Alexandrov-Fenchel type inequalities in the hyperbolic space (Joint work with Guofang Wang and Jie Wu)

Yuxin GE

Université Paris Est Créteil

Singapore, Decemeber 9 2014

Alexandrov-Fenchel inequality in Euclidean space

- $\Omega \subset \mathbb{R}^n$ convex domain.
- $\kappa = (\kappa_1, \kappa_2, \cdots, \kappa_{n-1})$ set of the principal curvatures of $\Sigma := \partial \Omega$
- $\sigma_k : \mathbb{R}^{n-1} \to \mathbb{R}$ the k-th elementary symmetric function.
- Alexandrov-Fenchel inequality : for $0 \le j < k \le n-1$

(1)
$$\int_{\Sigma} \sigma_k \ge C_{n-1}^k \omega_{n-1} \left(\frac{1}{C_{n-1}^j} \frac{1}{\omega_{n-1}} \int_{\Sigma} \sigma_j \right)^{\frac{n-1-k}{n-1-j}},$$

where ω_{n-1} is the area of the standard sphere S^{n-1} .

Hyperbolic Alexandrov-Fenchel inequality

Theoreme 1 (G-Wang-Wu)JDG

Let Σ be a horospherical convex hypersurface $(\kappa_i \ge 1)$ in the hyperbolic space \mathbb{H}^n . We have for $2k \le n-1$

$$\int_{\Sigma} \sigma_{2k} \ge C_{n-1}^{2k} \omega_{n-1} \left\{ \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{1}{k}} + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{1}{k} \frac{n-1-2k}{n-1}} \right\}^{k}$$

Equality holds if and only if Σ is a geodesic sphere.

Weighted hyperbolic Alexandrov-Fenchel inequality

Theoreme 2 (G-Wang-Wu)

Let Σ be a horospherical convex hypersurface in the hyperbolic space \mathbb{H}^n . We have

$$\int_{\Sigma} V \sigma_{2k-1} d\mu \ge C_{n-1}^{2k-1} \omega_{n-1} \left(\left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n}{k(n-1)}} + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n-2k}{k(n-1)}} \right)^k$$

Equality holds if and only if Σ is a geodesic sphere centered at x_0 in \mathbb{H}^n .

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

Asymptotically flat Riemannian manifolds

ADM mass was introduced by Arnowitt-Deser-Misner(61) **Definition 1**: A complete manifold (\mathcal{M}^n, g) is an asymptotically flat (AF) of order τ if there is a compact set K s.t. $\mathcal{M} \setminus K$ is diffeomorphic to $\mathbb{R}^n \setminus B_R(0)$ for some R > 0 and

$$g_{ij} = \delta_{ij} + \sigma_{ij}$$

with

$$|\sigma_{ij}| + |x||\partial\sigma_{ij}| + |x|^2|\partial^2\sigma_{ij}| = O(|x|^{-\tau}),$$

Definition 2 : The ADM mass

(2)
$$m_{ADM} := \frac{1}{2(n-1)\omega_{n-1}} \lim_{r \to \infty} \int_{S_r} (\partial_i g_{ij} - \partial_j g_{ii}) \nu_j dS,$$

where $\omega_{n-1} = |\mathbb{S}^{n-1}|$, S_r Euclidean sphere, ν unit normal.

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

Classical results

• Bartnik (86)

 $\tau > (n-2)/2$ and $R_g \in L^1 \Rightarrow m_{ADM}$ is geometric invariant.

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

Classical results

• Bartnik (86)

 $\tau > (n-2)/2$ and $R_g \in L^1 \Rightarrow m_{ADM}$ is geometric invariant.

• **Positive mass conjecture(PMT)** : Any asymptotically flat Riemannian manifold \mathcal{M}^n with a suitable decay order and with nonnegative scalar curvature has nonnegative ADM mass?

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

Classical results

• Bartnik (86)

 $\tau > (n-2)/2$ and $R_g \in L^1 \Rightarrow m_{ADM}$ is geometric invariant.

- Positive mass conjecture(PMT) : Any asymptotically flat Riemannian manifold \mathcal{M}^n with a suitable decay order and with nonnegative scalar curvature has nonnegative ADM mass?
- Answer

Schoen-Yau $n \leq 7$ (79) LCF $\forall n$ (88) Witten Spin manifold $\forall n$ (81) Lam Asymptotically flat graph in $\mathbb{R}^{n+1} \forall n$ (10).

