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Ennio De Giorgi

Allen-Cahn
equation

Lane-

Emden Research Area:

equation

e Minimal Surfaces and Bernstein's problem
o Geometric Measure Theory

o Regularity of Solutions of Elliptic Equations
(Hilbert's 19th problem with John Nash 56-57)

e [-Convergence Theory
Awards:

e Caccioppoli Prize (1960)

e Wolf Prize (1990)

Quote: Figure : 1928-1996

If you can’t prove your theorem, keep shifting parts
of the conclusion to the assumptions, until you can.
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Allen-Cahn
equation

Allen-Cahn Equation

Allen-Cahn Equation:
—Au=u—10 in R".

Euler-Lagrange equation for the energy functional:

Ew) =y [ Va4 [a-wy

u =1 and u = —1 are global minimizers of the energy and representing, in the
gradient theory of phase transitions, two distinct phases of a material.

Loy

F(u) = 2

is called “double-well potential”:
F(+1) = F(—1) =0and F(u) #0if u # £1

Example: In dimension one w(x) = tanh (%) solves the equation and
w’ > 0 and w connects -1 to 1 that is w(+o0) = £1.
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De Giorgi's conjecture

Allen-Cahn
equation

Ennio De Giorgi (1978) expected that the interface between the phases v =1

and u = —1 has to approach a minimal surface.
Bernstein's Conjecture: Any minimal surface in R” must be a hyperplane.
Equivalent to any entire solution of the form x, = F(x1, -+ ,Xa—1) of

V- __VF =0inR"!
V1+|VFJ]?

must be a linear function that is F(x1, -+ ,xp—1) = a- (x1,"++ ,%n—1) + b for
some a € R" ! and b € R.

True for n < 8: Bernstein (1910 Math Z), Fleming (1962 Math Palermo), De
Giorgi (1965 Annali Pisa), Almgren (1966 Annals Math), Simons (1968
Annals Math).

False for n > 9: counterexample by Bombieri-De Giorgi-Giusti (1969 Invent
Math).

This led him to state his conjecture.
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The statement
Alen Cam De Giorgi's Conjecture (1978): Suppose that u is bounded and monotone (in
one direction) solution of the Allen-Cahn equation
—Au=u—du® in R”
Then, at least for n < 8, solutions are one-dimensional, i.e.
u(x) = u*((x = v) - p) for some v, p.
= u(x) = tanh (X'a*b) where b € R, |a] =1 and a, > 0.

V2
e For n = 2 by Ghoussoub-Gui (1997 Math Ann)
e For n = 3 by Ambrosio-Cabré (2000 J. AMS)
e For n = 4,5, if uis anti-symmetric, by Ghoussoub-Gui (2003 Annals
Math)
e For 4 < n < 8, if u satisfies the additional (natural) assumption

lim u(x',x,) — £1. Savin (2003 Annals Math)

Xp— oo

2nd Proof: Wang (2014)
e Counterexample for n > 9, by del Pino-Kowalczyk-Wei (2008 Annals
Math)
Note: In lower dimensions, it is proved for any nonlinearity —Au = f(u). For
n = 2 the same paper and for n = 3 by Alberti-Ambrosio-Cabré (2001 Acta
Appl. Math.)
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Observations to prove the De Giorgi's conjecture

Allen-Can Consider PDE:
—Au = f(u) x € R".
@® Monotonicity = Pointwise Stability <= Stability.
e Pointwise Stability: 3¢ > 0 that
—A¢p=f'(u)p in R".
e Stability (or Stability Inequality): if the second variation of the energy is
non-negative:

/ F(u)C? < / IVCP V¢ e C2R)

@ Set ¢ := Ox,u and ¢ := Oy u, then the quotient o = % satisfies a linear
equation div(¢°Vo) = 0.
It is shown by Berestycki-Caffarelli-Nirenberg, Ambrosio-Cabre and

Ghoussoub-Gui in 97-98 that if ¢ > 0 and
0 < R?), VYR>1
J Br
then o = 0.
Note: Is this optimal? Consider R?" then
e a, < n where n > 3. Barlow (1998 Can J Math)

