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Université Paris Est Créteil
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Alexandrov-Fenchel inequality in Euclidean space

Ω ⊂ Rn convex domain.

κ = (κ1, κ2, · · · , κn−1) set of the principal curvatures of
Σ := ∂Ω

σk : Rn−1 → R the k-th elementary symmetric
function.

Alexandrov-Fenchel inequality : for 0 ≤ j < k ≤ n− 1

(1)

∫
Σ

σk ≥ Ck
n−1ωn−1

(
1

Cj
n−1

1

ωn−1

∫
Σ

σj

)n−1−k
n−1−j

,

where ωn−1 is the area of the standard sphere Sn−1.
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Hyperbolic Alexandrov-Fenchel inequality

Theoreme 1 (G-Wang-Wu)JDG

Let Σ be a horospherical convex hypersurface (κi ≥ 1) in
the hyperbolic space Hn. We have for 2k ≤ n− 1

∫
Σ

σ2k ≥ C2k
n−1ωn−1

{(
|Σ|
ωn−1

) 1
k

+

(
|Σ|
ωn−1

) 1
k

n−1−2k
n−1

}k

.

Equality holds if and only if Σ is a geodesic sphere.
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Weighted hyperbolic Alexandrov-Fenchel

inequality

Theoreme 2 (G-Wang-Wu)

Let Σ be a horospherical convex hypersurface in the
hyperbolic space Hn. We have

∫
Σ

V σ2k−1dµ ≥ C2k−1
n−1 ωn−1

((
|Σ|
ωn−1

) n
k(n−1)

+

(
|Σ|
ωn−1

) n−2k
k(n−1)

)k

.

Equality holds if and only if Σ is a geodesic sphere centered
at x0 in Hn.
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ADM Mass
Gauss-Bonnet curvature
Gauss-Bonnet-Chern Mass on AH manifolds
Anti-de Sitter Schwarzschild manifolds

Asymptotically flat Riemannian manifolds

ADM mass was introduced by Arnowitt-Deser-Misner(61)
Definition 1 : A complete manifold (Mn, g) is an
asymptotically flat (AF) of order τ if there is a compact set
K s.t. M\K is diffeomorphic to Rn \BR(0) for some
R > 0 and

gij = δij + σij

with
|σij|+ |x||∂σij|+ |x|2|∂2σij| = O(|x|−τ ),

Definition 2 : The ADM mass

(2) mADM :=
1

2(n− 1)ωn−1

lim
r→∞

∫
Sr

(∂igij − ∂jgii)νjdS,

where ωn−1 = |Sn−1|, Sr Euclidean sphere, ν unit normal.
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Classical results

Bartnik (86)
τ > (n− 2)/2 and Rg ∈ L1 ⇒ mADM is geometric
invariant.

Positive mass conjecture(PMT) : Any
asymptotically flat Riemannian manifold Mn with a
suitable decay order and with nonnegative scalar
curvature has nonnegative ADM mass ?
Answer
Schoen-Yau n ≤ 7 (79) LCF ∀n (88)
Witten Spin manifold ∀n (81)
Lam Asymptotically flat graph in Rn+1 ∀n (10).

Penrose inequality : mADM ≥ 1
2

(
|Σ|
wn−1

)(n−2)/(n−1)

Huisken-Ilmanen and Bray n = 3 and Bray-Lee n ≤ 7
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Asymptotically hyperbolic manifolds

Hyperbolic mass is introduced by Wang and
Cruściel-Herzlich
Hyperbolic metric (Hn, b = dr2 + sinh2 rdΘ2),
where dΘ2 standard metric on the sphere
Definition 3 : A Riemannian manifold (Mn, g) is
asymptotically hyperbolic of decay order τ if ∃ a compact
subset K and a diffeomorphism at infinity
Φ :Mn \K → Hn \B (B is a closed ball), s.t. (Φ−1)∗g and
b are equivalent on Hn \B and

‖(Φ−1)∗g−b‖b+‖∇̄
(
(Φ−1)∗g

)
‖b+‖∇̄2

(
(Φ−1)∗g

)
‖b = O(e−τr),

where ∇̄ is covariant derivative w.r.t. hyperbolic metric b.

