
Incomplete Models with Set-Valued Residuals
Institute for Mathematical Sciences, NUS

Andrew Chesher and Adam Rosen

CeMMAP & UCL

May 19th 2014

CR (CeMMAP & UCL) IMSVR 19/5/14 1 / 24



Incomplete models with set valued residuals

A process produces realizations of: outcomes Y , exogenous Z , unobserved
continuous U.

The paper is concerned with models restricting:

(1) dependence between U and Z and

(2) a function
h(Y ,Z ,U)

continuous in its �rst and third arguments

Y(u, z ; h) � fy : h(y , z , u) = 0g

which delivers values of Y compatible with values of Z and U .
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Incomplete models with set valued residuals

The function
h(Y ,Z ,U)

has level sets:
Y(u, z ; h) � fy : h(y , z , u) = 0g
U (y , z ; h) � fu : h(y , z , u) = 0g

Y(u, z , h): the set of values of Y compatible with Z = z and U = u.

Singleton in complete models.

U (y , z , h): the set of values of U yielding Y = y when Z = z .

Not singleton when Y discrete, U non-scalar.

If Y(u, z , h) and U (y , z , h) are non-singleton then these models are
generically partially identifying.

i.e. there may be sets of functions h that can deliver observed distributions of
(Y ,Z ).

We characterize these sets and consider challenges for asymptotic theory.
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Examples of complete models

Function: h(Y ,Z ,U) has level sets:

Y(u, z ; h) � fy : h(y , z , u) = 0g

U (y , z ; h) � fu : h(y , z , u) = 0g

Linear model
h(Y ,Z ,U) = Y � βZ � U

has singleton Y(u, z ; h) = fβz + ug and singleton U (y , z ; h) = fy � βzg.

Nonlinear model
h(Y ,Z ,U) = Y � g (Z ,U)

has singleton Y(u, z ; h) = fg (z , u)g but non-singleton U (y , z ; h) if Y is
discrete or U is non-scalar.
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Examples of incomplete models

Function: h(Y ,Z ,U) has level sets

Y(u, z ; h) � fy : h(y , z , u) = 0g

U (y , z ; h) � fu : h(y , z , u) = 0g

Linear model relating two outcomes is incomplete

h(Y ,Z ,U) = Y1 � αY2 � βZ � U

It has singleton U (y , z ; h).
Non-additive error model

h(Y ,Z ,U) = Y1 � g (Y2,Z ,U)

has non-singleton U (y , z ; h) if Y discrete or U non-scalar.

Dependent censoring has non-singleton Y(u, z ; h) and U (y , z ; h).

h(Y ,Z ,U) = Y1 �min (g (Z ,U),Y2)
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Contributions

The paper characterizes identi�ed sets of structures in these models under
mean, quantile and full independence restrictions on (U,Z ).

this builds on Chesher, Rosen and Smolinski (2013, QE), Chesher (2010,
Ecta), Chesher and Rosen (2013, AER; 2013 EctJ; recent working papers).

identi�ed sets are characterized via systems of moment inequalities and
equalities.

When outcomes are continuous there may be an uncountable number of
inequalities.

This poses challenges for inference.

We use random set theory reviewed in Molchanov (2005, Springer-V) and
used for set identi�cation by Beresteanu, Molchanov, and Molinari (2011,
Ecta; 2012, JoEcts).

unlike BMM we use random sets with support on the space of unobservable U .
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Outline of the remainder of the talk

Restrictions and concepts: structures, models, identi�ed sets.

De�nition of the identi�ed set of structures.

Characterization of the identi�ed set using selectionability in the space of
unobservables.

The impact of the independence restriction U k Z .

Example: dependent censoring.

The challenge of implementation - uncountable inequalities.
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Restrictions

1 (Y ,Z ,U) are random vectors de�ned on a probability space (Ω,F ,P),
endowed with the Borel sets on Ω. The support of (Y ,Z ,U), denoted
RYZU , is a subset of Euclidean space.

2 A collection of conditional distributions

FY jZ �
n
FY jZ (�jz) : z 2 RZ

o
is identi�ed by the sampling process.

3 There is an F -measurable function h(�, �, �) : RYZU ! R such that

P[h(Y ,Z ,U) = 0] = 1

and there is a collection of conditional distributions

GU jZ �
n
GU jZ (�jz) : z 2 RZ

o
where for all S � RU jZ=z

GU jZ (Sjz) � P[U 2 Sjz ]
denotes a conditional distribution of U given Z = z .
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Identi�cation and What is Observed

From data we learn FY jZ �
n
FY jZ (�jz) : z 2 RZ

o
and FZ .