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

Classical results

• Bartnik (86)

 $\tau > (n-2)/2$ and $R_g \in L^1 \Rightarrow m_{ADM}$ is geometric invariant.

- Positive mass conjecture(PMT) : Any asymptotically flat Riemannian manifold \mathcal{M}^n with a suitable decay order and with nonnegative scalar curvature has nonnegative ADM mass?
- Answer

Schoen-Yau $n \leq 7$ (79) LCF $\forall n$ (88) Witten Spin manifold $\forall n$ (81) Lam Asymptotically flat graph in $\mathbb{R}^{n+1} \forall n$ (10).

• Penrose inequality : $m_{ADM} \ge \frac{1}{2} \left(\frac{|\Sigma|}{w_{n-1}}\right)^{(n-2)/(n-1)}$ Huisken-Ilmanen and Bray n = 3 and Bray-Lee $n \le 7$

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

Asymptotically hyperbolic manifolds

Hyperbolic mass is introduced by Wang and Cruściel-Herzlich Hyperbolic metric $(\mathbb{H}^n, b = dr^2 + \sinh^2 r d\Theta^2)$, where $d\Theta^2$ standard metric on the sphere Definition 3 : A Riemannian manifold (\mathcal{M}^n, g) is asymptotically hyperbolic of decay order τ if \exists a compact subset K and a diffeomorphism at infinity $\Phi : \mathcal{M}^n \setminus K \to \mathbb{H}^n \setminus B$ (B is a closed ball), s.t. $(\Phi^{-1})^*g$ and b are equivalent on $\mathbb{H}^n \setminus B$ and

$$\|(\Phi^{-1})^*g - b\|_b + \|\bar{\nabla}\left((\Phi^{-1})^*g\right)\|_b + \|\bar{\nabla}^2\left((\Phi^{-1})^*g\right)\|_b = O(e^{-\tau r}),$$

where $\overline{\nabla}$ is covariant derivative w.r.t. hyperbolic metric b.

• Definition 4 :

$$\mathbb{N}_b := \{ V \in C^{\infty}(\mathbb{H}^n) | \mathrm{Hess}^b V = Vb \}.$$

• **Remark** : \mathbb{N}_b is an (n+1)-dimensional vector space spanned

$$V_{(0)} = \cosh r, \ V_{(1)} = x^1 \sinh r, \ \cdots, \ V_{(n)} = x^n \sinh r,$$

where x^1, x^2, \dots, x^n are the coordinate functions on \mathbb{S}^{n-1} . \mathbb{N}_b is equiped with a Lorentz inner product η with signature $(+, -, \dots, -)$ s.t.

 $\eta(V_{(0)}, V_{(0)}) = 1$, and $\eta(V_{(i)}, V_{(i)}) = -1$ for $i = 1, \dots, n$

• Definition 5 :

$$\mathbb{N}_b^1 = \{ V = \cosh \operatorname{dist}_b(x_0, \cdot), x_0 \in \mathbb{H}^n \}$$

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

• Condition :

$$\int_{\mathcal{M}} \cosh r \ |R + n(n-1)| d\mu < \infty, \ \tau > n/2$$

• Condition :

$$\int_{\mathcal{M}} \cosh r \ |R + n(n-1)| d\mu < \infty, \ \tau > n/2$$

• **Definition 6** : Mass functional of (\mathcal{M}^n, g) with respect to Φ

$$H_{\Phi}(V) = \lim_{r \to \infty} \int_{S_r} (V(\operatorname{div}^b e - d\operatorname{tr}^b e) + (\operatorname{tr}^b e) dV - e(\nabla^b V, \cdot)) \nu d\mu,$$

where $e := \Phi_* g - b$, S_r is a geodesic sphere with radius r, ν is the outer normal.

• Condition :

$$\int_{\mathcal{M}} \cosh r \ |R + n(n-1)| d\mu < \infty, \ \ \tau > n/2$$

• **Definition 6** : Mass functional of (\mathcal{M}^n, g) with respect to Φ

$$H_{\Phi}(V) = \lim_{r \to \infty} \int_{S_r} (V(\operatorname{div}^b e - d\operatorname{tr}^b e) + (\operatorname{tr}^b e) dV - e(\nabla^b V, \cdot))\nu d\mu,$$

where $e := \Phi_* g - b$, S_r is a geodesic sphere with radius r, ν is the outer normal.

