Rigidity Results for Elliptic PDEs

Mostafa Fazly
University of Alberta

Collaborators:

- Nassif Ghoussoub (UBC)
- Juncheng Wei (UBC-Chinese U Hong Kong)
- Yannick Sire (UMarseille)

Workshop on Partial Differential Equation and its Applications IMS-NSU

December 11, 2014

Outline

(1) Allen-Cahn equation
(2) Lane-Emden equation

Ennio De Giorgi

Research Area:

- Minimal Surfaces and Bernstein's problem
- Geometric Measure Theory
- Regularity of Solutions of Elliptic Equations (Hilbert's 19th problem with John Nash 56-57)
- 「-Convergence Theory

Awards:

- Caccioppoli Prize (1960)
- Wolf Prize (1990)

Quote:
If you can't prove your theorem, keep shifting parts of the conclusion to the assumptions, until you can.

Figure : 1928-1996

Allen-Cahn Equation

Allen-Cahn Equation:

$$
-\Delta u=u-u^{3} \text { in } \mathbb{R}^{n} .
$$

Euler-Lagrange equation for the energy functional:

$$
E(u)=\frac{1}{2} \int|\nabla u|^{2}+\frac{1}{4} \int\left(1-u^{2}\right)^{2}
$$

$u=1$ and $u=-1$ are global minimizers of the energy and representing, in the gradient theory of phase transitions, two distinct phases of a material.

$$
F(u)=-\frac{1}{4}\left(1-u^{2}\right)^{2}
$$

is called "double-well potential":

$$
F(+1)=F(-1)=0 \text { and } F(u) \neq 0 \text { if } u \neq \pm 1
$$

Example: In dimension one $w(x)=\tanh \left(\frac{x}{\sqrt{2}}\right)$ solves the equation and $w^{\prime}>0$ and w connects -1 to 1 that is $w(\pm \infty)= \pm 1$.

De Giorgi's conjecture

Ennio De Giorgi (1978) expected that the interface between the phases $u=1$ and $u=-1$ has to approach a minimal surface.
Bernstein's Conjecture: Any minimal surface in \mathbb{R}^{n} must be a hyperplane.
Equivalent to any entire solution of the form $x_{n}=F\left(x_{1}, \cdots, x_{n-1}\right)$ of

$$
\nabla \cdot\left(\frac{\nabla F}{\sqrt{1+|\nabla F|^{2}}}\right)=0 \text { in } \mathbb{R}^{n-1}
$$

must be a linear function that is $F\left(x_{1}, \cdots, x_{n-1}\right)=a \cdot\left(x_{1}, \cdots, x_{n-1}\right)+b$ for some $a \in \mathbb{R}^{n-1}$ and $b \in \mathbb{R}$.
True for $n \leq 8$: Bernstein (1910 Math Z), Fleming (1962 Math Palermo), De Giorgi (1965 Annali Pisa), Almgren (1966 Annals Math), Simons (1968 Annals Math).
False for $n \geq 9$: counterexample by Bombieri-De Giorgi-Giusti (1969 Invent Math).
This led him to state his conjecture.

De Giorgi's Conjecture (1978): Suppose that u is bounded and monotone (in one direction) solution of the Allen-Cahn equation

$$
-\Delta u=u-u^{3} \quad \text { in } \mathbb{R}^{n}
$$

Then, at least for $n \leq 8$, solutions are one-dimensional, i.e.
$u(x)=u^{*}((x-\nu) \cdot p)$ for some ν, p.
$\Longrightarrow u(x)=\tanh \left(\frac{x \cdot a-b}{\sqrt{2}}\right)$ where $b \in \mathbb{R},|a|=1$ and $a_{n}>0$.

