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Fourier Transform

Fourier series for f : S1 → R

f̂ (n) =
1

2π

∫ 2π

0
f (x) e−inx dx

f (x) =
∑
n∈Z

f̂ (n) einx

Fourier transform for f : R→ R

f̂ (p) =
1

2π

∫ ∞
−∞

f (x) e−ipx dx

f (x) =

∫ ∞
−∞

f̂ (p) eipx dp
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Fourier Transform - cont’d

More generally, for G a locally compact, abelian group, we have
a Fourier transform F : Fun(G)→ Fun(Ĝ)

f̂ (p) =

∫
G

f (x) e−ipx dx = F(f )(p)

f (x) =

∫
Ĝ

f̂ (p) eipx dp

where
Ĝ = Hom(G,U(1)) = char(G)

is the Pontryagin dual of G. I.e. a character is a U(1) valued
function on G, satisfying χ(x + y) = χ(x)χ(y).
The characters form a locally compact, abelian group Ĝ under
pointwise multiplication.
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Fourier Transform - cont’d

G = S1 , Ĝ = Z , einx

G = R , Ĝ = R , eipx

We can think of χ(x ,p) = eipx ∈ Fun(G× Ĝ) as the universal
character.
Fourier transform expresses the fact that the characters of G
span Fun(G).
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Fourier Transform - cont’d

I.e. we have the following “correspondence”

G× Ĝ
π

}}

π̂

!!
G Ĝ

F f = π̂∗(π
∗(f )× χ(x ,p))
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Fourier Transform - Geometric generalisations

T-duality is a geometric version of harmonic analysis, i.e. by
replacing functions by geometric objects (such as bundles,
sheaves, D-modules, ...) or, as an intermediate step, by
topological characteristics associated to these objects
(cohomology, K-theory, derived categories, ...).
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Fourier-Mukai transform

Consider a manifold P = M × S1. By the Künneth theorem we
have

H•(P) ∼= H•(M)⊗ H•(S1)

I.e.
Hn(P) ∼= Hn(M)⊕ Hn−1(M)

We have a similar decomposition at the level of forms

Ωn(P)inv ∼= Ωn(M)⊕ Ωn−1(M) .

I.e. invariant degree n forms on P are of the form ω or ω ∧ dθ,
where ω is an n, respectively n − 1, form on M.

Consider P̂ = M × Ŝ1. We have an isomorphism

F : H i(P)
∼=−−−−→ H i+1(P̂)
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Fourier-Mukai transform - cont’d

where

H0(P) =
⊕
i≥0

H2i(P) , H1(P) =
⊕
i≥0

H2i+1(P) ,

Explicitly
ω 7→ d θ̂ ∧ ω , dθ ∧ ω 7→ ω

or

FΩ =

∫
S1

(1 + dθ ∧ d θ̂) Ω =

∫
S1

edθ∧d θ̂ Ω =

∫
S1

eF Ω
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Fourier-Mukai transform - cont’d

I.e. F is given by a correspondence

FΩ = p∗ (p̂∗Ω ∧ eF )

M × S1 × Ŝ1

p̂

xx

p

&&

M × S1

π
''

M × Ŝ1

π̂
ww

M
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Fourier-Mukai transform - cont’d

Once we recognize that F = dθ ∧ d θ̂ is the curvature of a
canonical linebundle P (the Poincaré linebundle) over S1 × Ŝ1,
in fact eF = ch(P), this immediately suggests a
‘geometrization’ in terms of vector bundles over P and P̂

FE = p∗ (p̂∗ E ⊗ P)

This gives rise to the so-called Fourier-Mukai transform

F : K i(P)
∼=−−−−→ K i+1(P̂)

which has many of the properties of the Fourier transform
discussed earlier.