• If A is an isometry of the hyperbolic metric b

$$H_{A\circ\Phi}(V) = H_{\Phi}(V \circ A^{-1})$$

• Condition :

$$\int_{\mathcal{M}} \cosh r \ |R + n(n-1)| d\mu < \infty, \ \ \tau > n/2$$

• **Definition 6** : Mass functional of (\mathcal{M}^n, g) with respect to Φ

$$H_{\Phi}(V) = \lim_{r \to \infty} \int_{S_r} (V(\operatorname{div}^b e - d\operatorname{tr}^b e) + (\operatorname{tr}^b e) dV - e(\nabla^b V, \cdot))\nu d\mu,$$

where $e := \Phi_* g - b$, S_r is a geodesic sphere with radius r, ν is the outer normal.

• If A is an isometry of the hyperbolic metric b

$$H_{A\circ\Phi}(V) = H_{\Phi}(V \circ A^{-1})$$

• Definition 7 :
$$m_{ADM}^{\mathbb{H}} := \frac{1}{(n-1) \omega_{n-1}} \inf_{V \in \mathbb{N}_b^1} H^{\Phi}(V)$$

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

Gauss-Bonnet curvature

• **Definition 8**: *k*-th Gauss-Bonnet curvature : $L_k := \frac{1}{2^k} \delta_{j_1 j_2 \cdots j_{2k-1} j_{2k}}^{i_1 i_2 \cdots i_{2k-1} i_{2k}} R_{i_1 i_2}^{j_1 j_2} \cdots R_{i_{2k-1} i_{2k}}^{j_{2k-1} j_{2k}},$ where

$$\delta_{i_{1}i_{2}\cdots i_{r}}^{j_{1}j_{2}\cdots j_{r}} = \det \begin{pmatrix} \delta_{i_{1}}^{j_{1}} & \delta_{i_{1}}^{j_{2}} & \cdots & \delta_{i_{1}}^{j_{r}} \\ \delta_{i_{2}}^{j_{1}} & \delta_{i_{2}}^{j_{2}} & \cdots & \delta_{i_{2}}^{j_{r}} \\ \vdots & \vdots & \vdots & \vdots \\ \delta_{i_{r}}^{j_{1}} & \delta_{i_{r}}^{j_{2}} & \cdots & \delta_{i_{r}}^{j_{r}} \end{pmatrix}$$

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

Gauss-Bonnet curvature

• **Definition 8**: *k*-th Gauss-Bonnet curvature : $L_k := \frac{1}{2^k} \delta_{j_1 j_2 \cdots j_{2k-1} j_{2k}}^{i_1 i_2 \cdots i_{2k-1} i_{2k}} R_{i_1 i_2}^{j_1 j_2} \cdots R_{i_{2k-1} i_{2k}}^{j_{2k-1} j_{2k}},$ where

$$\delta_{i_{1}i_{2}\cdots i_{r}}^{j_{1}j_{2}\cdots j_{r}} = \det \begin{pmatrix} \delta_{i_{1}}^{j_{1}} & \delta_{i_{1}}^{j_{2}} & \cdots & \delta_{i_{1}}^{j_{r}} \\ \delta_{i_{2}}^{j_{1}} & \delta_{i_{2}}^{j_{2}} & \cdots & \delta_{i_{2}}^{j_{r}} \\ \vdots & \vdots & \vdots & \vdots \\ \delta_{i_{r}}^{j_{1}} & \delta_{i_{r}}^{j_{2}} & \cdots & \delta_{i_{r}}^{j_{r}} \end{pmatrix}$$

• Decomposition of the Gauss-Bonnet curvature

$$L_k = P_{(k)}^{stjl} R_{stjl},$$

where

$$2^k P_{(k)}^{stlj} = \\ \delta_{j_1j_2\cdots j_{2k-3}j_{2k-2}j_{2k-1}j_{2k}}^{i_1i_2\cdots i_{2k-3}i_{2k-2}st} R_{i_1i_2}^{j_1j_2} \cdots R_{i_{2k-3}i_{2k-2}}^{j_{2k-3}j_{2k-2}} g^{j_{2k-1}l} g^{j_{2k}j}$$