- For $n=2$ by Ghoussoub-Gui (1997 Math Ann)
- For $n=3$ by Ambrosio-Cabré (2000 J. AMS)
- For $n=4,5$, if u is anti-symmetric, by Ghoussoub-Gui (2003 Annals Math)
- For $4 \leq n \leq 8$, if u satisfies the additional (natural) assumption

$$
\lim _{x_{n} \rightarrow \pm \infty} u\left(\mathbf{x}^{\prime}, x_{n}\right) \rightarrow \pm 1 . \text { Savin (2003 Annals Math) }
$$

2nd Proof: Wang (2014)

- Counterexample for $n \geq 9$, by del Pino-Kowalczyk-Wei (2008 Annals Math)
Note: In lower dimensions, it is proved for any nonlinearity $-\Delta u=f(u)$. For $n=2$ the same paper and for $n=3$ by Alberti-Ambrosio-Cabré (2001 Acta Appl. Math.)

Observations to prove the De Giorgi's conjecture

Consider PDE:

$$
-\Delta u=f(u) \quad x \in \mathbb{R}^{n}
$$

(1) Monotonicity \Longrightarrow Pointwise Stability \Longleftrightarrow Stability.

- Pointwise Stability: $\exists \phi>0$ that

$$
-\Delta \phi=f^{\prime}(u) \phi \quad \text { in } \mathbb{R}^{n} .
$$

- Stability (or Stability Inequality): if the second variation of the energy is non-negative:

$$
\int f^{\prime}(u) \zeta^{2} \leq \int|\nabla \zeta|^{2} \quad \forall \zeta \in C_{c}^{2}\left(\mathbb{R}^{n}\right)
$$

(2) Set $\phi:=\partial_{x_{n}} u$ and $\psi:=\partial_{x_{i}} u$, then the quotient $\sigma=\frac{\psi}{\phi}$ satisfies a linear equation $\operatorname{div}\left(\phi^{2} \nabla \sigma\right)=0$.
It is shown by Berestycki-Caffarelli-Nirenberg, Ambrosio-Cabre and Ghoussoub-Gui in 97-98 that if $\phi>0$ and

$$
\int_{B_{R}} \phi^{2} \sigma^{2}<R^{2}, \quad \forall R>1
$$

then $\sigma=0$.
Note: Is this optimal? Consider $R^{a_{n}}$ then

- $a_{n}<n$ where $n \geq 3$. Barlow (1998 Can J Math)
- $a_{n}<2+2 \sqrt{n-1}$ when $n \geq 7$. Ghoussoub-Gui (1998 Math Ann)
- IF $a_{n} \geq n-1$ then conjecture would establish in n-D.
- Modica's estimate:

$$
|\nabla u|^{2} \leq 2 F(u) \text { for bounded solutions of } \Delta u=f(u) \text { in } \mathbb{R}^{n}
$$

when $F^{\prime}=f$ and $F \geq 0$ by Modica (1980 CPAM).
Ex.: $|\nabla u|^{2} \leq \frac{1}{2}\left(u^{2}-1\right)^{2}$ for the Allen-Cahn equation.
Ex.: $|\nabla u|^{2} \leq 2(1-\cos u)$ for bd solutions of $\Delta u=\sin u$

- Monotonicity Formula:

$$
\Gamma_{R}=\frac{1}{R^{n-1}} \int_{B_{R}} \frac{1}{2}|\nabla u|^{2}+F(u)
$$

is nondecreasing in R.

- 2nd proof in $n=2$ by Farina-Sciunzi-Valdinoci (2008 Ann. Pisa) via

$$
\int_{\mathbb{R}^{n} \cap\{|\nabla u| \neq 0\}}\left(|\nabla u|^{2} \mathcal{A}^{2}+\left|\nabla_{T}\right| \nabla u| |^{2}\right) \eta^{2} \leq \int_{\mathbb{R}^{n}}|\nabla u|^{2}|\nabla \eta|^{2}
$$

For any $\eta \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$. How?

