Results on curvature flow

Pak Tung Ho Sogang University

Workshop on Partial Differential Equation and its Applications, IMS, National University of Singapore

8th-12th, December, 2014

イロト イヨト イヨト イヨト

Content

- 1. Q-curvature flow
- 2. Yamabe flow
- 3. CR Yamabe flow
- 4. Eigenvalue along the flow
- 5. Nirenberg's problem

(4回) (4回) (4回)

Yamabe problem and Yamabe flow CR Yamabe problem and CR Yamabe flow Eigenvalue along the flow Nirenberg's problem

Conformal metric

M = n-dimensional smooth manifold, compact, $\partial M = \emptyset$

g, g_0 = Riemannian metrics on M.

We say that g is conformal to g_0 if $g = e^{2u}g_0$ for some $u \in C^{\infty}(M)$.

イロン イヨン イヨン イヨン

3

Uniformization Theorem

- M = 2-dimensional smooth manifold, compact, $\partial M = \emptyset$
- $g_0 = a$ Riemannian metric on M.

Theorem (Uniformization Theorem)

 \exists g conformal to g_0 such that the Gaussian curvature of g, $K_g \equiv constant$.

If
$$g = e^{2u}g_0$$
, then

$$K_g = e^{-2u}(-\Delta_{g_0}u + K_{g_0}).$$

イロト イヨト イヨト イヨト

Q-curvature

M = a compact 4-dimensional manifold with a metric g

Q-curvature:
$$Q_g = -\frac{1}{6}(\Delta_g R_g - R_g^2 + 3|Ric_g|_g^2).$$

Here, R_g = scalar curvature of g and Ric_g = Ricci curvature tensor of g.

Paneitz operator:
$$P_g \phi = \Delta_g^2 \phi + d_g^* \left[\left(\frac{2}{3} R_g g - 2 Ric_g \right) d\phi \right]$$
, i.e.

$$\int_{M} \langle P_{g}\phi_{1}, \phi_{2} \rangle_{g} = \int_{M} \phi_{2} \Delta_{g}^{2} \phi_{1} + \frac{2}{3} \int_{M} R_{g} \langle d\phi_{1}, d\phi_{2} \rangle_{g}$$
$$- 2 \int_{M} Ric_{g} (d\phi_{1}, d\phi_{2})$$

・ロン ・聞と ・ほと ・ほと

Yamabe problem and Yamabe flow CR Yamabe problem and CR Yamabe flow Eigenvalue along the flow Nirenberg's problem

Q-curvature

If $g = e^{2u}g_0$, then

$$\left\{ \begin{array}{l} Q_g = e^{-4u} (P_{g_0} u + Q_{g_0}), \\ P_g = e^{-4u} P_{g_0}. \end{array} \right.$$

In 2-dim, if $g = e^{2u}g_0$, then

$$\begin{cases} K_g = e^{-2u} (-\Delta_{g_0} u + K_{g_0}), \\ -\Delta_g = -e^{-2u} \Delta_{g_0}. \end{cases}$$

2-dim	4-dim
$-\Delta_g$	Pg
Kg	Qg

Yamabe problem and Yamabe flow CR Yamabe problem and CR Yamabe flow Eigenvalue along the flow Nirenberg's problem

Q-curvature

In 2-dim, by Gauss-Bonnet Theorem,

$$\int_{M} K_{g} dV_{g} = \int_{M} K_{g_{0}} dV_{g_{0}} = 2\pi \chi(M)$$

is a conformal invariant.

In 4-dim, by Chern-Gauss-Bonnet Theorem,

$$\int_{\mathcal{M}} \left(Q_g + \frac{1}{4} |W_g|^2 \right) dV_g = 8\pi^2 \chi(\mathcal{M}).$$

Here W_g = the Weyl tensor of M. Since $|W_g|^2 dV_g = |W_{g_0}|^2 dV_{g_0}$,

$$\int_M Q_g dV_g = \int_M Q_{g_0} dV_{g_0}$$

is a conformal invariant.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Yamabe problem and Yamabe flow CR Yamabe problem and CR Yamabe flow Eigenvalue along the flow Nirenberg's problem

Q-curvature

On even-dimensional manifold M, Fefferman-Graham defined Q-curvature Q_g and Paneitz operator P_g such that:

•
$$P_g$$
 is self-adjoint with leading term $(-\Delta_g)^{n/2}$
• If $g = e^{2u}g_0$,
 $Q_g = e^{-nu}(P_{g_0}u + Q_{g_0})$.
• If $g = e^{2u}g_0$,
 $\int_M Q_g dV_g = \int_M Q_{g_0} dV_{g_0}$.