These distributions are generated by some structure (h,GU jZ ) which
comprises:

A collection of conditional distributions of U given Z ,

GU jZ �
n
GU jZ (�jz) : z 2 RZ

o
A function h : RYZU ! R such that

P[h(Y ,Z ,U) = 0] = 1.

A modelM de�nes admissible structures (h,GU jZ ).

Identi�ed set: the structures (h,GU jZ ) admitted by a modelM that can
deliver FY jZ .
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Random Sets and Duality

Given a structure
�
h,GU jZ

�
and distributions FY jZ we have:

A random residual set

U (Y ,Z ; h) � fu : h (Y ,Z , u) = 0g

with distributions determined by h and observed FY jZ .
A random outcome set

Y (U ,Z ; h) � fy : h (y ,Z ,U) = 0g

with distributions determined by h and GU jZ .

Our analysis exploits a dual feature of the level sets:

u� 2 U (y�, z ; h), y� 2 Y (u�, z ; h)
true because

u� 2 U (y�, z ; h), h (y�, z , u�) = 0

y� 2 Y (u�, z ; h), h (y�, z , u�) = 0
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De�nitions: Selections and Selectionability

The random outcome set

Y (U,Z ; h) � fy : h (y ,Z ,U) = 0g

can be regarded as a collection of random variables.

De�nition: Random variable A is a selection of random set A if
P[A 2 A] = 1.

De�nition: Distribution F is selectionable w.r.t. the distribution of a
random set A if F is the distribution of a selection of A.
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Sets of Outcomes: Selections and Selectionability

For each structure (h,GU jZ ), and any z , stochastic variation in

U � GU jZ=z 2 GU jZ

delivers a random set
Y (U, z ; h) .

De�nition. A structure
�
h,GU jZ

�
delivers a conditional distribution FY jZ=z

if and only if FY jZ=z is selectionable w.r.t. the distribution of Y (U, z ; h)
when U � GU jZ=z
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Observational equivalence

Structures
�
h,GU jZ

�
and

�
h0,G 0U jZ

�
are observationally equivalent relative

to FY jZ if a.e. z 2 RZ

FY jZ=z is selectionable w.r.t. Y (U, z ; h) with U � GU jZ=z

and

FY jZ=z is selectionable w.r.t.Y
�
U, z ; h0

�
with U � G 0U jZ=z
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The Identi�ed Set

The identi�ed set of structures comprises admissible
�
h,GU jZ

�
such that

the conditional distributions FY jZ=z 2 FY jZ are selectionable with respect

to the conditional distributions of random sets Y (U, z ; h) obtained with

U � GU jZ=z , a.e. z 2 RZ .

Because of the dual relationship between level sets:

FY jZ=z is selectionable w.r.t. Y (U, z ; h) when U � GU jZ=z
()

GU jZ=z is selectionable w.r.t. U (Y , z ; h) when Y � FY jZ=z
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The Identi�ed Set

Theorem. The identi�ed set of structures
�
h,GU jZ

�
are those such that

GU jZ=z is selectionable with respect to the conditional (on Z = z)

distribution of random set U (Y ,Z ; h) induced by FY jZ=z , a.e. z 2 RZ .

One characterization comes on using Artstein�s (1983, IJM) inequality.

Distribution FA is selectionable w.r.t. the distribution of random set A if and
only if for all closed sets S

FA(S) � P[A � S ]

P[A � S ] is the containment function of random set A.
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Characterization via Conditional Moment Inequalities

The conditional containment functional of U (Y ,Z ; h) applied to set
S � RU is

Ch(Sjz) � P [U (Y ,Z ; h) � SjZ = z ] .

The identi�ed set of structures (h,GU jZ ) are the admissible structures that
satisfy the moment inequalities:

GU jZ (Sjz) � Ch(Sjz)

for all closed sets S � RU and a.e. z 2 RZ .

Proof draws on Artstein (1983, IJM), Molchanov (2005, Springer-V) and
Norberg (1992, IJM).
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Test sets

We �nd a collection, Q (h, z), of sets such that if

GU jZ (Sjz) � Ch(Sjz)

holds for all S 2 Q (h, z) then it holds for all closed S � RU .