- Test stability on $|\nabla u| \eta$.
- Apply a geometric identity by Sternberg-Zumbrun (1998 ARMA): For any $w \in C^{2}$ and where $|\nabla w|>0$;

$$
\sum_{k=1}^{n}\left|\nabla \partial_{x_{k}} w\right|^{2}-|\nabla| \nabla w| |^{2}=|\nabla w|^{2}\left(\sum_{l=1}^{n-1} \kappa_{l}^{2}\right)+\left|\nabla_{T}\right| \nabla w| |^{2}
$$

κ_{l} are the principal curvatures of the level set of w.

- If the limit

$$
\lim _{x_{n} \rightarrow \pm \infty} u\left(\mathbf{x}^{\prime}, x_{n}\right) \rightarrow \pm 1 \quad \text { in } \mathbf{R}^{n-1}
$$

is uniform \Longrightarrow called Gibbon's conjecture and proved (1999) in all dimensions by Farina (Mat e Appli), Barlow-Bass-Gui (CPAM), Berestycki-Hamel-Monneau (Duke Math)

- Stability Conjecture: Let u be a bounded stable solution of Allen-Cahn equation. Then the level sets $u=\lambda$ are all hyperplanes.
- True in $n=2$ by Ambrosio-Cabre and Ghoussoub-Gui.
- False in $n=8$ by Pacard-Wei (2013 JFA)
- Classification is open in other dimensions.
- Fractional Laplacian case: $(-\Delta)^{s} u=f(u)$ and $s \in(0,1)$
- Existence when $n=1$ by Cabre-Sire (2009 Annales Poincare).
- For any s when $n=2$ by Sire-Valdinoci (2009 J FA).
- For any $s \in[1 / 2,1$) when $n=3$ by Cabre-Cinti (2012 DCDS).
- Open for other cases.

The proof strongly relies on the extension function given by Caffarelli-Silvestre (2007 CPDE), i.e.

$$
\left\{\begin{aligned}
\operatorname{div}\left(y^{1-2 s} \nabla u_{e}\right) & =0 \text { in } \mathbf{R}_{+}^{n+1}=\left\{x \in \mathbf{R}^{n}, y>0\right\} \\
-\lim _{y \rightarrow 0} y^{1-2 s} \partial_{y} u_{e} & =k_{s} f\left(u_{e}\right) \text { in } \partial \mathbf{R}_{+}^{n+1}
\end{aligned}\right.
$$

What about systems?

To extend the De Giorgi's conjecture to systems, what is the right system?
Consider the gradient system:

$$
\Delta u=\nabla H(u) \text { in } \mathbb{R}^{n}
$$

where $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is bounded and $H \in C^{2}\left(\mathbb{R}^{k}\right)$.
Euler-Lagrange equation for the energy functional:

$$
E(u)=\frac{1}{2} \int \sum_{i=1}^{k}\left|\nabla u_{i}\right|^{2}+\int\left(H(u)-\inf _{u} H(u)\right)
$$

Phase Transitions: Minimum points of H are global minimizers of the energy and representing distinct phases of k materials.
Example: For $k=2$ and $H(u, v)=u^{2} v^{2}$ the global minimizers are $u=0$ and $v=0$.
We need Monotonicity and Stability concepts for systems.

- H-Monotone:
(1) For every $i \in\{1, \cdots, k\}, u_{i}$ is strictly monotone in the x_{n}-variable (i.e., $\left.\partial_{x_{n}} u_{i} \neq 0\right)$.
(2) For $i<j$, we have

$$
H_{u_{i} u_{j}} \partial_{x_{n}} u_{i}(x) \partial_{x_{n}} u_{j}(x) \leq 0 \text { for all } x \in \mathbb{R}^{n} .
$$

This condition implies a combinatorial assumption on $H_{u_{i} u_{j}}$ and we call such a system orientable.

- Pointwise Stability: $\exists\left(\phi_{i}\right)_{i=1}^{k}$ non sign changing

$$
\Delta \phi_{i}=\sum_{j} H_{u_{i} u_{j}} \phi_{j}
$$

and $H_{u_{i} u_{j}} \phi_{j} \phi_{i} \leq 0$ for $1 \leq i<j \leq k$.