The discussion can be generalized to complexes of vector
bundles (complexes of sheaves) and thus gives rise to a
Fourier-Mukai correspondence between derived categories
D(P) and D(P̂).
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T-duality - Closed string on M × S1

Closed strings on M × S1 are described by

X : Σ → M × S1

where Σ = {(σ, τ)} is the closed string worldsheet.
Upon quantization, we find

Momentum modes: p = n
R

Winding modes: X (0, τ) ∼ X (1, τ) + mR

E =
( n

R

)2
+ (mR)2 + osc. modes

We have a duality R → 1/R, such that ST on M × S1 is
equivalent to ST on M × Ŝ1 (or a duality between IIA and IIB
ST, for susy ST)
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T-duality - Principal S1-bundles

Suppose we have a pair (P,H), consisting of a principal circle
bundle

S1 // P

π
��

M

and a so-called H-flux H on P, a Čech 3-cocycle.

Topologically, P is classified by an element in F ∈ H2(M,Z)
while H gives a class in H3(P,Z)
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T-duality - Principal S1-bundles

The (topological) T-dual of (P,H) is given by the pair (P̂, Ĥ),
where the principal S1-bundle

Ŝ1 // P̂

π̂
��

M

and the dual H-flux Ĥ ∈ H3(P̂,Z), satisfy

F̂ = π∗H , F = π̂∗Ĥ

where π∗ : H3(P,Z)→ H2(M,Z), is the pushforward map
(‘integration over the S1-fibre’).
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T-duality - Principal S1-bundles

The ambiguity in the choice of Ĥ is (almost) removed by
requiring that

p̂∗H − p∗Ĥ ≡ 0 ∈ H3(P ×M P̂,Z)

where P ×M P̂ is the correspondence space

P ×M P̂ = {(x , x̂) ∈ P × P̂ | π(x) = π̂(x̂)}

P ×M P̂
p̂=1⊗π̂

||

p=π⊗1

""
P

π
##

P̂

π̂{{
M
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T-duality - Principal S1-bundles

Gysin sequences

· · · // H3(M)
π∗
// H3(P)

π∗ // H2(M)
∪F // H4(M) // · · ·

· · · // H3(M)
π̂∗
// H3(P̂)

π̂∗ // H2(M)
∪F̂ // H4(M) // · · ·
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T-duality - Principal S1-bundles

0
∪F̂ //

∪F

��

H1(M)
π̂∗ //

∪F

��

H1(P̂)
π̂∗ //

∪π̂∗F

��

H0(M)
∪F̂ //

∪F

��

H2(M) //

∪F

��

· · ·

H1(M)
∪F̂ //

π∗

��

H3(M)
π̂∗ //

π∗

��

H3(P̂)
π̂∗ //

p∗

��

H2(M)
∪F̂ //

π∗

��

H4(M) //

π∗

��

· · ·

H1(P)
∪π∗ F̂ //

π∗

��

H3(P)
p̂∗ //

π∗

��

H3(P ×M P̂)
p̂∗ //

p∗

��

H2(P)
∪π∗ F̂ //

π∗

��

H4(P) //

π∗

��

· · ·

H0(M)
∪F̂ //

��

H2(M)
π̂∗ //

��

H2(P̂)
π̂∗ //

��

H1(M)
∪F̂ //

��

H3(M) //

��

· · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
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T-duality - Examples

Consider principal S1-bundles P over M = S2, then

H2(M,Z) ∼= Z , H3(P,Z) ∼= Z

and we have, for example,

(S2 × S1,0) −→ (S2 × S1,0)

(S2 × S1,1) −→ (S3,0)

or more generally
(Lp, k) −→ (Lk ,p)

where Lp = S3/Zp is the lens space.
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T-duality - Twisted cohomology

Using Ωk (P)inv ∼= Ωk (M)⊕ Ωk−1(M)

F = dA , H = H(3) + A ∧ H(2)

we find
F̂ = H(2) = dÂ , Ĥ = H(3) + Â ∧ F

such that

Ĥ − H = Â ∧ F − A ∧ F̂ = d(A ∧ Â) .

