Lane-Emden equatior

Rigidity Results for Elliptic PDEs

Mostafa Fazly

University of Alberta

Collaborators:

- Nassif Ghoussoub (UBC)
- Juncheng Wei (UBC-Chinese U Hong Kong)
- Yannick Sire (UMarseille)

Workshop on Partial Differential Equation and its Applications IMS-NSU

December 11, 2014

Lane-Emden equation

1 Allen-Cahn equation

2 Lane-Emden equation

Lane-Emden equatior

Research Area:

- Minimal Surfaces and Bernstein's problem
- Geometric Measure Theory
- Regularity of Solutions of Elliptic Equations (Hilbert's 19th problem with John Nash 56-57)
- **F**-Convergence Theory

Awards:

- Caccioppoli Prize (1960)
- Wolf Prize (1990)

Figure : 1928-1996

Quote:

If you can't prove your theorem, keep shifting parts of the conclusion to the assumptions, until you can.

Lane-Emden equation Allen-Cahn Equation:

 $-\Delta u = u - u^3$ in \mathbb{R}^n .

Euler-Lagrange equation for the energy functional:

$$\mathsf{E}(u) = rac{1}{2}\int |
abla u|^2 + rac{1}{4}\int (1-u^2)^2$$

u = 1 and u = -1 are global minimizers of the energy and representing, in the gradient theory of phase transitions, two distinct phases of a material.

$$F(u) = -\frac{1}{4}(1-u^2)^2$$

is called "double-well potential":

$$F(\pm 1)=F(\pm 1)=0$$
 and $F(u)
eq 0$ if $u
eq \pm 1$

Example: In dimension one $w(x) = \tanh\left(\frac{x}{\sqrt{2}}\right)$ solves the equation and w' > 0 and w connects -1 to 1 that is $w(\pm \infty) = \pm 1$.

Lane-Emden equation

Ennio De Giorgi (1978) expected that the interface between the phases u = 1 and u = -1 has to approach a minimal surface.

Bernstein's Conjecture: Any minimal surface in \mathbb{R}^n must be a hyperplane. Equivalent to any entire solution of the form $x_n = F(x_1, \dots, x_{n-1})$ of

$$abla \cdot \left(rac{
abla F}{\sqrt{1 + |
abla F|^2}}
ight) = 0 \text{ in } \mathbb{R}^{n-1}$$

must be a linear function that is $F(x_1, \dots, x_{n-1}) = a \cdot (x_1, \dots, x_{n-1}) + b$ for some $a \in \mathbb{R}^{n-1}$ and $b \in \mathbb{R}$.

True for $n \leq 8$: Bernstein (1910 Math Z), Fleming (1962 Math Palermo), De Giorgi (1965 Annali Pisa), Almgren (1966 Annals Math), Simons (1968 Annals Math).

False for $n \ge 9$: counterexample by Bombieri-De Giorgi-Giusti (1969 Invent Math).

This led him to state his conjecture.

Lane-Emden equation De Giorgi's Conjecture (1978): Suppose that u is bounded and monotone (in one direction) solution of the Allen-Cahn equation

$$-\Delta u = u - u^3$$
 in \mathbb{R}^n

Then, at least for $n \le 8$, solutions are one-dimensional, i.e. $u(x) = u^*((x - \nu) \cdot p)$ for some ν, p . $\implies u(x) = \tanh\left(\frac{x.a-b}{\sqrt{2}}\right)$ where $b \in \mathbb{R}$, |a| = 1 and $a_n > 0$.

- For n = 2 by Ghoussoub-Gui (1997 Math Ann)
- For n = 3 by Ambrosio-Cabré (2000 J. AMS)
- For *n* = 4,5, if *u* is anti-symmetric, by Ghoussoub-Gui (2003 Annals Math)
- For 4 \leq n \leq 8, if *u* satisfies the additional (natural) assumption

$$\lim_{x_n \to \pm \infty} u(\mathbf{x}', x_n) \to \pm 1.$$
 Savin (2003 Annals Math)

2nd Proof: Wang (2014)

 Counterexample for n ≥ 9, by del Pino-Kowalczyk-Wei (2008 Annals Math)

Note: In lower dimensions, it is proved for any nonlinearity $-\Delta u = f(u)$. For n = 2 the same paper and for n = 3 by Alberti-Ambrosio-Cabré (2001 Acta Appl. Math.)