- Stability (or Stability Inequality):

$$
\sum_{i} \int_{\mathbb{R}^{n}}\left|\nabla \zeta_{i}\right|^{2}+\sum_{i, j} \int_{\mathbb{R}^{n}} H_{u_{i} u_{j}} \zeta_{i} \zeta_{j} \geq 0
$$

for every $\zeta_{i} \in C_{c}^{1}\left(\mathbb{R}^{n}\right), i=1, \cdots, k$.
Orientable systems: H-Monotonicity \Longrightarrow Pointwise Stability \Longleftrightarrow Stability.

De Giorgi type results for $\Delta u=\nabla H(u)$

Conjecture

Suppose $u=\left(u_{i}\right)_{i=1}^{k}$ is a bounded H-monotone solution, then at least in lower dimensions each component u_{i} must be one-dimensional.

Theorem (Fazly-Ghoussoub, Calc PDE 2013)

Positive answer to this conjecture for $n \leq 3$. Moreover, $\nabla u_{i}=C_{i, j} \nabla u_{j}$ where $C_{i, j}$ is a constant with opposite sign of $H_{u_{i} u_{j}}$.

Gradients are parallel via geometric Poincaré inequality:

$$
\begin{aligned}
\sum_{i} \int_{\mathbb{R}^{n}}\left|\nabla u_{i}\right|^{2}\left|\nabla \eta_{i}\right|^{2} \geq & \sum_{i} \int_{\mathbb{R}^{n} \cap\left\{\left|\nabla u_{i}\right| \neq 0\right\}}\left(\left|\nabla u_{i}\right|^{2} \mathcal{A}_{i}^{2}+\left.\left|\nabla{ }_{T}\right| \nabla u_{i}\right|^{2}\right) \eta_{i}^{2} \\
& +\sum_{i \neq j} \int_{\mathbb{R}^{n}}\left(\nabla u_{i} \cdot \nabla u_{j} \eta_{i}^{2}-\left|\nabla u_{i}\right|\left|\nabla u_{j}\right| \eta_{i} \eta_{j}\right) H_{u_{i} u_{j}}
\end{aligned}
$$

How? Test stability on $\left|\nabla u_{i}\right| \eta_{i}$.

- Alama, Bronsard, Gui (1997 Calc PDE) constructed 2D solutions $u: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that are not H-monotone. H-monotonicity is a crucial assumption!.
- Brendan Pass (2011 PhD Thesis) observed a similar concept called "compatible cost" in multi-marginal optimal transport.
Equivalent: Ghoussoub-Pass (2014 CPDE)
- Modica's estimates does not hold in general, by Farina (2004 J FA)

$$
\sum_{i=1}^{k}\left|\nabla u_{i}\right|^{2} \leq 2 H(u) \quad \text { Nope! }
$$

However a Hamiltonian identity given by Gui (2008 J FA)

$$
\int_{R^{n-1}}\left[\sum_{i=1}^{k}\left(\left|\nabla_{x^{\prime}} u_{i}\right|^{2}-\left|\partial_{x_{n}} u_{i}\right|^{2}\right)-2 H\left(u\left(x^{\prime}, x_{n}\right)\right)\right] d x^{\prime}=C \text { for } x_{n} \in \mathbb{R}
$$

- When is $\Gamma_{R}=\frac{E_{R}(u)}{R^{n-1}}$ increasing? Not known when $k>1 . \tilde{\Gamma}_{R}=\frac{E_{R}(u)}{R^{n-2}}$ is nondecreasing.
- Fractional system $-(-\Delta)^{s} u=\nabla H(u)$ when $n=2$ and $s \in(0,1)$ and $n=3$ and $1 / 2 \leq s<1$ by Fazly-Sire (2014 CPDE).
- $\tilde{\Gamma}_{R}=\frac{E_{R}(u)}{R^{n-2 s}}$ is increasing where

$$
E_{R}(u)=\frac{1}{2} \int_{B_{R} \cap \mathbb{R}_{+}^{n+1}} \sum_{i=1}^{k} y^{1-2 s}\left|\nabla u_{i}\right|^{2} d \mathrm{x} d y+\int_{B_{R} \cap \partial \mathbb{R}_{+}^{n+1}} H(u) d \mathrm{x}
$$