Yuxin GE Alexandrov-Fenchel type inequalities in the hyperbolic space



Alexandrov-Fenchel inequality
Some motivations

Applications
Idea of the proof

ADM Mass
Gauss-Bonnet curvature
Gauss-Bonnet-Chern Mass on AH manifolds
Anti-de Sitter Schwarzschild manifolds

Definition 4 :

Nb := {V ∈ C∞(Hn)|HessbV = V b}.

Remark : Nb is an (n+ 1)-dimensional vector space
spanned

V(0) = cosh r, V(1) = x1 sinh r, · · · , V(n) = xn sinh r,

where x1, x2, · · · , xn are the coordinate functions on
Sn−1. Nb is equiped with a Lorentz inner product η
with signature (+,−, · · · ,−) s.t.

η(V(0), V(0)) = 1, and η(V(i), V(i)) = −1 for i = 1, · · · , n.

Definition 5 :

N1
b = {V = cosh distb(x0, ·), x0 ∈ Hn}
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Condition :∫
M

cosh r |R + n(n− 1)|dµ <∞, τ > n/2

Definition 6 : Mass functional of (Mn, g) with
respect to Φ

HΦ(V ) = lim
r→∞

∫
Sr

(V (divbe−dtrbe)+(trbe)dV−e(∇bV, ·))νdµ,

where e := Φ∗g − b, Sr is a geodesic sphere with radius
r, ν is the outer normal.

If A is an isometry of the hyperbolic metric b

HA◦Φ(V ) = HΦ(V ◦ A−1)

Definition 7 : mH
ADM :=

1

(n− 1) ωn−1

inf
V ∈N1

b

HΦ(V )
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Gauss-Bonnet curvature

Definition 8 : k-th Gauss-Bonnet curvature :
Lk := 1

2k
δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−1i2k

j2k−1j2k ,
where

δj1j2···jri1i2···ir = det


δj1i1 δj2i1 · · · δjri1
δj1i2 δj2i2 · · · δjri2
...

...
...

...

δj1ir δj2ir · · · δjrir

 .

Decomposition of the Gauss-Bonnet curvature

Lk = P stjl
(k) Rstjl,

where
2kP stlj

(k) =

δ
i1i2···i2k−3i2k−2st
j1j2···j2k−3j2k−2j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−3i2k−2

j2k−3j2k−2gj2k−1lgj2kj.
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k = 1,
L1 = R = RstjlP

stjl
(1) ,

and

P stjl
(1) =

1

2
(gsjgtl − gslgtj).

k = 2,

L2 =
1

4
δi1i2i3i4j1j2j3j4

Rj1j2
i1i2R

j3j4
i3i4 = ‖Rm‖2− 4‖Ric‖2 +R2

and

P stjl
(2) = Rstjl+Rtjgsl−Rtlgsj−Rsjgtl+Rslgtj+

1

2
R(gsjgtl−gslgtj).
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Properties of tensor P

P(k) shares the same symmetry and antisymmetry with
the Riemann curvature tensor that

P stjl
(k) = −P tsjl

(k) = −P stlj
(k) = P jlst

(k) .

P(k) satisfies the first Bianchi identity, i.e.,
P stjl + P tjsl + P jstl = 0.

P(k) is divergence-free,

∇sP
stjl
(k) = 0.
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Gauss-Bonnet-Chern Mass on AH manifolds

A new four-tensor R̃iem

R̃iemijsl(g) = R̃ijsl(g) := Rijsl(g) + gisgjl − gilgjs.

L̃k :=
1

2k
δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

R̃ j1j2
i1i2

· · · R̃ j2k−1j2k
i2k−1i2k

= R̃stjlP̃
stjl
(k) ,

2kP̃ stjl
(k) :=

δ
i1i2···i2k−3i2k−2st
j1j2···j2k−3j2k−2j2k−1j2k

R̃ j1j2
i1i2

· · · R̃ j2k−3j2k−2

i2k−3i2k−2
gj2k−1jgj2kl.