We show that Q (h, z) contains only certain unions of the sets comprising the
conditional (on z) support of U (Y ,Z ; h).

We determine a class of members of Q (h, z) for which moment inequalities
reduce to moment equalities.

We show that two types of model always deliver moment equalities.

complete models - these have singleton outcome sets, Y(u, z ; h)

models with singleton residual sets, U (y , z ; h).
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Distributional Restrictions

So far the analysis has proceeded without restrictions on the distribution of
unobserved heterogeneity.

Now consider the impact of a stochastic independence condition:

8z 2 RZ : GU jZ (�jz) = GU (�)
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Stochastic Independence

Let Sc denote the complement of S . We show that the identi�ed set
comprises admissible (h,GU jZ ) such that for all sets S 2 Q(h, z) and a.e.
z 2 RZ

1� Ch(Sc jz) � GU jZ (Sjz) � Ch(Sjz)

Under the restriction U k Z the identi�ed set comprises admissible (h,GU jZ )
such that for all S 2 Q(h, z):

inf
z2RZ

(1� Ch(Sc jz)) � GU (S) � sup
z2RZ

(Ch(Sjz))
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Endogenous censoring

Outcomes: Y1 and Y2 are observed.

Y1 = min(g(Z ,U), Y2)

with U and Z independent and g(Z ,U) monotone increasing in scalar
U � Unif [0, 1].

Example: Demand with �xed supply.

Y1z }| {
amount sold

= min( g(Z ,U)z }| {
amount demanded

, Y2z }| {
amount supplied

)
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Level sets and test sets

Structural function

h(y , z , u) = Y1 �min(g(Z ,U), Y2)

has level sets

U (y , z ; h) =

8<: interval: (g�1(z , y2), 1] if y1 = y2

singleton: fg�1(z , y1)g if y1 < y2

Support of U (y , z ; h) comprises intervals.(t, 1] and singletons ftg, t 2 [0, 1].

Q(h, z) is all closed intervals: [t1, t2 ] � [0, 1].

We consider a selection of intervals: with m = 1/M 2 (0, 1):26664
[0,m] [0, 2m] [0, 3m] � � � � � � [0, 1]

[m, 2m] [m, 3m] � � � � � � [m, 1]
[2m, 3m] � � � � � � [2m, 1]

. . .
...

37775
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Inequalities

For each interval [t1, t2 ] � [0, 1] there is an inequality:

inf
z2RZ

(PF [(Y1 = Y2) ^ (Y2 � g(z , t2))jz ]+

PF [(Y1 < Y2) ^ (g(z , t1) � Y1 � g(z , t2))jz ])

� ( t2 � t1) �

sup
z2RZ

(1[ t2 = 1]�PF [(Y1 = Y2) ^ (g(z , t1) � Y1 � g(z , t2)) jz ]+

PF [(Y1 < Y2) ^ (g(z , t1) � Y1 � g(z , t2))jz ])
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Example - a Gaussian process

Probabilities are generated as follows.

Y � = V1
Y2 = γ21z + V2

Y1 = min(Y
�,Y2)

V �
�
V1
V2

�
k Z , V � N

��
0
0

�
,

�
1 0.5
0.5 1

��
Z 2 f�1, 0,+1g γ21 2 f0.5, 1.0g

The model is:

Y1 = min(β0 + σΦ�1(U),Y2) U k Z U � Unif (0, 1)

and in the �data generating process� (β0, σ) = (0, 1).

We calculate outer regions for (β0, σ) using collections of intervals with
M 2 f10, 20, 30, 40g.
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Remarks

We provide characterizations of sharp identi�ed sets for a broad class of
incomplete models with set-valued residuals.

Opens the door to application of weakly restrictive models with discrete
outcomes, high dimensional heterogeneity, random coe¢ cients, structural
relationships de�ned by inequalities.

When outcomes have �nite support estimation and inference as in Andrews
and Shi (Ecta, 2013), Chernozhukov, Lee and Rosen (Ecta, 2013), Lee, Song,
Whang (2013, JoEct), Armstrong (2012, working paper), Chetverikov (2012,
working paper) is applicable.

With continuous outcomes identi�ed sets are characterized by an uncountable
number of moment inequalities.

Challenges for implementation and asymptotic theory:

can data be informative about how many and which inequalities to use in
practice?

too few or bad choices deliver excessively large outer regions

too many and in �nite samples there may be low quality inference.
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