(Idea: Pohozaev Identity)

- If $u=u(|\mathbf{x}|, y)$ then $I_{r}(u)$ is nondecreasing in r where

$$
I_{r}(u)=\sum_{i=1}^{k} \int_{0}^{\infty} y^{1-2 s}\left[\left(\partial_{r} u_{i}\right)^{2}-\left(\partial_{y} u_{i}\right)^{2}\right] d y+2 H(u(r, 0))
$$

- Let $n=1$ and $\lim _{x \rightarrow \infty} u=\alpha$ then for $x \in \mathbb{R}$

$$
\sum_{i=1}^{k} \int_{0}^{\infty} y^{1-2 s}\left[\left(\partial_{x} u_{i}\right)^{2}-\left(\partial_{y} u_{i}\right)^{2}\right] d y+2 H(u(x, 0))=2 H(\alpha)
$$

- For the case $k=2$ and $H(u, v)=\frac{1}{2} u^{2} v^{2}$ and $\Delta u=\nabla H(u)$ then
- there exists 1-D solutions of the form $u\left(x-x_{0}\right)=v\left(x_{0}-x\right)$.

Berestycki-Lin-Wei-Zhao (2013 ARMA)

- 1-D solution is unique. Berestycki-Terracini-Wang-Wei (2013 Adv Math)
- For the case $k=2$ and $H(u, v)=\frac{1}{2} u^{2} v^{2}$ and $-(-\Delta)^{s} u=\nabla H(u)$ then
- there exists a unique 1-D solution. Wang-Wei (2014)

Why three dimensions?

Set $\phi_{i}:=\partial_{x_{n}} u_{i}$ and $\psi_{i}:=\nabla u_{i} \cdot \eta$ for $\eta=\left(\eta^{\prime}, 0\right) \in \mathbb{R}^{n-1} \times\{0\}$ then $\sigma_{i}:=\frac{\psi_{i}}{\phi_{i}}$ satisfies a linear equation

$$
\operatorname{div}\left(\phi_{i}^{2} \nabla \sigma_{i}\right)+\sum_{j=1}^{k} h_{i, j}(x)\left(\sigma_{i}-\sigma_{j}\right)=0 \text { in } \mathbb{R}^{n}
$$

where $h_{i, j}(x)=H_{u_{i} u_{j}} \phi_{i} \phi_{j}$.

- Linear Liouville Theorem: If σ_{i} satisfies the above, $\phi_{i}>0, h_{i, j}=h_{j, i} \leq 0$ and

$$
\sum_{i=1}^{k} \int_{B_{2 R} \backslash B_{R}} \phi_{i}^{2} \sigma_{i}^{2}<C R^{2}, \quad \forall R>1
$$

\Longrightarrow then each σ_{i} is constant. [Little imp. by Fazly (2014 PAMS)]

- Energy estimates:

$$
\text { Bounded stable } \Longrightarrow \sum_{i=1}^{k} \int_{B_{R}}\left|\nabla u_{i}\right|^{2} \leq E_{R}(u) \leq C R^{n-1}
$$

Optimality not known when $k>1$.

Lane-Emden equation

Nonnegative solutions and $p>1$:

$$
-\Delta u=u^{p} \quad \text { in } \mathbb{R}^{n}
$$

Theorem (Gidas and Spruck, 1980)

Let $n \geq 3$ and p be under the Sobolev exponent, $1<p<\frac{n+2}{n-2}=: p^{*}(n)$. Then $u=0$.