P̃(k) satisfies the same properties as P(k)
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Examples

L̃1 = L1 + n(n− 1) = R + n(n− 1)

L̃2 = L2 + 2(n− 2)(n− 3)R + n(n− 1)(n− 2)(n− 3)

P̃ stjl
(1) = P stjl

(1) = 1
2
(gsjgtl − gslgtj)

P̃ stjl
(2) =

R̃stjl+R̃tjgsl−R̃sjgtl−R̃tlgsj+R̃slgtj+ 1
2
R̃(gsjgtl−gslgtj)

where R̃sj = gtlR̃
stjl, R̃ = gsjR̃

sj.

P̃ stjl
(2) = P stjl

(2) + (n− 2)(n− 3)P stjl
(1) .
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Conditions :
τ > n

k+1
, V ∈ Nb and V L̃k is integrable in (Mn, g)

Definition 9 : Gauss-Bonnet-Chern Mass functional

HΦ
k (V ) = lim

r→∞

∫
Sr

((
V ∇̄lejs − ejs∇̄lV

)
P̃ ijsl

(k)

)
νidµ

Definition 10 : Gauss-Bonnet-Chern mass

(3) mH
k :=

(n− 2k)!

2k−1(n− 1)! ωn−1

inf
V ∈N1

b

HΦ
k (V ).

provided HΦ
k is timeline future directed on N1

b .
Remark mH

k vanishes if τ > n
k
, and well-defined and

non-trivial range for GBC mass mH
k is τ ∈ ( n

k+1
, n
k
].

The decay order of the anti-de Sitter Schwarzschild
type metric is n

k
.
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Anti-de Sitter Schwarzschild manifolds

Definition 11 : anti-de Sitter Schwarzschild metric
(m > 0)

gadS−Sch = (1 + ρ2 − 2m

ρ
n
k
−2

)−1dρ2 + ρ2dΘ2;

ADS metric can be realized as a graph over the
hyperbolic metric Hn. ;

L̃k(g) = 0 ;

mH
k = mk.
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Theoreme 3 (G-Wang-Wu)

Suppose that (Mn, g) is an asymptotically hyperbolic
manifold of decay order τ > n

k+1
and for V ∈ Nb, V L̃k is

integrable on (Mn, g), then the mass functional HΦ
k (V ) is

well-defined and does not depend on the choice of the
coordinates at infinity used in the definition in sense that
HΦ1
k (V ) = HΦ2

k (V ◦ A) with some isometry A of b.

Yuxin GE Alexandrov-Fenchel type inequalities in the hyperbolic space



Alexandrov-Fenchel inequality
Some motivations

Applications
Idea of the proof

Positive Mass Theorem

Theoreme 4 (G-Wang-Wu)

Let (Mn, g) = (Hn, b+ V 2df ⊗ df) be the graph of a
smooth function f : Hn → R which satisfies V L̃k is
integrable and (Mn, g) is asymptotically hyperbolic of
decay order τ > n

k+1
. Then we have

mH
k = c(n, k)

∫
Mn

1

2

V L̃k√
1 + V 2|∇̄f |2

dVg.

where V = V(0) = cosh r. In particular, L̃k ≥ 0 implies
mH
k ≥ 0.
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Penrose Inequality by Weighted hyperbolic

Alexandrov-Fenchel inequality

Theoreme 5 (G-Wang-Wu)

Assume conditions given in Theorem 4 hold and
f : Hn \ Ω→ R with ∂Ω = Σ. If each connected component
of Σ is horospherical convex, then

mH
k ≥

1

2k

((
|Σ|
ωn−1

) n
k(n−1)

+

(
|Σ|
ωn−1

) n−2k
k(n−1)

)k

,

provided that
L̃k ≥ 0.

Equality ⇔ anti-de Sitter Schwarzschild type metric.

Remark : k = 1 Lima-Girão,Dahl-Gicquaud-Sakovich(12).
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Idea of proof of Theorem 1 : case k = 2

set pk := σk/C
k
n−1.

Energy functional

Q(Σ) := |Σ|−
n−5
n−1

∫
Σ

(p4 − 2p2 + 1)dµ.

for any convex hypersurface.

Inverse curvature flow
d

dt
X =

p3

p4

ν.