® a, <2+ 2y/n—1when n>7. Ghoussoub-Gui (1998 Math Ann)
e IF a, > n—1 then conjecture would establish in n-D.
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Comments:

Allen-Cahn
equation

e Modica's estimate:
|Vu|> < 2F(u) for bounded solutions of Au = f(u) in R”
when F' = f and F > 0 by Modica (1980 CPAM).
Ex.: |[Vu|® < 2(u® — 1) for the Allen-Cahn equation.
Ex.: |Vul?> < 2(1 — cos u) for bd solutions of Au = sinu
e Monotonicity Formula:
1

1 2
= = F
Rnfl LR 2|VU‘ + (Ll)
is nondecreasing in R.
e 2nd proof in n = 2 by Farina-Sciunzi-Valdinoci (2008 Ann. Pisa) via

/ (IVal &+ 1V (9ull) o < [ [9uP9nf
RN {|Vu|£0} Rn

For any n € C(R"). How?
e Test stability on [Vu|n.
e Apply a geometric identity by Sternberg-Zumbrun (1998 ARMA): For any
w € C? and where |Vw| > 0;

Mz

n n—1
D Vo wl = |VIVW|? = VWD w7) + V| Vw|[
k=1 =1
ry are the principal curvatures of the level set of w.
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More comments:

Allen-Cahn
equation o If the limit

. ! . n—1
xnﬂﬂoo u(x',x) > £1 in R
is uniform = called Gibbon's conjecture and proved (1999) in all
dimensions by Farina (Mat e Appli), Barlow-Bass-Gui (CPAM),
Berestycki-Hamel-Monneau (Duke Math)
e Stability Conjecture: Let u be a bounded stable solution of Allen-Cahn
equation. Then the level sets u = X are all hyperplanes.
e True in n = 2 by Ambrosio-Cabre and Ghoussoub-Gui.
e False in n = 8 by Pacard-Wei (2013 JFA)
o Classification is open in other dimensions.
e Fractional Laplacian case: (—A)°u = f(u) and s € (0,1)
e Existence when n = 1 by Cabre-Sire (2009 Annales Poincare).
e For any s when n =2 by Sire-Valdinoci (2009 J FA).
e For any s € [1/2,1) when n = 3 by Cabre-Cinti (2012 DCDS).
e Open for other cases.
The proof strongly relies on the extension function given by
Caffarelli-Silvestre (2007 CPDE), i.e.

div(y'™**Vu,) 0 in R ={x€R"y>0},
—limy_—o )/1_25(3},ue = ksf(ue) in 8RT1,
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What about systems?

Allen-Cahn
equation

To extend the De Giorgi's conjecture to systems, what is the right system?
Consider the gradient system:

Au=VH(u) in R

where v : R” — R is bounded and H € C*(R¥).
Euler-Lagrange equation for the energy functional:

Ew) =5 [ S IVul+ [ (H(w) - inf H(u)

Phase Transitions: Minimum points of H are global minimizers of the energy
and representing distinct phases of k materials.

Example: For k =2 and H(u, v) = u*v? the global minimizers are u = 0 and
v=0.

We need Monotonicity and Stability concepts for systems.
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New concepts regarding Au = VH(u)

Allen-Cahn
CEEEEID e H-Monotone:
@ For every i € {1,--- , k}, u; is strictly monotone in the xp-variable (i.e.,
Ox, Ui # 0).

@® For i < j, we have
Huju;Ox, ui(x)9x, uj(x) < 0 for all x € R".

This condition implies a combinatorial assumption on H,,,; and we call
such a system orientable.

e Pointwise Stability: 3(¢;)%_; non sign changing
Agi = Huuj
J

and Hyy¢j¢i <0 for 1 <i<j<k.
e Stability (or Stability Inequality):

2
i uju; Gi Z )
E:/ |V<-\+§j/H GG >0
i JR" ij /R

for every ¢; € C2(R"),i=1,--- , k.
Orientable systems: H-Monotonicity = Pointwise Stability <= Stability.
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De Giorgi type results for Au = VH(u)

Allen-Cahn
equation

Conjecture

Suppose u = (u;)_; is a bounded H-monotone solution, then at least in lower
dimensions each component u; must be one-dimensional.