Critical case $p=\frac{n+2}{n-2}$:

- Gidas-Ni-Nirenberg (1981 MAA) proved that all solutions with $u(x)=O\left(|x|^{2-n}\right)$ are radially symmetric about some $x_{0} \in \mathbb{R}^{n}$ and of the form

$$
u(x)=C_{n}\left(\frac{\lambda}{1+\lambda^{2}\left|x-x_{0}\right|^{2}}\right)^{\frac{n-2}{2}}
$$

where $C_{n}=(n(n-2))^{\frac{2-n}{4}}, \lambda>0$ and some $x_{0} \in \mathbb{R}^{n}$.

- Caffarelli-Gidas-Spruck (1989 CPAM) removed the condition.
- Chen and Li (1991 Duke Math) via moving plane methods.

Note:

- Fourth order case: Wei-Xu (1999 Math Ann). Here $p^{*}(n):=\frac{n+4}{n-4}$.
- Fractional case: YanYan Li (2004 JEMS) and Chen-Li-Ou (2006 CPAM). Here $p_{s}^{*}(n):=\frac{n+2 s}{n-2 s}$.

Stable solutions

Stable solutions and $p>1$:

$$
(-\Delta)^{s} u=|u|^{p-1} u \quad \text { in } \quad \mathbb{R}^{n}
$$

there exists $p_{s}^{* *}(n)$, called Joseph-Lundgren exponent, such that for $1<p<p_{s}^{* *}(n), u=0$.

- For $s=1$ Farina (2007 J Math Pure Appl) where

$$
p_{1}^{* *}(n)=\left\{\begin{aligned}
\infty & \text { if } n \leq 10 \\
\frac{(n-2)^{2}-4 n+8 \sqrt{n-1}}{(n-2)(n-10)} & \text { if } n \geq 11
\end{aligned}\right.
$$

- For $s=2$ Davila-Dupagine-Wang-Wei (2014 Adv Math) where

$$
p_{2}^{* *}(n)=\left\{\begin{aligned}
\infty & \text { if } n \leq 12, \\
\frac{n+2-\sqrt{n^{2}+4-n \sqrt{n^{2}-8 n+32}}}{n-6-\sqrt{n^{2}+4-n \sqrt{n^{2}-8 n+32}}} & \text { if } n \geq 13,
\end{aligned}\right.
$$

- For $0<s<1$ Davila-Dupagine-Wei (2014)
- For $1<s<2$ Fazly-Wei (2014) where $p_{s}^{* *}(n)$ can be found from

$$
p \frac{\Gamma\left(\frac{n}{2}-\frac{s}{p-1}\right) \Gamma\left(s+\frac{s}{p-1}\right)}{\Gamma\left(\frac{s}{p-1}\right) \Gamma\left(\frac{n-2 s}{2}-\frac{s}{p-1}\right)}>\frac{\Gamma\left(\frac{n+2 s}{4}\right)^{2}}{\Gamma\left(\frac{n-2 s}{4}\right)^{2}}
$$

Optimal. For $p \geq p_{s}^{* *}(n)$ there is a stable solution that is radially symmetric w.r.t. some point.

Major ideas: Monotonicity Formula

- Case $s=1$: Evans (91 ARMA) and Pacard (93 Manuscripta Math).

$$
E\left(x_{0}, r\right):=r^{-n+2 \frac{p+1}{p-1}} \int_{B_{r}\left(x_{0}\right)}\left(\frac{1}{2}|\nabla u|^{2}-\frac{1}{p+1}|u|^{p+1}\right)+\frac{r^{-1-n+2 \frac{p+1}{p-1}}}{p-1} \int_{\partial B_{r}\left(x_{0}\right)}|u|^{2}
$$