Theorem
We have an isomorphism of (Z2-graded) differential complexes

T∗ : (Ω(P)inv,dH) −→ (Ω(P̂)inv,dĤ)

where dH = d + H∧.
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T-duality - Twisted cohomology

Proof.
Define

T∗ω =

∫
S1

eA∧Â ω

then
dH T∗ = T∗ dĤ .

and consequently, we have isomorphisms

T∗ : H i(P,H)
∼=−−−−→ H i+1(P̂, Ĥ)
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T-duality - Twisted cohomology

as well as

T∗ : K i(P,H)
∼=−−−−→ K i+1(P̂, Ĥ)

For example,

K i(Lp, k) ∼=

{
Zk i = 0
Zp i = 1

Peter Bouwknegt Spherical T-duality



Spherical T-duality - Principal SU(2)-bundles

Much of the above can be generalized to principal
SU(2)-bundles:
Gysin sequence for principal SU(2)-bundles π : P → M

· · · // H7(M)
π∗
// H7(P)

π∗ // H4(M)
∪c2(P)// H8(M) // · · ·

where
c2(P) =

1
8π2 Tr(F ∧ F ) ∈ H4(M)

is (a de Rham representative of) the 2nd Chern class of P.
However, in this case,

[M,BSU(2)] −→ H4(M,Z)

is, in general, neither surjective nor injective.
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SU(2) and quaternions

Recall that

SU(2) =

{
U(a,b) =

(
a −b̄
b ā

)
: a,b ∈ C, |a|2 + |b|2 = 1

}
can be identified with the unit sphere S(H) = Sp(1) = S3 in the
quaternions

H = {α + βi + γj + δk : ij = k = −ji , cyclic}

The isomorphism is given explicitly as

SU(2) 3 U(a,b) 7→ a + jb ∈ Sp(1) = S3

The relationship of principal SU(2)-bundles to quaternionic line
bundles is analogous to the relationship of principal
U(1)-bundles to complex line bundles.



Principal SU(2)-bundles and quaternionic line bundles

Recall that a quaternionic line bundle over a manifold M is a
complex rank 2 vector bundle V → M together with a reduction
of structure group to H \ {0}. Note that the unit sphere bundle
S(V )→ M is an S3-bundle together with the inherited group
structure, i.e. a principal SU(2)-bundle.

Conversely, given a principal SU(2)-bundle P → M, then the
associated vector bundle

V = P ×SU(2) H→ M

is a quaternionic line bundle.



Principal SU(2)-bundles on S4

Principal SU(2)-bundles on S4 are described by smooth maps
g : SU(2)→ SU(2). Let g(z) = z, z ∈ SU(2), which is a degree
1 map. Then g(z) = zr , r ∈ Z is a degree r map. Let
P(r)→ S4 be the corresponding principal SU(2)-bundle on S4.
Then c2(P(r)) = r ∈ Z ∼= H4(S4,Z).

The principal SU(2)-bundle S7 = P(1)→ S4 is known as the
Hopf bundle.



Principal SU(2)-bundles on M4

Let M be a compact, connected, oriented 4-dimensional
manifold. Then one can show fairly easily that isomorphism
classes of principal SU(2)-bundles P on M is canonically
identified with homotopy classes [M,S4] ∼= H4(M;Z) given by
c2(P).

More precisely, given a degree 1 map h : M → S4, then
h∗(P(r))→ M is a principal SU(2)-bundle on M with
c2(h∗(P(r))) = r ∈ Z ∼= H4(M,Z).



Spherical T-duality

Recall the Gysin sequence for principal SU(2)-bundles
π : P → M

· · · // H7(M)
π∗
// H7(P)

π∗ // H4(M)
∪c2(P)// H8(M) // · · ·

We consider pairs of the form (P,H) consisting of a principal
SU(2)-bundle P → M and a 7-cocycle H on P.

The Gysin sequence implies that π∗ is a canonical isomorphism
H7(P,Z) ∼= H4(M,Z) ∼= Z, and intuitively spherical T-duality
exchanges H with the second Chern class c2



Spherical T-duality

More precisely, the spherical T-dual bundle π̂ : P̂ → M is
defined by c2(P̂) = π∗H while the dual 7-cocycle Ĥ ∈ H7(P̂) is
related to c2(P) by the isomorphism π̂∗, via a similar Gysin
sequence for P̂ → M.