Observations to prove the De Giorgi's conjecture

Consider PDE:

Allen-Cahn equation

$$-\Delta u = f(u)$$
 $x \in \mathbb{R}^n$.

- $\textcircled{\ } \textbf{Monotonicity} \Longrightarrow \textbf{Pointwise Stability} \Longleftrightarrow \textbf{Stability}.$
 - Pointwise Stability: $\exists \phi > 0$ that

$$-\Delta \phi = f'(u)\phi$$
 in \mathbb{R}^n .

• Stability (or Stability Inequality): if the second variation of the energy is non-negative:

$$\int f'(u)\zeta^2 \leq \int |
abla \zeta|^2 \qquad orall \zeta \in C^2_c(\mathbb{R}^n)$$

Set $\phi := \partial_{x_n} u$ and $\psi := \partial_{x_i} u$, then the quotient $\sigma = \frac{\psi}{\phi}$ satisfies a linear equation div($\phi^2 \nabla \sigma$) = 0.

It is shown by Berestycki-Caffarelli-Nirenberg, Ambrosio-Cabre and Ghoussoub-Gui in 97-98 that if $\phi>0$ and

$$\int_{B_R} \phi^2 \sigma^2 < R^2, \quad \forall R > 1$$

then $\sigma = 0$.

Note: Is this optimal? Consider R^{a_n} then

- $a_n < n$ where $n \ge 3$. Barlow (1998 Can J Math)
- $a_n < 2 + 2\sqrt{n-1}$ when $n \ge 7$. Ghoussoub-Gui (1998 Math Ann)
- IF $a_n \ge n-1$ then conjecture would establish in *n*-D.

Comments:

Allen-Cahn equation

Lane-Emden equation

• Modica's estimate:

 $|\nabla u|^2 \leq 2F(u)$ for bounded solutions of $\Delta u = f(u)$ in \mathbb{R}^n

when F' = f and $F \ge 0$ by Modica (1980 CPAM). Ex.: $|\nabla u|^2 \le \frac{1}{2}(u^2 - 1)^2$ for the Allen-Cahn equation. Ex.: $|\nabla u|^2 \le 2(1 - \cos u)$ for bd solutions of $\Delta u = \sin u$

• Monotonicity Formula:

$$\Gamma_R = \frac{1}{R^{n-1}} \int_{B_R} \frac{1}{2} |\nabla u|^2 + F(u)$$

is nondecreasing in R.

• 2nd proof in n = 2 by Farina-Sciunzi-Valdinoci (2008 Ann. Pisa) via

$$\int_{\mathbb{R}^n \cap \{|\nabla u| \neq 0\}} \left(|\nabla u|^2 \mathcal{A}^2 + |\nabla \tau| \nabla u||^2 \right) \eta^2 \le \int_{\mathbb{R}^n} |\nabla u|^2 |\nabla \eta|^2$$

For any $\eta \in C_c^1(\mathbb{R}^n)$. How?

- Test stability on $|\nabla u|\eta$.
- Apply a geometric identity by Sternberg-Zumbrun (1998 ARMA): For any w ∈ C² and where |∇w| > 0;

$$\sum_{k=1}^{n} |\nabla \partial_{x_k} w|^2 - |\nabla |\nabla w||^2 = |\nabla w|^2 (\sum_{l=1}^{n-1} \kappa_l^2) + |\nabla_T |\nabla w||^2$$

 κ_l are the principal curvatures of the level set of w.

Lane-Emden equatior • If the limit

$$\lim_{x_n \to \pm \infty} u(\mathbf{x}', x_n) \to \pm 1 \quad \text{in} \ \mathbf{R}^{n-1}$$

is uniform \implies called Gibbon's conjecture and proved (1999) in all dimensions by Farina (Mat e Appli), Barlow-Bass-Gui (CPAM), Berestycki-Hamel-Monneau (Duke Math)

- Stability Conjecture: Let u be a bounded stable solution of Allen-Cahn equation. Then the level sets $u = \lambda$ are all hyperplanes.
 - True in n = 2 by Ambrosio-Cabre and Ghoussoub-Gui.
 - False in n = 8 by Pacard-Wei (2013 JFA)
 - Classification is open in other dimensions.
- Fractional Laplacian case: $(-\Delta)^{s}u = f(u)$ and $s \in (0,1)$
 - Existence when n = 1 by Cabre-Sire (2009 Annales Poincare).
 - For any s when n = 2 by Sire-Valdinoci (2009 J FA).
 - For any $s \in [1/2, 1)$ when n = 3 by Cabre-Cinti (2012 DCDS).
 - Open for other cases.

