Tutorial in Econometrics Part |l:

Sieve Inferences on Semi-nonparametric Models

Xiaohong Chen (Yale)

NUS, IMS, May 16, 2014

Chen () Tutorial in Econometrics Part Il: Sieve Inferen NUS, IMS, May 16, 2014 1/ 42



Outline of the Tutorial in Econometrics Part Il

© |Introduction; Motivating empirical examples.

@ Sieve extremum (M, MD, GMM...) estimation; Sieve two-step.
© Asymp. normality of sieve estimates.

@ Sieve Wald statistic; sieve variance estimation.

@ Sieve QLR statistics.

@ Sieve F statistic for weakly dependent data.

@ Concluding remarks.
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1. Introduction
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An econometric (or statistical) model is a family of probability
distributions indexed by unknown parameters. A model is called

@ parametric if all of its parameters are in finite-dimensional parameter
spaces;

@ nonparametric if all of its parameters are in infinite-dimensional
parameter spaces;

@ semiparametric if its parameters of interest are in finite-dimensional
spaces but its nuisance parameters are in infinite-dimensional spaces;

@ semi-nonparametric if it contains both finite-dimensional and
infinite-dimensional unknown parameters of interest.

Tutorial in Econometrics Part |l Sieve Inferen NUS, IMS, May 16, 2014



Duration Model with Unobserved Heterogeneity

o {T; Xi}"_, a random sample from

P(TIX. By bo) = [ &(TIX, 0. By)fo(w)d

e g(T|X,u,By): the density of duration T conditional on a scalar
unobserved heterogeneity U and observed X. Ex. g(T|X, u, B,) can
be Weibull density as in Heckman and Singer (84):

g(TIX,u, By) = 091 TP Lexp [96,2X +u— TP exp () ,X + u)] .

e U is indep. of X. Misspecifying density f,(u) = h2(u) leads to
inconsistent estimation of 6.
o Let ag = (B, ho) € B x H, which can estimated by sieve MLE:

X, =arg max Zlog{/ (T:|X;, u, B)h*(u)du}

563 heH, =

where H, is a sieve space that becomes dense in H as n — oo.
Semiparametric mixture models are widely used.
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Shape-invariant system of Engel curves with endogenous

expenditure

@ Blundell et al. (03) show that a system of Engel curves satisfying
Slutsky’s symmetry and allowing for demographic effects on budget
shares in a given year must take the form:

Yiei = hie(Yoi — ho(X1i)) + hoe(X1j) + €, €=1,..., N,

where Y7y; is the i — th household budget share on £ — th goods, Y5;
is the i — th household log-total non-durable expenditure, Xi; is a
vector of the i — th household demographic variables.

o Blundell-Chen-Kristensen (07) consider a semi-nonparametric mean
instrumental variables (IV) regression:

E[Yiei — {h1e(Yai — g(XiiBy)) + X{iBae H Xai, Xai] =0,
@ Chen-Pouzo (09, 12) estimate a semi-nonparametric quantile 1V:
E[1 (Yiei < hue(Yai — (X{;By)) + X{iByy) [ X1, Xai] = v € (0, 1).

@ Both are estimated via sieve minimum distance (MD).
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Nonlinear habit-based asset pricing models

o Consumption based asset pricing models: E(M;41Rj 41 — 1|Z;) = 0,

j=1..,N, M{;1 = % is IMRS (intertemporal marginal rate

of substitution in consumption), and is a pricing kernel or SDF.
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Nonlinear habit-based asset pricing models

o Consumption based asset pricing models: E(M;41Rj 41 — 1|Z;) = 0,
j=1.,N, Myy; = % is IMRS (intertemporal marginal rate
of substitution in consumption), and is a pricing kernel or SDF.