Theorem (Fazly-Ghoussoub, Calc PDE 2013)

Positive answer to this conjecture for n < 3. Moreover, Vu; = C; jVu; where
Ci,j is a constant with opposite sign of Hu,.uj.

Gradients are parallel via geometric Poincaré inequality:

Z/ Vul v > Z/
i JR7 i /R

+Z/ <VU/' Vi — \VU/'HVUJ\T//"U) Huyju;

i#j

(Va4 + V7 Tuill?) n?
"N{|Vui|#0}

How? Test stability on |Vu;|n:.
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Comments:

Allen-Cahn
equation

e Alama, Bronsard, Gui (1997 Calc PDE) constructed 2D solutions
u: R? — R? that are not H-monotone. H-monotonicity is a crucial
assumption!.

e Brendan Pass (2011 PhD Thesis) observed a similar concept called
“compatible cost” in multi-marginal optimal transport.
Equivalent: Ghoussoub-Pass (2014 CPDE)

e Modica's estimates does not hold in general, by Farina (2004 J FA)
K
> [Vui? < 2H(u)  Nope!
i=1
However a Hamiltonian identity given by Gui (2008 J FA)

K
/ |: E (\Vxlu,-|2 — |8X,,u,-\2) — 2H(u(x',xn))] dx' = C for x, €R
Rn—1

i=1

e When is [g = ER’ﬁ(,“f increasing? Not known when k > 1. [ = i,’f,(,“z) is
nondecreasing.
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More Comments:

e e Fractional system —(—A)°u = VH(u) when n =2 and s € (0,1) and
n=3and 1/2 <s < 1 by Fazly-Sire (2014 CPDE).

= E, . .
e [ = Rf—gz is increasing where

K
_1 1-2s5) o, |2
Er(u) = 2 /BRﬂ]Rjjl ;y [Vuil"dxdy + BrNORT! H(u)dx

(Idea: Pohozaev Identity)
o If u= u(|x],y) then /,(u) is nondecreasing in r where

k oo
W) =32 [Ty [0 — (0yu)?] dy + 2H(u(r,0)
i=1 70

e Let n=1 and limx— 00 u = « then for x € R
k oo
Z/ Y2 (D) — (Byui)?] dy + 2H(u(x, 0)) = 2H(av).
i=1 70

e For the case k =2 and H(u,v) = Ju*v? and Au = VH(u) then

e there exists 1-D solutions of the form u(x — xo) = v(xo — x).
Berestycki-Lin-Wei-Zhao (2013 ARMA)
e 1-D solution is unique. Berestycki-Terracini-Wang-Wei (2013 Adv Math)

e For the case k =2 and H(u,v) = Ju®v? and —(—A)*u = VH(u) then
e there exists a unique 1-D solution. Wang-Wei (2014)
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Why three dimensions?

Allen-Cahn
Sty Set ¢; := Ox,u; and ;== Vu; -n for n = (',0) € R"™* x {0} then o, := %
satisfies a linear equation

k
div(¢7Ver) + > hij(x)(oi —0j) =0 in R
j=1
where hj j(x) = Hyu;¢i¢;.

o Linear Liouville Theorem: If o; satisfies the above, ¢; > 0, h;; = h;; <0

and
k

/ Plo? < CR?, VYR>1
Bor\Br

i=1
= then each o; is constant. [Little imp. by Fazly (2014 PAMS)]

e Energy estimates:
Bounded stable = Z/ |Vuil* < Er(u) < CR".

Optimality not known when k > 1.
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Lane-Emden equation

Nonnegative solutions and p > 1:

. n
e —Au=uv" in R
Emden
equation

Theorem (Gidas and Spruck, 1980)

Let n > 3 and p be under the Sobolev exponent, 1 < p < ™2 =: p*(n). Then
u=0.