The proof strongly relies on the extension function given by Caffarelli-Silvestre (2007 CPDE), i.e.

$$\begin{cases} \operatorname{div}(y^{1-2s}\nabla u_e) = 0 \text{ in } \mathbf{R}^{n+1}_+ = \{x \in \mathbf{R}^n, y > 0\},\\ -\operatorname{lim}_{y \to 0} y^{1-2s} \partial_y u_e = k_s f(u_e) \text{ in } \partial \mathbf{R}^{n+1}_+,\end{cases}$$

Lane-Emden equation

To extend the De Giorgi's conjecture to systems, what is the right system? Consider the gradient system:

$$\Delta u = \nabla H(u) \text{ in } \mathbb{R}^n,$$

where $u : \mathbb{R}^n \to \mathbb{R}^k$ is bounded and $H \in C^2(\mathbb{R}^k)$. Euler-Lagrange equation for the energy functional:

$$E(u) = \frac{1}{2} \int \sum_{i=1}^{k} |\nabla u_i|^2 + \int (H(u) - \inf_{u} H(u))$$

Phase Transitions: Minimum points of H are global minimizers of the energy and representing distinct phases of k materials. Example: For k = 2 and $H(u, v) = u^2 v^2$ the global minimizers are u = 0 and v = 0.

We need Monotonicity and Stability concepts for systems.

New concepts regarding $\Delta u = \nabla H(u)$

Allen-Cahn equation

Lane-Emden equatior

- *H*-Monotone:
 - **1** For every $i \in \{1, \dots, k\}$, u_i is strictly monotone in the x_n -variable (i.e., $\partial_{x_n} u_i \neq 0$).
 - **2** For i < j, we have

$$H_{u_iu_j}\partial_{x_n}u_i(x)\partial_{x_n}u_j(x) \leq 0$$
 for all $x \in \mathbb{R}^n$.

This condition implies a combinatorial assumption on $H_{u_iu_j}$ and we call such a system orientable.

• Pointwise Stability: $\exists (\phi_i)_{i=1}^k$ non sign changing

$$\Delta\phi_i=\sum_j H_{u_iu_j}\phi_j$$

and $H_{u_i u_j} \phi_j \phi_i \leq 0$ for $1 \leq i < j \leq k$.

• Stability (or Stability Inequality):

$$\sum_{i}\int_{\mathbb{R}^{n}}|\nabla\zeta_{i}|^{2}+\sum_{i,j}\int_{\mathbb{R}^{n}}H_{u_{i}u_{j}}\zeta_{i}\zeta_{j}\geq0,$$

for every $\zeta_i \in C_c^1(\mathbb{R}^n), i = 1, \cdots, k$.

Orientable systems: *H*-Monotonicity \implies Pointwise Stability \iff Stability.

Lane-Emden equation

Conjecture

Suppose $u = (u_i)_{i=1}^k$ is a bounded H-monotone solution, then at least in lower dimensions each component u_i must be one-dimensional.

Theorem (Fazly-Ghoussoub, Calc PDE 2013)

Positive answer to this conjecture for $n \leq 3$. Moreover, $\nabla u_i = C_{i,j} \nabla u_j$ where $C_{i,j}$ is a constant with opposite sign of $H_{u_iu_i}$.

Gradients are parallel via geometric Poincaré inequality:

$$\begin{split} \sum_{i} \int_{\mathbb{R}^{n}} |\nabla u_{i}|^{2} |\nabla \eta_{i}|^{2} &\geq \sum_{i} \int_{\mathbb{R}^{n} \cap \{|\nabla u_{i}| \neq 0\}} \left(|\nabla u_{i}|^{2} \mathcal{A}_{i}^{2} + |\nabla \tau| |\nabla u_{i}||^{2} \right) \eta_{i}^{2} \\ &+ \sum_{i \neq j} \int_{\mathbb{R}^{n}} \left(\nabla u_{i} \cdot \nabla u_{j} \eta_{i}^{2} - |\nabla u_{i}| |\nabla u_{j}| \eta_{i} \eta_{j} \right) H_{u_{i}u_{j}}, \end{split}$$

How? Test stability on $|\nabla u_i|\eta_i$.