If g_{S^n} = standard metric on even-dimensional sphere S^n , then

$$\begin{cases} Q_{g_{S^n}} = (n-1)!, \\ P_{g_{S^n}} = \prod_{k=0}^{(n-2)/2} (-\Delta_{g_{S^n}} + k(n-k-1)). \end{cases}$$

Yamabe problem and Yamabe flow CR Yamabe problem and CR Yamabe flow Eigenvalue along the flow Nirenberg's problem

Q-curvature

Questions:

- 1. (Uniformization Theorem) $\exists g \text{ conformal to } g_0 \text{ such that } Q_g \equiv \text{constant } ?$
- (Prescribed Q-curvature problem) Given f ∈ C[∞](M), ∃ g conformal to g₀ such that Q_g = f?

Studied by Brendle, Chang-Yang, Malchiodi-Struwe, Wei-Xu, etc.

・ロト ・回ト ・ヨト ・ヨト

prescribed Q-curvature flow

Brendle introduced prescribed *Q*-curvature flow:

$$\frac{\partial}{\partial t}g(t) = (\alpha(t)f - Q_{g(t)})g(t), \ g(0) = g_0$$

where $\alpha(t)$ is defined by

$$\alpha(t)\int_{M}f\,dV_{g(t)}=\int_{M}Q_{g(t)}\,dV_{g(t)}.$$

When ker $P_{g_0} = \{\text{constant}\}$ and

$$\int_M Q_{g_0} dV_{g_0} < \int_{S^n} Q_{g_{S^n}} dV_{g_{S^n}},$$

he proved that the flow exists and converges to g_{∞} such that $Q_{g_{\infty}} = \alpha_{\infty} f.$

Q-curvature flow on S^n

Theorem (Brendle for n = 4, H. _____ for general n) On S^n , the Q-curvature flow:

$$\frac{\partial}{\partial t}g(t) = -(Q_{g(t)} - \overline{Q}_{g(t)})g(t),$$

where

$$\overline{Q}_{g(t)} = \frac{\int_{S^n} Q_{g(t)} dV_{g(t)}}{\int_{S^n} dV_{g(t)}},$$

exists for all $t \ge 0$ and converges to a metric of constant sectional curvature.

・ロト ・回ト ・ヨト ・ヨト

prescribed Q-curvature flow on S^n

Theorem (Malchiodi-Struwe for n = 4, Chan-Xu and independently H.____ for general n)

Suppose that f > 0. On S^n , under some condition on the Morse index of f, the prescribed Q-curvature flow

$$\frac{\partial}{\partial t}g(t) = (\alpha(t)f - Q_{g(t)})g(t),$$

where $\alpha(t)$ is defined by

$$\alpha(t)\int_{S^n}f\,dV_{g(t)}=\int_{S^n}Q_{g(t)}\,dV_{g(t)}.$$

(人間) (人) (人) (人) (日) (日) (日)

exists for all $t \ge 0$ and converges to g_∞ such that $Q_{g_\infty} = \alpha_\infty f$.

Yamabe problem

M = n-dimensional smooth manifold, compact, $\partial M = \emptyset$ where $n \ge 3$.

 $g_0 = a$ Riemannian metric on M.

Yamabe problem: Find g conformal to g_0 such that the scalar curvature of g, $R_g \equiv \text{constant}$.

・ロト ・回ト ・ヨト ・ヨト

Yamabe problem

If
$$g = u^{\frac{4}{n-2}}g_0$$
 where $0 < u \in C^{\infty}(M)$, then

$$-\frac{4(n-1)}{(n-2)}\Delta_{g_0}u + R_{g_0}u = R_g u^{\frac{n+2}{n-2}}$$
(1)

・ロン ・回と ・ヨン・

Here, $\Delta_{g_0} =$ Laplacian of g_0 , $R_{g_0} =$ scalar curvature of g_0 , $R_g =$ scalar curvature of g.

Yamabe problem is to solve (1) with $R_g \equiv \text{constant}$.

Yamabe problem

The Yamabe constant is defined as

$$Y(M,g_0) = \inf\{E(u)| 0 < u \in C^{\infty}(M)\}$$

where the energy E(u) is given by

$$E(u) = \frac{\int_{M} (|\nabla u|^{2} + R_{g_{0}}u^{2}) dV_{g_{0}}}{(\int_{M} u^{\frac{2n}{n-2}} dV_{g_{0}})^{\frac{n-2}{n}}}.$$

If
$$E(u) = Y(M, g_0)$$
, then u satisfies (1).