Isomorphism of 7-twisted cohomology

Let M be a connected compact, oriented, 4 dimensional
manifold, and consider the principal SU(2)-bundle P(r) over M
with c2(P(r)) = r ∈ Z ∼= H4(M,Z), together with the 7-cocycle
H = s vol on P(r).

Since H ∪ H = 0 for dimension reasons, we can define
integer-valued H-twisted cohomology as

H•(P(r),H;Z) ≡ H•(H•(P(r);Z),H∪).



Isomorphism of 7-twisted cohomology

Use the Gysin sequence to calculate the cohomology groups
Heven/odd (F (p);Z), and obtain for p 6= 0

H j(P(r);Z) = H4−j(M;Z), j = 0,1,2,3

H4(P(r);Z) = Zr ⊕ H1(M;Z)

H7−j(P(r);Z) = H4−j(M;Z), j = 0,1,2,3

Therefore there is an isomorphism of 7-twisted cohomology
groups over the integers with a parity change,

Theorem

Heven(P(r), s;Z) ∼= Hodd (P(s), r ;Z) ,

Hodd (P(r), s;Z) ∼= Heven(P(s), r ;Z) .

There is a similar isomorphism of 7-twisted K-theories.



Spherical T-duality beyond dimension 4

Beyond dimension 4 the situation becomes more complicated
as not all integral 4-cocycles of M are realized as c2 of a
principal SU(2)-bundle π : P → M and moreover multiple
bundles can have the same c2(P).

More precisely, principal SU(2)-bundles are classified upto
isomorphism by homotopy classes of maps into the classifying
space M → BSU(2). However, the complete homotopy type of
S3 = SU(2) is still unknown, and therefore also for BSU(2).

However Serre’s theorem tells us that
πj(BSU(2))⊗Q ∼= πj(K (Z,4))⊗Q, i.e. the homotopy groups of
degree higher than 4 are all torsion.



Spherical T-duality beyond dimension 4

For example, recall that principal SU(2)-bundles over S5 are
classified by π4(SU(2)) ∼= Z2, while H4(S5,Z) = 0.

By a theorem of Granja, there is a natural number N(d) where
d = dim(M), such that if α ∈ N(d)×H4(M,Z), then it is the 2nd
Chern class of a principal SU(2)-bundle over M. Therefore a
pair (P,H) is spherical T-dualizable if π∗(H) ∈ N(d)×H4(M;Z).
Then π∗(H) = c2(P̂) where P̂ is a principal SU(2)-bundle over
M. However, this does not necessarily uniquely specify P̂. But
at most, there are finitely many choices.

We will simply assert that a spherical T-dual π̂ : P̂ → M be any
SU(2)-bundle with c2(P̂) = π∗H, with Ĥ defined such that
π̂∗Ĥ = c2(P) with p̂∗H = p∗Ĥ on the correspondence space
P ×M P̂.



Spherical T-duality beyond dimension 4

T-duality induces an isomorphism on twisted cohomologies with
real or rational coefficients.

Theorem

Heven(P,H;Q) ∼= Hodd (P̂, Ĥ ;Q),

Hodd (P,H;Q) ∼= Heven(P̂, Ĥ ;Q).

There is a similar isomorphism of 7-twisted K-theories with
parity shift, upto Z2-extensions.



Comments and open questions

1 T-duality for non-principal SU(2)-bundles (non-uniqueness,
even for S4)

2 A generalised geometry counterpart of spherical T-duality?
3 What is the physics behind spherical T-duality?
4 What are useful geometric realisations of integral

7-cocycles?
5 Is there a useful geometric description of 7-twisted

K-theory?
6 When dimM ≥ 4, then it is known that not every spherical

pair (P,H) has a spherical T-dual. Can the missing
spherical T-duals be obtained some other way?

7 Is there a C∗-algebra version of spherical T-duality?



THANK YOU
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