- Case $1<s<2, E\left(x_{0}, r\right)$ is the following

$$
\begin{aligned}
& r^{2 s \frac{p+1}{p-1}-n}\left(\int_{\mathbb{R}_{+}^{n+1} \cap B_{r}\left(x_{0}\right)} \frac{1}{2} y^{3-2 s}\left|\Delta_{b} u_{e}\right|^{2}-\frac{1}{p+1} \int_{\partial \mathbb{R}_{+}^{n+1} \cap B_{r}\left(x_{0}\right)} u_{e}^{p+1}\right) \\
& -C r^{-3+2 s+\frac{4 s}{p-1}-n} \int_{\mathbb{R}_{+}^{n+1} \cap \partial B_{r}\left(x_{0}\right)} y^{3-2 s} u_{e}^{2} \\
& -C \partial_{r}\left[r^{\frac{4 s}{p-1}+2 s-2-n} \int_{\mathbb{R}_{+}^{n+1} \cap \partial B_{r}\left(x_{0}\right)} y^{3-2 s} u_{e}^{2}\right] \\
& +\frac{1}{2} r^{3} \partial_{r}\left[r^{\frac{4 s}{p-1}+2 s-3-n} \int_{\mathbb{R}_{+}^{n+1} \cap \partial B_{r}\left(x_{0}\right)} y^{3-2 s}\left(\frac{2 s}{p-1} r^{-1} u+\partial_{r} u_{e}\right)^{2}\right] \\
& +\frac{1}{2} \partial_{r}\left[r^{2 s \frac{p+1}{p-1}-n} \int_{\mathbb{R}_{+}^{n+1} \cap \partial B_{r}\left(x_{0}\right)} y^{3-2 s}\left(\left|\nabla u_{e}\right|^{2}-\left|\partial_{r} u_{e}\right|^{2}\right)\right] \\
& +\frac{1}{2} r^{2 s \frac{p+1}{p-1}-n-1} \int_{\mathbb{R}_{+}^{n+1} \cap \partial B_{r}\left(x_{0}\right)} y^{3-2 s}\left(\left|\nabla u_{e}\right|^{2}-\left|\partial_{r} u_{e}\right|^{2}\right)
\end{aligned}
$$

where $\Delta_{b} u_{e}:=y^{-3+2 s} \operatorname{div}\left(y^{3-2 s} \nabla u_{e}\right)$. Extension function: Ray Yang (2013).

Major ideas: Handling Homogenous Solutions

- Monotoniciy Formula implies $u=r^{-\frac{2 s}{p-1}} \psi(\theta)$ that is called Homogenous Solution.
Goal: $\psi \equiv 0$ where $1<p<p_{s}^{* *}(n)$. How?
- Step 1. From PDE:

$$
A_{n, s} \int_{\mathbb{S}^{n-1}} \psi^{2}+\int_{\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}} K_{\frac{2 s}{p-1}}(<\theta, \sigma>)(\psi(\theta)-\psi(\sigma))^{2}=\int_{\mathbb{S}^{n-1}} \psi^{p+1}
$$

where $A_{n, s}$ is explicitly known and $\left.K_{\alpha}(<\theta, \sigma\rangle\right)$ is decreasing in α for $p>p_{s}^{*}(n)$.

- Step 2. From Stability: Test on $r^{-\frac{n-2 s}{2}} \psi(\theta) \eta_{\epsilon}(r)$ for appropriate $\eta_{\epsilon}(r)$ to get
$\Lambda_{n, s} \int_{\mathbb{S}^{n-1}} \psi^{2}+\int_{\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}} K_{\frac{n-2 s}{2}}(<\theta, \sigma>)(\psi(\theta)-\psi(\sigma))^{2} \geq p \int_{\mathbb{S}^{n-1}} \psi^{p+1}$ where $\Lambda_{n, s}$ is the Hardy constant.
- Note that $K_{\frac{n-2 s}{2}}<K_{\frac{2 s}{p-1}}$ for $p>p_{s}^{*}(n)$. If $\Lambda_{n, s}<p A_{n, s}$ then $\psi=0$.

Wei's Conjecture: If $p_{1}^{* *}(n) \leq p<p_{1}^{* *}(n-1)$, all stable solutions are radially symmetric?
Note: For $\frac{n+1}{n-3}<p<p_{1}^{* *}(n-1)$ there are unstable nonradial solutions. Dancer-Guo-Wei (2012 Indiana Math)

End

Thank you for your attention.