イロト イヨト イヨト イヨト

Yamabe problem

- For $Y(M, g_0) \leq 0$, solved by Trudinger.
- For Y(M, g₀) > 0,
 - solved by Aubin when $n \ge 6$ and (M, g_0) is not locally conformally flat.
 - solved by Schoen when $3 \le n \le 5$ or (M, g_0) is locally conformally flat using positive mass theorem.
- Bahri obtained same result of Schoen using critical point at infinity.

・ロン ・回と ・ヨン・

Yamabe flow

Hamilton introduced Yamabe flow:

$$rac{\partial}{\partial t}g(t) = -(R_{g(t)} - \overline{R}_{g(t)})g(t) \ t \geq 0.$$

Here, $R_{g(t)} =$ scalar curvature of g(t), and $\overline{R}_{g(t)}$ is defined by

$$\overline{R}_{g(t)} = \frac{\int_{M} R_{g(t)} dV_{g(t)}}{\int_{M} dV_{g(t)}}.$$

・ロン ・回と ・ヨン・

Yamabe flow

•
$$0 = \frac{\partial}{\partial t}g(t) = -(R_{g(t)} - \overline{R}_{g(t)})g(t) \Leftrightarrow R_{g(t)} = \overline{R}_{g(t)}.$$

• If we write
$$g(t) = u(t)^{rac{4}{n-2}}g_0$$
, then

$$\frac{\partial}{\partial t} \left(u(t)^{\frac{n+2}{n-2}} \right)$$

= $\frac{n+2}{4} \left(\frac{4(n-1)}{n-2} \Delta_{g_0} u(t) - R_{g_0} u(t) + \overline{R}_{g(t)} u(t)^{\frac{n+2}{n-2}} \right).$

・ロト ・回 ト ・ヨト ・ヨト

Yamabe flow

Along the Yamabe flow, we have

$$\frac{d}{dt}E(u(t))=-\frac{n}{2}\frac{\int_{M}(R_{g(t)}-\overline{R}_{g(t)})^{2}dV_{g(t)}}{\operatorname{Vol}(M,g_{0})^{\frac{n-2}{n}}}\leq 0.$$

$$\Longrightarrow \int_0^\infty \int_M (R_{g(t)} - \overline{R}_{g(t)})^2 dV_{g(t)} dt < \infty$$

$$\implies \liminf_{t\to\infty} \int_M (R_{g(t)} - \overline{R}_{g(t)})^2 dV_{g(t)} = 0$$

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

Yamabe flow

- ► Hamilton proved (i) long time existence of the Yamabe flow (ii) convergence for Y(M, g₀) ≤ 0.
- For Y(M, g₀) > 0, convergence was studied by Chow, Ye, and Schwetlick-Struwe.
- Brendle proved convergence using positive mass theorem.

イロト イヨト イヨト イヨト

CR Yamabe problem

 (M, θ_0) =compact, strictly pseudoconvex CR manifold of real dimension 2n + 1

CR manifold: \exists subbundle $T^{1,0} \subset \mathbb{C} \otimes TM$ such that

 $\succ T^{1,0} \cap \overline{T^{1,0}} = \{0\},\$

• dim_{$$\mathbb{C}$$} $T^{1,0} = n$

•
$$[T^{1,0}, T^{1,0}] \subset T^{1,0}.$$

strictly pseudoconvex: θ_0 is called contact 1-form

Levi form
$$-\sqrt{-1}d\theta_0 > 0$$
 on $T^{1,0} \times \overline{T^{1,0}}$

・ロン ・回と ・ヨン ・ヨン

CR Yamabe problem

Example: odd-dimensional sphere $S^{2n+1} \subset \mathbb{C}^n$ with contact form $\theta_{S^{2n+1}} = \sqrt{-1} \sum_{j=1}^{n+1} (z_j d\overline{z}_j - \overline{z}_j dz_j)$ is a strictly pseudoconvex CR manifold.

On a strictly pseudoconvex CR manifold (M, θ_0) , one can define the Webster scalar curvature R_{θ_0} .

For
$$(S^{2n+1}, \theta_{S^{2n+1}})$$
, we have $R_{\theta_{S^{2n+1}}} \equiv n(n+1)/2$.