 Alexandrov-Fenchel inequality
 ADM Mass

 Some motivations
 Gauss-Bonnet-Chern Mass on AH manifolds

 Applications
 Anti-de Sitter Schwarzschild manifolds

•
$$k = 1$$
,
 $L_1 = R = R_{stjl} P_{(1)}^{stjl}$,
and
 $P_{(1)}^{stjl} = \frac{1}{2} (g^{sj} g^{tl} - g^{sl} g^{tj})$.
• $k = 2$,
 $L_2 = \frac{1}{4} \delta_{j_1 j_2 j_3 j_4}^{i_1 i_2 i_3 j_4} R^{j_1 j_2}{}_{i_1 i_2} R^{j_3 j_4}{}_{i_3 i_4} = ||Rm||^2 - 4 ||Ric||^2 + R^2$
and
 $P_{(2)}^{stjl} = R^{stjl} + R^{tj} g^{sl} - R^{tl} g^{sj} - R^{sj} g^{tl} + R^{sl} g^{tj} + \frac{1}{2} R(g^{sj} g^{tl} - g^{sl} g^{tj})$

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

Properties of tensor P

• $P_{(k)}$ shares the same symmetry and antisymmetry with the Riemann curvature tensor that

$$P_{(k)}^{stjl} = -P_{(k)}^{tsjl} = -P_{(k)}^{stlj} = P_{(k)}^{jlst}$$

- $P_{(k)}$ satisfies the first Bianchi identity, i.e., $P^{stjl} + P^{tjsl} + P^{jstl} = 0.$
- $P_{(k)}$ is divergence-free,

$$\nabla_s P^{stjl}_{(k)} = 0.$$

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

Gauss-Bonnet-Chern Mass on AH manifolds

• A new four-tensor *Riem*

$$\widetilde{\operatorname{Riem}}_{ijsl}(g) = \tilde{R}_{ijsl}(g) := R_{ijsl}(g) + g_{is}g_{jl} - g_{il}g_{js}.$$

$\tilde{L}_k := \frac{1}{2^k} \delta_{j_1 j_2 \cdots j_{2k-1} j_{2k}}^{i_1 i_2 \cdots i_{2k-1} i_{2k}} \tilde{R}_{i_1 j_2}^{j_1 j_2} \cdots \tilde{R}_{i_{2k-1} i_{2k}}^{j_{2k-1} j_{2k}} = \tilde{R}_{stjl} \tilde{P}_{(k)}^{stjl},$

$$2^k \tilde{P}^{stjl}_{(k)} := \\ \delta^{i_1 i_2 \cdots i_{2k-3} j_{2k-2} j_{2k-1} j_{2k}}_{j_1 j_2 \cdots j_{2k-3} j_{2k-2} j_{2k-1} j_{2k}} \tilde{R}^{j_1 j_2}_{i_1 i_2} \cdots \tilde{R}^{j_{2k-3} j_{2k-2}}_{i_{2k-3} j_{2k-2}} g^{j_{2k-1} j} g^{j_{2k} l}.$$

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

Gauss-Bonnet-Chern Mass on AH manifolds

• A new four-tensor *Riem*

$$\widetilde{\operatorname{Riem}}_{ijsl}(g) = \tilde{R}_{ijsl}(g) := R_{ijsl}(g) + g_{is}g_{jl} - g_{il}g_{js}.$$

$\tilde{L}_k := \frac{1}{2^k} \delta^{i_1 i_2 \cdots i_{2k-1} i_{2k}}_{j_1 j_2 \cdots j_{2k-1} j_{2k}} \tilde{R}^{j_1 j_2}_{i_1 i_2} \cdots \tilde{R}^{j_{2k-1} j_{2k}}_{i_{2k} - i_{2k}} = \tilde{R}_{stjl} \tilde{P}^{stjl}_{(k)},$

$$2^k \tilde{P}^{stjl}_{(k)} := \\ \delta^{i_1 i_2 \cdots i_{2k-3} i_{2k-2} st}_{j_1 j_2 \cdots j_{2k-3} j_{2k-2} j_{2k-1} j_{2k}} \tilde{R}^{j_1 j_2}_{i_1 i_2} \cdots \tilde{R}^{j_{2k-3} i_{2k-2}}_{i_{2k-3} i_{2k-2}} g^{j_{2k-1} j} g^{j_{2k} l}.$$