Critical case p = 242:

e Gidas-Ni-Nirenberg (1981 MAA) proved that all solutions with
u(x) = O(|x|*>~") are radially symmetric about some xp € R” and of the
form

n—2

C 7)\ ’
)= & (5 )

where C, = (n(n — 2))? A > 0 and some xp € R".
o Caffarelli-Gidas-Spruck (1989 CPAM) removed the condition.
e Chen and Li (1991 Duke Math) via moving plane methods.
Note:
e Fourth order case: Wei-Xu (1999 Math Ann). Here p*(n) := 24
e Fractional case: YanYan Li (2004 JEMS) and Chen-Li-Ou (2006 CPAM)

Here p}(n) := 2t2=.
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Stable solutions

Stable solutions and p > 1:
(-A)°u=|uf'u in R

Lane-
Emden

Sl there exists p;*(n), called Joseph-Lundgren exponent, such that for

1<p<p:*(n), u=0.
e For s =1 Farina (2007 J Math Pure Appl) where

“(n) 0 if n <10,
p1 (n)= n—2)2—4n+8y/n—1 .
e if n 211,

e For s = 2 Davila-Dupagine-Wang-Wei (2014 Adv Math) where
o0 if n <12,
p>*(n) = nt+2—1/n2+4—ny/m—8n+32 ifn> 13,
n—6—\/n2+4—n\/n2—8n+32
e For 0 < s < 1 Davila-Dupagine-Wei (2014)
e For 1 < s < 2 Fazly-Wei (2014) where p;*(n) can be found from
MG -2l +257) _ r(=®)?

2 p—1 p—1

Prer(E — =) ~ (=2

2 p—1
Optimal. For p > p*(n) there is a stable solution that is radially symmetric

s
p—1

w.r.t. some point.
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Major ideas: Monotonicity Formula

e Case s = 1: Evans (91 ARMA) and Pacard (93 Manuscripta Math).

ane- —n+224L B
Emde_n E(xo,r):=r """p1 fB,(xo)(%\VU\z - $|“|pﬂ) + % faBr(XO) |uf?
equation e Case 1 <s <2, E(xo,r) is the following
r255%11fn / 1y3_25|AbUe‘2 — i/ U§+1
RT0B, (xp) 2 P+ 1 Jorr1ne, ()

As 3-2s5 2

p—1 "
[
RTNB, (x0)
—Co, r%+25727n/ Y32
R N0B(x0)
2
1 4s_ios_3_ _ 2 _
12739, |remTteed "/ y? 25( s, 1u—l—&ue)
2 RTF1 MO8, (x0) p—1

1 sPtl _ _

2o, | / oy (IVuel - o)
R NOB, (x0)

1 ptl _os

yreto [ v (19l = 0l

R NOB,(xo)

where Apue := y_3+25 div(y3_25Vue). Extension function: Ray Yang (2013).

—342
—Cr +2s+

18/20



Major ideas: Handling Homogenous Solutions

_ 25 .
e Monotoniciy Formula implies u = r™ »=11)(0) that is called Homogenous

e Solution.
Emden

equation Goal: 1 =0 where 1 < p < py*(n). How?
e Step 1. From PDE:

Ans P +/ K 2 (< 0,0 >)(4(0) — (o)) / PP
sn—1 gn—1ygn—1 p—1
where A, s is explicitly known and K. (< 6,0 >) is decreasing in « for
p > pi(n).
e Step 2. From Stability: Test on r_n%kzb(é?)ne(r) for appropriate 7.(r) to
get

Ao [ w2t / Kooz (< 0,0 >)(1(8) — (o)) > p / P
sn—1 sn—1xgn—1 2 sn—1

where A, s is the Hardy constant.
e Note that K2 25 < K 2 for p > pZ(n). If Aps < pAns then vp = 0.

P
Wei's Conjecture: If pi(n) < < p < pi*(n — 1), all stable solutions are radially
symmetric?

Note: For "*1 < p < pi*(n—1) there are unstable nonradial solutions.
Dancer-Guo- We| (2012 Indiana Math)
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Thank you for your attention.
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