・ロト ・回ト ・ヨト ・ヨト

CR Yamabe problem

CR Yamabe problem: Given a strictly pseudoconvex CR manifold (M, θ_0) , find a contact form θ conformal to θ_0 such that its Webster curvature $R_{\theta} \equiv \text{constant.}$

If
$$heta = u^{rac{2}{n}} heta_0$$
 where $0 < u \in C^\infty(M)$, then $-(2+rac{2}{n})\Delta_{ heta_0}u + R_{ heta_0}u = R_ heta u^{1+rac{2}{n}}$

Here, $\Delta_{\theta_0} = \mathsf{sub-Laplacian}$ of θ_0 ,

 R_{θ_0} = Webster scalar curvature of θ_0 ,

 $R_{\theta} =$ Webster scalar curvature of θ .

- 4 同 6 4 日 6 4 日 6

CR Yamabe problem

The CR Yamabe problem was solved by

- Jerison-Lee when $n \ge 2$ and M is not locally CR equivalent to S^{2n+1} ,
- Gamara-Yacoub when n = 1 or M is locally CR equivalent to S^{2n+1} using critical point at infinity.

イロト イヨト イヨト イヨト

CR Yamabe flow

Consider the CR Yamabe flow:

$$rac{\partial}{\partial t} heta(t)=-(R_{ heta(t)}-\overline{R}_{ heta(t)}) heta(t) \ t\geq 0.$$

Here, $R_{\theta(t)}$ = Webster scalar curvature of $\theta(t)$, and $\overline{R}_{\theta(t)}$ is defined by

$$\overline{R}_{ heta(t)} = rac{\int_M R_{ heta(t)} dV_{ heta(t)}}{\int_M dV_{ heta(t)}}.$$

If we write $\theta(t) = u(t)^{\frac{2}{n}}\theta_0$, then

$$egin{aligned} &rac{\partial}{\partial t}\left(u(t)^{rac{2+n}{n}}
ight)\ &=rac{n+2}{2}\left(\left(2+rac{2}{n}
ight)\Delta_{ heta_0}u(t)-R_{ heta_0}u(t)+\overline{R}_{ heta(t)}u(t)^{1+rac{2}{n}}
ight). \end{aligned}$$

- S. C. Chang and J. H. Cheng proved the short time existence and obtained some Harnack inequality.
- When Y(M, θ₀) < 0, Y. B. Zhang proved the long time existence and convergence.
- When Y(M, θ₀) > 0, S. C. Chang, H. L. Chiu, and C. T. Wu proved the long time existence and convergence when n = 1 and torsion is zero.

イロト イヨト イヨト イヨト

CR Yamabe flow

Theorem (H.___) When $Y(M, \theta_0) > 0$, the CR Yamabe flow exists for all time $t \ge 0$.

Theorem (H.___) On S^{2n+1} , the CR Yamabe flow $\theta(t) \rightarrow \theta_{S^{2n+1}}$ as $t \rightarrow \infty$.

Recently, J. H. Cheng, H. L. Chiu, A. Malchodi, and P. Yang proved the CR positive mass theorem when n = 1 or when M is locally CR equivalent to S^{2n+1} .

Theorem (H.___)

The CR Yamabe flow converges when n = 1 or when M is locally CR equivalent to S^{2n+1} .

Eigenvalue along the Yamabe flow

Theorem (X. Cao)

The first eigenvalue of $-\Delta_{g(t)} + \frac{1}{2}R_{g(t)}$ is nondecreasing along the Ricci flow $\frac{\partial}{\partial t}g(t) = -2Ric_{g(t)}$

on a Riemannian manifold with nonnegative curvature operator.

Theorem (X. Cao et. al.)

For all a > 0, the first eigenvalue of $-\Delta_{g(t)} + aR_{g(t)}$ is nondecreasing along the Ricci flow on a surface with $R_{g(t)} \ge 0$.

・ロン ・回と ・ヨン・

Eigenvalue along the Yamabe flow

Consider Yamabe flow, because:

When dim = 2, Ricci flow becomes the unnormalized Yamabe flow:

$$\frac{\partial}{\partial t}g(t) = -2Ric_{g(t)} = -R_{g(t)}g(t).$$

イロト イヨト イヨト イヨト

► The condition R_{g(t)} ≥ 0 is preserved along the unnormalized Yamabe flow

Eigenvalue along the Yamabe flow

Theorem (H.___)

Along the unnormalized Yamabe flow, the first eigenvalue of $-\Delta_{g(t)} + aR_{g(t)}$ is nondecreasing (i) if $0 \le a < \frac{n-2}{4(n-1)}$ and $\min R_{g(t)} \ge \frac{n-2}{n} \min R_{g(t)} \ge 0$, (ii) if $a \ge \frac{n-2}{4(n-1)}$ and $\min R_{g(t)} \ge 0$.

Similar results hold for *p*-Laplacian and for manifolds with boundary.