• $\tilde{P}_{(k)}$ satisfies the same properties as $P_{(k)}$

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

Examples

$$\begin{split} &\tilde{L}_{1} = L_{1} + n(n-1) = R + n(n-1) \\ &\tilde{L}_{2} = L_{2} + 2(n-2)(n-3)R + n(n-1)(n-2)(n-3) \\ &\tilde{P}_{(1)}^{stjl} = P_{(1)}^{stjl} = \frac{1}{2}(g^{sj}g^{tl} - g^{sl}g^{tj}) \\ &\tilde{P}_{(2)}^{stjl} = \\ &\tilde{R}^{stjl} + \tilde{R}^{tj}g^{sl} - \tilde{R}^{sj}g^{tl} - \tilde{R}^{tl}g^{sj} + \tilde{R}^{sl}g^{tj} + \frac{1}{2}\tilde{R}(g^{sj}g^{tl} - g^{sl}g^{tj}) \\ &\text{where } \tilde{R}^{sj} = g_{tl}\tilde{R}^{stjl}, \quad \tilde{R} = g_{sj}\tilde{R}^{sj}. \\ &\tilde{P}_{(2)}^{stjl} = P_{(2)}^{stjl} + (n-2)(n-3)P_{(1)}^{stjl}. \end{split}$$

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

• Conditions :

$\tau > \frac{n}{k+1}, V \in \mathbb{N}_b$ and $V\tilde{L}_k$ is integrable in (\mathcal{M}^n, g)

 Alexandrov-Fenchel inequality
 ADM Mass

 Some motivations
 Gauss-Bonnet-Chern Mass on AH manifolds

 Applications
 Anti-de Sitter Schwarzschild manifolds

• Conditions :

 $\tau > \frac{n}{k+1}, V \in \mathbb{N}_b$ and $V\tilde{L}_k$ is integrable in (\mathcal{M}^n, g) • Definition 9 : Gauss-Bonnet-Chern Mass functional

$$H_k^{\Phi}(V) = \lim_{r \to \infty} \int_{S_r} \left(\left(V \bar{\nabla}_l e_{js} - e_{js} \bar{\nabla}_l V \right) \tilde{P}_{(k)}^{ijsl} \right) \nu_i d\mu$$

• Conditions :

 $\tau > \frac{n}{k+1}, V \in \mathbb{N}_b$ and $V\tilde{L}_k$ is integrable in (\mathcal{M}^n, g) • Definition 9 : Gauss-Bonnet-Chern Mass functional

$$H_k^{\Phi}(V) = \lim_{r \to \infty} \int_{S_r} \left(\left(V \bar{\nabla}_l e_{js} - e_{js} \bar{\nabla}_l V \right) \tilde{P}_{(k)}^{ijsl} \right) \nu_i d\mu$$

• Definition 10 : Gauss-Bonnet-Chern mass

(3)
$$m_k^{\mathbb{H}} := \frac{(n-2k)!}{2^{k-1}(n-1)! \,\omega_{n-1}} \inf_{V \in \mathbb{N}_b^1} H_k^{\Phi}(V).$$

provided H_k^{Φ} is timeline future directed on \mathbb{N}_b^1 .

• Conditions :

 $\tau > \frac{n}{k+1}, V \in \mathbb{N}_b$ and $V\tilde{L}_k$ is integrable in (\mathcal{M}^n, g) • Definition 9 : Gauss-Bonnet-Chern Mass functional

$$H_k^{\Phi}(V) = \lim_{r \to \infty} \int_{S_r} \left(\left(V \bar{\nabla}_l e_{js} - e_{js} \bar{\nabla}_l V \right) \tilde{P}_{(k)}^{ijsl} \right) \nu_i d\mu$$

• Definition 10 : Gauss-Bonnet-Chern mass

(3)
$$m_k^{\mathbb{H}} := \frac{(n-2k)!}{2^{k-1}(n-1)! \,\omega_{n-1}} \inf_{V \in \mathbb{N}_b^1} H_k^{\Phi}(V).$$

provided H_k^{Φ} is timeline future directed on \mathbb{N}_b^1 .

• **Remark** $m_k^{\mathbb{H}}$ vanishes if $\tau > \frac{n}{k}$, and well-defined and non-trivial range for GBC mass $m_k^{\mathbb{H}}$ is $\tau \in (\frac{n}{k+1}, \frac{n}{k}]$. The decay order of the anti-de Sitter Schwarzschild type metric is $\frac{n}{k}$.