Comments:

Allen-Cahn equation

Lane-Emden equatior

- Alama, Bronsard, Gui (1997 Calc PDE) constructed 2D solutions *u* : ℝ² → ℝ² that are not *H*-monotone. *H*-monotonicity is a crucial assumption!.
- Brendan Pass (2011 PhD Thesis) observed a similar concept called "compatible cost" in multi-marginal optimal transport. Equivalent: Ghoussoub-Pass (2014 CPDE)
- Modica's estimates does not hold in general, by Farina (2004 J FA)

$$\sum_{i=1}^{k} |\nabla u_i|^2 \leq 2H(u) \quad Nope!$$

However a Hamiltonian identity given by Gui (2008 J FA)

$$\int_{\mathcal{R}^{n-1}} \left[\sum_{i=1}^k \left(\left| \nabla_{x'} u_i \right|^2 - \left| \partial_{x_n} u_i \right|^2 \right) - 2H(u(x',x_n)) \right] dx' = C \quad \text{for} \quad x_n \in \mathbb{R}$$

• When is $\Gamma_R = \frac{E_R(u)}{R^{n-1}}$ increasing? Not known when k > 1. $\tilde{\Gamma}_R = \frac{E_R(u)}{R^{n-2}}$ is nondecreasing.

More Comments:

Allen-Cahn equation

Lane-Emden equation

- Fractional system $-(-\Delta)^s u = \nabla H(u)$ when n = 2 and $s \in (0, 1)$ and n = 3 and $1/2 \le s < 1$ by Fazly-Sire (2014 CPDE).
 - $\tilde{\Gamma}_R = \frac{E_R(u)}{R^{n-2s}}$ is increasing where

$$E_R(u) = \frac{1}{2} \int_{B_R \cap \mathbb{R}^{n+1}_+} \sum_{i=1}^k y^{1-2s} |\nabla u_i|^2 d\mathsf{x} dy + \int_{B_R \cap \partial \mathbb{R}^{n+1}_+} H(u) d\mathsf{x}$$

(Idea: Pohozaev Identity)

• If $u = u(|\mathbf{x}|, y)$ then $I_r(u)$ is nondecreasing in r where

$$I_r(u) = \sum_{i=1}^k \int_0^\infty y^{1-2s} \left[(\partial_r u_i)^2 - (\partial_y u_i)^2 \right] dy + 2H(u(r,0))$$

• Let n = 1 and $\lim_{x \to \infty} u = \alpha$ then for $x \in \mathbb{R}$

$$\sum_{i=1}^{k} \int_{0}^{\infty} y^{1-2s} \left[(\partial_{x} u_{i})^{2} - (\partial_{y} u_{i})^{2} \right] dy + 2H(u(x,0)) = 2H(\alpha).$$

- For the case k = 2 and $H(u, v) = \frac{1}{2}u^2v^2$ and $\Delta u = \nabla H(u)$ then
 - there exists 1-D solutions of the form $u(x x_0) = v(x_0 x)$. Berestycki-Lin-Wei-Zhao (2013 ARMA)
 - 1-D solution is unique. Berestycki-Terracini-Wang-Wei (2013 Adv Math)
- For the case k = 2 and $H(u, v) = \frac{1}{2}u^2v^2$ and $-(-\Delta)^s u = \nabla H(u)$ then
 - there exists a unique 1-D solution. Wang-Wei (2014)

Why three dimensions?

Allen-Cahn equation

Lane-Emden equation Set $\phi_i := \partial_{x_n} u_i$ and $\psi_i := \nabla u_i \cdot \eta$ for $\eta = (\eta', 0) \in \mathbb{R}^{n-1} \times \{0\}$ then $\sigma_i := \frac{\psi_i}{\phi_i}$ satisfies a linear equation

$$\operatorname{div}(\phi_i^2 \nabla \sigma_i) + \sum_{j=1}^k h_{i,j}(x)(\sigma_i - \sigma_j) = 0 \quad \text{in} \quad \mathbb{R}^n$$

where $h_{i,j}(x) = H_{u_i u_j} \phi_i \phi_j$.