・ロン ・四マ ・ヨマ ・ヨマ

Eigenvalue along the CR Yamabe flow

Theorem (H.___)

Along the unnormalized CR Yamabe flow

$$rac{\partial}{\partial t} heta(t) = -R_{ heta(t)} heta(t),$$

the first eigenvalue of $-\Delta_{\theta(t)} + aR_{\theta(t)}$ is nondecreasing (i) if $0 \le a < \frac{n}{2n+2}$ and $\min R_{\theta(t)} \ge \frac{n}{n+1} \min R_{\theta(t)} \ge 0$, (ii) if $a \ge \frac{n}{2n+2}$ and $\min R_{\theta(t)} \ge 0$.

イロン イヨン イヨン イヨン

Nirenberg's problem

As a generalization of Yamabe problem, we want to ask: Given $f \in C^{\infty}(M)$, $\exists g$ conformal to g_0 such that its scalar curvature $R_g = f$?

If $(M, g_0) = (S^n, g_{S^n})$ the standard sphere, the problem is called Nirenberg's problem.

Studied by Kazdan-Wanrer, Chang-Yang, Struwe, etc.

・ロン ・回と ・ヨン ・ヨン

Nirenberg's problem

Kazdan-Warner obtained a necessary condition, the so-called Kazdan-Warner identity:

If there exists $g = u^{\frac{4}{n-2}}g_{S^n}$ such that $R_g = f$, we must have

$$\int_{S^n} \langle \nabla f, \nabla x_i \rangle_{g_{S^n}} u^{\frac{2n}{n-2}} dV_{g_{S^n}} = 0 \quad \text{for } i = 1, 2, ..., n+1$$

where x_i is the coordinate function of \mathbb{R}^{n+1} restricted to S^n .

イロト イポト イヨト イヨト

Nirenberg's problem

Theorem (Chang-Yang)

If f > 0 is a Morse function on S^n such that

$$\sum_{\nabla_{g_{S}n}f(x)=0,\Delta_{g_{S}n}f(x)<0}(-1)^{ind(f,x)}\neq -1$$

and $||f - n(n-1)||_{C^0}$ is sufficiently small, then \exists g conformal to g_{S^n} such that $R_g = f$.

・ロト ・回ト ・ヨト ・ヨト

Nirenberg's problem

Using prescribed scalar curvature flow, X. Chen and X. Xu proved the following:

Theorem (Chen-Xu)

If f > 0 is a Morse function on S^n such that

$$\sum_{\nabla_{g_{S^n}} f(x)=0, \Delta_{g_{S^n}} f(x)<0} (-1)^{ind(f,x)} \neq -1$$

and $||f - n(n-1)||_{C^0} < \delta_n$ where $\delta_n = 2^{\frac{2}{n-2}}$, then \exists g conformal to g_{S^n} such that $R_g = f$.

・ロト ・回ト ・ヨト ・ヨト

Nirenberg's problem

Q: What about the CR case? That is, given f on the CR sphere S^{2n+1} , find θ conformal to $\theta_{S^{2n+1}}$ such that $R_{\theta} = f$.

J. H. Cheng obtained the necessary condition corresponding to the Kazdan-Warner identity in the Riemannian case.

イロト イポト イヨト イヨト

Nirenberg's problem

Theorem (Malchiodi-Uguzzoni)

If f > 0 is a Morse function on S^{2n+1} such that

$$\sum_{\nabla_{g_{S^n}} f(x)=0, \Delta_{\theta_{S^n}} f(x) < 0} (-1)^{ind(f,x)} \neq -1$$

and $||f - n(n+1)/2||_{C^0}$ is sufficiently small, then $\exists \theta$ conformal to θ_{S^n} such that $R_{\theta} = f$.

イロト イヨト イヨト イヨト

Nirenberg's problem

Using prescribed Webster scalar curvature flow, one can obtain Theorem (H.___) If f > 0 is a Morse function on S^{2n+1} such that $\sum_{\nabla_{g_{S}n} f(x)=0, \Delta_{\theta_{S}n} f(x)<0} (-1)^{ind(f,x)} \neq -1$ and $\|f = n(n+1)/2\|_{\infty} < \delta$, where $\delta = 2^{\frac{1}{n}}$, then $\exists \theta$ conform

and $||f - n(n+1)/2||_{C^0} < \delta_n$ where $\delta_n = 2^{\frac{1}{n}}$, then $\exists \theta$ conformal to θ_{S^n} such that $R_{\theta} = f$.

ヘロン 人間 とくほど 人間 とう

Thank you very much for your attention!

・ロト ・回ト ・ヨト ・ヨト