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

Anti-de Sitter Schwarzschild manifolds

• **Definition 11 :** anti-de Sitter Schwarzschild metric (m > 0)

$$g_{\text{adS-Sch}} = (1 + \rho^2 - \frac{2m}{\rho^{\frac{n}{k}-2}})^{-1}d\rho^2 + \rho^2 d\Theta^2;$$

ADM Mass Gauss-Bonnet curvature Gauss-Bonnet-Chern Mass on AH manifolds Anti-de Sitter Schwarzschild manifolds

Anti-de Sitter Schwarzschild manifolds

• **Definition 11 :** anti-de Sitter Schwarzschild metric (m > 0)

$$g_{\text{adS-Sch}} = (1 + \rho^2 - \frac{2m}{\rho^{\frac{n}{k}-2}})^{-1}d\rho^2 + \rho^2 d\Theta^2;$$

- ADS metric can be realized as a graph over the hyperbolic metric \mathbb{H}^n .;
- $\tilde{L}_k(g) = 0;$

•
$$m_k^{\mathbb{H}} = m^k$$
.

Theoreme 3 (G-Wang-Wu)

Suppose that (\mathcal{M}^n, g) is an asymptotically hyperbolic manifold of decay order $\tau > \frac{n}{k+1}$ and for $V \in \mathbb{N}_b$, $V\tilde{L}_k$ is integrable on (\mathcal{M}^n, g) , then the mass functional $H_k^{\Phi}(V)$ is well-defined and does not depend on the choice of the coordinates at infinity used in the definition in sense that $H_k^{\Phi_1}(V) = H_k^{\Phi_2}(V \circ A)$ with some isometry A of b.

Positive Mass Theorem

Theoreme 4 (G-Wang-Wu)

Let $(\mathcal{M}^n, g) = (\mathbb{H}^n, b + V^2 df \otimes df)$ be the graph of a smooth function $f : \mathbb{H}^n \to \mathbb{R}$ which satisfies $V\tilde{L}_k$ is integrable and (\mathcal{M}^n, g) is asymptotically hyperbolic of decay order $\tau > \frac{n}{k+1}$. Then we have

$$m_k^{\mathbb{H}} = c(n,k) \int_{\mathcal{M}^n} \frac{1}{2} \frac{V \tilde{L}_k}{\sqrt{1 + V^2 |\bar{\nabla}f|^2}} dV_g.$$

where $V = V_{(0)} = \cosh r$. In particular, $\tilde{L}_k \ge 0$ implies $m_k^{\mathbb{H}} \ge 0$.

Penrose Inequality by Weighted hyperbolic Alexandrov-Fenchel inequality

Theoreme 5 (G-Wang-Wu)

Assume conditions given in Theorem 4 hold and $f : \mathbb{H}^n \setminus \Omega \to \mathbb{R}$ with $\partial \Omega = \Sigma$. If each connected component of Σ is horospherical convex, then

$$m_k^{\mathbb{H}} \ge \frac{1}{2^k} \left(\left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n}{k(n-1)}} + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n-2k}{k(n-1)}} \right)^k$$

provided that
 $\tilde{L}_k \ge 0.$

Equality \Leftrightarrow anti-de Sitter Schwarzschild type metric.

Remark : k = 1 Lima-Girão, Dahl-Gicquaud-Sakovich(12).

Idea of proof of Theorem 1 : case k = 2

• set
$$p_k := \sigma_k / C_{n-1}^k$$
.

• Energy functional

$$Q(\Sigma) := |\Sigma|^{-\frac{n-5}{n-1}} \int_{\Sigma} (p_4 - 2p_2 + 1) d\mu.$$

for any convex hypersurface.

- Inverse curvature flow $\frac{d}{dt}X = \frac{p_3}{p_4}\nu.$
- Variational inequality $\frac{d}{dt} \log Q(\Sigma_t) \leq (n-5) \int_{\Sigma_t} (p_5 - 2p_3 + p_1) \frac{p_3}{p_4} - (p_4 - 2p_2 + 1) d\mu.$

Properties of flow :

- Flow preserves the horospherical convexity;
- Q is non-increasing under flow;
- Flow converges asymptotically to a conformal sphere at infinity (Gerhardt) H-convexity ⇔ positive Schouten tensor at ∞
 ⇒ lim_{t→∞} Q(Σ_t) ≥ w⁴_{n-1}

Monotonicity of Q

Refined Newton-MacLaurin inequality

Lemma

Let n > 5 and $\kappa_i \ge 1$ for all *i*. Then

(4)
$$\frac{p_3}{p_4}(p_5 - 2p_3 + p_1) \le p_4 - 2p_2 + 1.$$

Equality holds if and only if (5) (*i*) $\kappa_i = \kappa_j \forall i, j$, or (*ii*) $\exists i$ with $\kappa_i > 1 \& \kappa_j = 1 \forall j \neq i$.