• Linear Liouville Theorem: If σ_i satisfies the above, $\phi_i > 0$, $h_{i,j} = h_{j,i} \le 0$ and

$$\sum_{i=1}^{k} \int_{B_{2R} \setminus B_R} \phi_i^2 \sigma_i^2 < CR^2, \quad \forall R > 1$$

 \implies then each σ_i is constant. [Little imp. by Fazly (2014 PAMS)]

• Energy estimates:

$$\text{Bounded stable} \Longrightarrow \sum_{i=1}^k \int_{B_R} |\nabla u_i|^2 \leq E_R(u) \leq CR^{n-1}$$

Optimality not known when k > 1.

Lane-Emden equation Nonnegative solutions and p > 1:

$$-\Delta u = u^p$$
 in \mathbb{R}^n

Theorem (Gidas and Spruck, 1980)

Let $n \ge 3$ and p be under the Sobolev exponent, 1 . Then <math>u = 0.

Critical case $p = \frac{n+2}{n-2}$:

• Gidas-Ni-Nirenberg (1981 MAA) proved that all solutions with $u(x) = O(|x|^{2-n})$ are radially symmetric about some $x_0 \in \mathbb{R}^n$ and of the form

$$u(x) = C_n \left(\frac{\lambda}{1+\lambda^2|x-x_0|^2}\right)^{\frac{n-2}{2}}$$

where $C_n = (n(n-2))^{\frac{2-n}{4}}$, $\lambda > 0$ and some $x_0 \in \mathbb{R}^n$.

- Caffarelli-Gidas-Spruck (1989 CPAM) removed the condition.
- Chen and Li (1991 Duke Math) via moving plane methods.

Note:

- Fourth order case: Wei-Xu (1999 Math Ann). Here $p^*(n) := \frac{n+4}{n-4}$.
- Fractional case: YanYan Li (2004 JEMS) and Chen-Li-Ou (2006 CPAM). Here $p_s^*(n) := \frac{n+2s}{n-2s}$.

Lane-Emden equation Stable solutions and p > 1:

$$(-\Delta)^s u = |u|^{p-1} u$$
 in \mathbb{R}^n

there exists $p_s^{**}(n)$, called Joseph-Lundgren exponent, such that for 1 , <math>u = 0.

• For s = 1 Farina (2007 J Math Pure Appl) where

$$p_1^{**}(n) = \begin{cases} \infty & \text{if } n \leq 10, \\ \frac{(n-2)^2 - 4n + 8\sqrt{n-1}}{(n-2)(n-10)} & \text{if } n \geq 11, \end{cases}$$

• For s = 2 Davila-Dupagine-Wang-Wei (2014 Adv Math) where

$$p_2^{**}(n) = \begin{cases} \infty & \text{if } n \le 12, \\ \frac{n+2-\sqrt{n^2+4-n\sqrt{n^2-8n+32}}}{n-6-\sqrt{n^2+4-n\sqrt{n^2-8n+32}}} & \text{if } n \ge 13, \end{cases}$$

- For 0 < s < 1 Davila-Dupagine-Wei (2014)
- For 1 < s < 2 Fazly-Wei (2014) where $p_s^{**}(n)$ can be found from

$$p\frac{\Gamma(\frac{n}{2} - \frac{s}{p-1})\Gamma(s + \frac{s}{p-1})}{\Gamma(\frac{s}{p-1})\Gamma(\frac{n-2s}{2} - \frac{s}{p-1})} > \frac{\Gamma(\frac{n+2s}{4})^2}{\Gamma(\frac{n-2s}{4})^2}$$

Optimal. For $p \ge p_s^{**}(n)$ there is a stable solution that is radially symmetric w.r.t. some point.

