
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Outlook and relation to elliptic and Witten genera

and more generally,

ϕc
W ,G(M) = IndexG(∂/M

∞⊗
n=1

Sqn(TM))λ(g) ∈ K•(C∗r (G))[[q]]

That is,

ϕc
W ,G(M) = (IndexG(∂/M) + IndexG(∂/M ⊗ TM)q + · · · )λ(g)

Then τ∗
(
ϕc

W ,G(M)
)
= ϕc

W (M), where τ : C∗r (G)→ C denotes
the von Neumann trace.

Conjecture
Under the hypotheses listed earlier, together with the
assumption that M is a G-string manifold, one has
ϕc

W ,G(M) = 0 = ϕc
W (M).
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