Remark. Classical Newton-MacLaurin inequalities :

 $\frac{p_3 p_5}{p_4} \le p_4, \quad -2\frac{p_3^2}{p_4} \le -2p_2, \quad \frac{p_3 p_1}{p_4} \ge 1$

Two inequalities

- Claim 1. $3(p_2p_4 p_3^2) + (p_3p_1 p_4) \le 0$. Equality holds if and only if κ satisfies (5).
- Claim 2. $3(p_5p_3 p_4^2) + (p_3p_1 p_4) \le 0$. Equality holds if and only if κ satisfies (5).

For $\kappa = (\kappa_1, \kappa_2, \cdots, \kappa_n)$, define auxiliary function

$$F_n(x) := \sum_{i=0}^n C_n^i p_i x^{n-i} = \prod_{i=1}^n (x + \kappa_i)$$
$$F'_n(x) = \prod_{i=1}^{n-1} (x + \kappa'_i).$$

Facts. $\forall 1 \leq i \leq n-1, \ p_k(\kappa) = p_k(\kappa').$

Results in low dimensions

• Claim 1 in case n = 4.

$$= \frac{3(p_2p_4 - p_3^2) + p_1p_3 - p_4}{16\sum_{cyc}\kappa_1\kappa_2(1 - \kappa_1\kappa_2)(\kappa_3 - \kappa_4)^2} \le 0.$$

• Claim 2 in case n = 5.

$$= \frac{3(p_5p_3 - p_4^2) + (p_3p_1 - p_4)}{100} \sum_{cyc} \kappa_1 \kappa_2 (\kappa_3 - \kappa_4)^2 + \frac{3}{100} \Big(-\sum_{cyc} (\kappa_1 \kappa_2 \kappa_3)^2 (\kappa_4 - \kappa_5)^2 \Big) = \frac{1}{100} \sum_{cyc} \left[\kappa_1 \kappa_2 + \kappa_2 \kappa_3 + \kappa_1 \kappa_3 - 3(\kappa_1 \kappa_2 \kappa_3)^2 \right] (\kappa_4 - \kappa_5)^2 \leq 0.$$

Idea of proof of Theorem 2

Step 1 Set $V = \cosh(r)$, $u = \langle \overline{\nabla}V, \nu \rangle > 0$ support function and $p_j = \frac{1}{C_{n-1}^j} \sigma_j$ normalized *j*-th mean curvature. **Two Minkowski integral formulas**

•
$$\int_{\Sigma} uV p_k d\mu \ge \int_{\Sigma} V^2 p_{k-1} d\mu$$
,
for any convex hypersurface. Equality holds iff Σ is a
centered geodesic sphere.

•
$$\int_{\Sigma} u^2 p_k d\mu \ge \int_{\Sigma} V u p_{k-1} d\mu$$
,
for any convex hypersurface. Equality holds iff Σ is a
centered geodesic sphere.

Step 2 : A key lemma

Lemma

Let $1 \le k < n-1$. Any horospherical convex hypersurface Σ in the hyperbolic space \mathbb{H}^n satisfies

$$\int_{\Sigma} V p_{k+1} \ge \int_{\Sigma} \left(V p_{k-1} + \frac{p_{k+1}}{V} \right) d\mu.$$

- Energy functional $E := \int_{\Sigma} \left(V p_{k+1} - V p_{k-1} - \frac{p_{k+1}}{V} \right) d\mu.$
- Conformal flow : $\frac{\partial X}{\partial t} = -V\nu$

• Energy functional

$$E := \int_{\Sigma} \left(V p_{k+1} - V p_{k-1} - \frac{p_{k+1}}{V} \right) d\mu.$$

- Conformal flow : $\frac{\partial X}{\partial t} = -V\nu$
- Properties of flow :
 - E is non-increasing under flow;
 - limit of E under flow is 0;
 - Flow preserves the horospherical convexity

Step 3:

- Induction argument;
- Hyperbolic Alexandrov-Fenchel inequality without weight;

Thank you for your attention!

Yuxin GE Alexandrov-Fenchel type inequalities in the hyp