Variational inequality
d

dt
logQ(Σt) ≤

(n− 5)

∫
Σt

(p5 − 2p3 + p1)
p3

p4

− (p4 − 2p2 + 1)dµ.
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Properties of flow :

Flow preserves the horospherical convexity ;

Q is non-increasing under flow ;

Flow converges asymptotically to a conformal sphere
at infinity (Gerhardt)
H-convexity ⇔ positive Schouten tensor at ∞
⇒ limt→∞Q(Σt) ≥ w

4
n−1

n−1
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Monotonicity of Q

Refined Newton-MacLaurin inequality

Lemma

Let n > 5 and κi ≥ 1 for all i. Then

p3

p4

(p5 − 2p3 + p1) ≤ p4 − 2p2 + 1.(4)

Equality holds if and only if
(5)

(i)κi = κj ∀ i, j, or (ii)∃ i with κi > 1 &κj = 1∀j 6= i.

Remark. Classical Newton-MacLaurin inequalities :
p3p5

p4

≤ p4, −2
p2

3

p4

≤ −2p2,
p3p1

p4

≥ 1
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Two inequalities

Claim 1. 3(p2p4 − p2
3) + (p3p1 − p4) ≤ 0. Equality

holds if and only if κ satisfies (5).

Claim 2. 3(p5p3 − p2
4) + (p3p1 − p4) ≤ 0. Equality

holds if and only if κ satisfies (5).

For κ = (κ1, κ2, · · · , κn), define auxiliary function

Fn(x) :=
n∑
i=0

Ci
npix

n−i = Πn
i=1(x+ κi)

F ′n(x) = Πn−1
i=1 (x+ κ′i).

Facts. ∀1 ≤ i ≤ n− 1, pk(κ) = pk(κ
′).
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Results in low dimensions
Claim 1 in case n = 4.

3(p2p4 − p2
3) + p1p3 − p4

=
1

16

∑
cyc

κ1κ2(1− κ1κ2)(κ3 − κ4)2 ≤ 0.

Claim 2 in case n = 5.

3(p5p3 − p2
4) + (p3p1 − p4)

=
1

100

∑
cyc

κ1κ2(κ3 − κ4)2

+
3

100

(
−
∑
cyc

(κ1κ2κ3)2(κ4 − κ5)2
)

=
1

100

∑
cyc

[
κ1κ2 + κ2κ3 + κ1κ3 − 3(κ1κ2κ3)2

]
(κ4 − κ5)2

≤ 0.
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Idea of proof of Theorem 2

Step 1 Set V = cosh(r), u = 〈∇̄V, ν〉 > 0 support function
and pj = 1

Cj
n−1

σj normalized j-th mean curvature.

Two Minkowski integral formulas∫
Σ

uV pkdµ ≥
∫

Σ

V 2pk−1dµ,

for any convex hypersurface. Equality holds iff Σ is a
centered geodesic sphere.∫

Σ

u2pkdµ ≥
∫

Σ

V upk−1dµ,

for any convex hypersurface. Equality holds iff Σ is a
centered geodesic sphere.
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Step 2 : A key lemma

Lemma

Let 1 ≤ k < n− 1. Any horospherical convex hypersurface
Σ in the hyperbolic space Hn satisfies∫

Σ

V pk+1 ≥
∫

Σ

(
V pk−1 +

pk+1

V

)
dµ.
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Energy functional

E :=

∫
Σ

(
V pk+1 − V pk−1 −

pk+1

V

)
dµ.

Conformal flow :
∂X

∂t
= −V ν

Properties of flow :

E is non-increasing under flow ;
limit of E under flow is 0 ;
Flow preserves the horospherical convexity
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Energy functional

E :=

∫
Σ

(
V pk+1 − V pk−1 −

pk+1

V

)
dµ.

Conformal flow :
∂X

∂t
= −V ν

Properties of flow :

E is non-increasing under flow ;
limit of E under flow is 0 ;
Flow preserves the horospherical convexity
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Step 3 :

Induction argument ;

Hyperbolic Alexandrov-Fenchel inequality without
weight ;
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Thank you for your attention !
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