Major ideas: Monotonicity Formula

Allen-Cahn equation

Lane-Emden equation • Case s = 1: Evans (91 ARMA) and Pacard (93 Manuscripta Math). $E(x_0, r) := r^{-n+2\frac{p+1}{p-1}} \int_{B_r(x_0)} \left(\frac{1}{2} |\nabla u|^2 - \frac{1}{p+1} |u|^{p+1}\right) + \frac{r^{-1-n+2\frac{p-1}{p-1}}}{p-1} \int_{\partial B_r(x_0)} |u|^2$ • Case 1 < s < 2, $E(x_0, r)$ is the following $r^{2s\frac{p+1}{p-1}-n}\left(\int_{\mathbb{D}^{n+1}\cap P(t_{e})}\frac{1}{2}y^{3-2s}|\Delta_{b}u_{e}|^{2}-\frac{1}{p+1}\int_{\partial \mathbb{D}^{n+1}\cap R(t_{e})}u_{e}^{p+1}\right)$ $-Cr^{-3+2s+\frac{4s}{p-1}-n}\int_{\mathbb{R}^{n+1}\cap\partial B_{r}(x_{0})}y^{3-2s}u_{e}^{2}$ $-C\partial_r \left| r^{\frac{4s}{p-1}+2s-2-n} \int_{\mathbb{R}^{n+1} \cap \partial B_r(x_0)} y^{3-2s} u_e^2 \right|$ $+\frac{1}{2}r^{3}\partial_{r}\left[r^{\frac{4s}{p-1}+2s-3-n}\int_{\mathbb{R}^{n+1}\cap\partial B_{r}(x_{0})}y^{3-2s}\left(\frac{2s}{p-1}r^{-1}u+\partial_{r}u_{e}\right)^{2}\right]$ $+\frac{1}{2}\partial_r \left| r^{2s\frac{p+1}{p-1}-n} \int_{\mathbb{R}^{n+1} \cap \partial B_r(\infty)} y^{3-2s} \left(|\nabla u_e|^2 - |\partial_r u_e|^2 \right) \right|$ $+\frac{1}{2}r^{2s\frac{p+1}{p-1}-n-1}\int_{\mathbb{R}^{n+1}\cap\partial B_{\epsilon}(\infty)}y^{3-2s}\left(\left|\nabla u_{e}\right|^{2}-\left|\partial_{r}u_{e}\right|^{2}\right)$

where $\Delta_b u_e := y^{-3+2s} \operatorname{div}(y^{3-2s} \nabla u_e)$. Extension function: Ray Yang (2013).

Major ideas: Handling Homogenous Solutions

• Monotoniciy Formula implies $u = r^{-\frac{2s}{p-1}}\psi(\theta)$ that is called Homogenous Solution.

Goal: $\psi \equiv 0$ where 1 . How?

• Step 1. From PDE:

$$A_{n,s}\int_{\mathbb{S}^{n-1}}\psi^2+\int_{\mathbb{S}^{n-1}\times\mathbb{S}^{n-1}}K_{\frac{2s}{p-1}}(<\theta,\sigma>)(\psi(\theta)-\psi(\sigma))^2=\int_{\mathbb{S}^{n-1}}\psi^{p+1}$$

where $A_{n,s}$ is explicitly known and $K_{\alpha}(<\theta,\sigma>)$ is decreasing in α for $p > p_s^*(n)$.

• Step 2. From Stability: Test on $r^{-\frac{n-2s}{2}}\psi(\theta)\eta_{\epsilon}(r)$ for appropriate $\eta_{\epsilon}(r)$ to get

$$\Lambda_{n,s} \int_{\mathbb{S}^{n-1}} \psi^2 + \int_{\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}} K_{\frac{n-2s}{2}}(<\theta,\sigma>) (\psi(\theta) - \psi(\sigma))^2 \ge \rho \int_{\mathbb{S}^{n-1}} \psi^{p+1}$$

where $\Lambda_{n,s}$ is the Hardy constant.

• Note that $K_{\frac{n-2s}{2}} < K_{\frac{2s}{p-1}}$ for $p > p_s^*(n)$. If $\Lambda_{n,s} < pA_{n,s}$ then $\psi = 0$.

Wei's Conjecture: If $p_1^{**}(n) \le p < p_1^{**}(n-1)$, all stable solutions are radially symmetric?

Note: For $\frac{n+1}{n-3} there are unstable nonradial solutions.$ Dancer-Guo-Wei (2012 Indiana Math)

Allen-Cahn equation

Lane-Emden equatior

Lane-Emden equation

Thank you for your attention.