@ Hansen-Singleton (82): U =Y 6" [(Ctlﬂ -1)/(1— ’y)} ,

- . e .
Miy1 =6 <C”1> . GMM with unconditional moment restrictions

-
E([(S(Cfc“) RJtH—l] >_0 j=1,..N,
t

Z,=(1, lagged cons growth, lagged EWR and lagged VWR).
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Nonlinear habit-based asset pricing models

o Consumption based asset pricing models: E(M;41Rj 41 — 1|Z;) = 0,

j=1.,N, Myy; = % is IMRS (intertemporal marginal rate
of substitution in consumption), and is a pricing kernel or SDF.

@ Hansen-Singleton (82): U =Y 6" [(Ctlﬂ -1)/(1— ’y)} ,

- . e .
Miy1 =6 <C”1> . GMM with unconditional moment restrictions

-
E([(S(Cfc“) RJtH—l] >_0 j=1,..N,
t

Z,=(1, lagged cons growth, lagged EWR and lagged VWR).

@ Many finance and macro economists suspect misspecification of time
separable utility in consumption.
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@ One popular theoretical fix is to let period t utility depend on habit
level H;, which is some function of current and lagged consumptions.
Constantinides (90), Abel (90), Campbell-Cochrane (99), ...
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@ One popular theoretical fix is to let period t utility depend on habit
level H;, which is some function of current and lagged consumptions.
Constantinides (90), Abel (90), Campbell-Cochrane (99), ...

@ Is habit linear or nonlinear, is habit internal or external? Economic
theories offered no guidance, but different welfare implications.
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@ One popular theoretical fix is to let period t utility depend on habit
level H;, which is some function of current and lagged consumptions.
Constantinides (90), Abel (90), Campbell-Cochrane (99), ...

@ Is habit linear or nonlinear, is habit internal or external? Economic
theories offered no guidance, but different welfare implications.

@ Chen-Ludvigson (04, 09):
U= Y08 [((G = H)' ™" =1)/(1=1)|, here H; = Cig (cf) is
unknown habit level, 0 < g < 1, g nondecreasing in first argument of
¢ = (CH Ct*L). M1 = U/oCti1 For external habit,

Ct ! ! Ct aU/aCt
oU/dC, = C; " (1 —g(c}))7; for internal habit, dU/9C; =

L N - .
“ [“‘“CﬁW_E{U (52) " - st ety
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o Chen-Ludvigson (04, 09): Sieve minimum distance (SMD) with
conditional moment restrictions:

E(Mt+1"'-\>j,t+1 — 1‘Wt> = 0, _]: 1, ceny N, w; C It,

Let {% R;+ w:} be stationary ergodic. Do not specify parametric

LOM. w; = [c?yt,RRELt,SPEXt, G

/
C,l} in empirical work.
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o Chen-Ludvigson (04, 09): Sieve minimum distance (SMD) with
conditional moment restrictions:

E(Mt+1"'-\>j,t+1 — 1‘Wt> = 0, _]: 1, ceny N, w; C It,

Let {% R;+ w:} be stationary ergodic. Do not specify parametric

LOM. w; = |Gy, RREL,, SPEX,, -

/
} in empirical work.

e Using quarterly data, some empirical findings are: (1) estimated habit
is nonlinear; (2) internal habit fits data significantly better than
external habit; (3) estimated J, y are sensible; (4) estimated habit
generated SDF performs well in explaining cross-sectional stock
returns; (5) more findings about pricing errors, and model comparison
in terms of HJ pricing errors.
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Semi-nonparametric GARCH + residual copula models

@ Many explanations of the recent financial crisis have emphasized the
role of financial frictions and collateral, “leverage cycle” in
Geanakoplos (10) assumes that bad news is accompanied by increased
uncertainty (volatility). “News impact curve”.

e Engle (10): "risk assessment” is also important in understanding the
financial crisis.

@ Our model: semi-nonparametric GARCH —+ residual copula, slightly
modified SCOMDY model of Chen-Fan (06).

@ We use daily data from the last 4 years to address both “news impact
curve” and risk assessment” based on 3 series: mortgage-backed
security (MBS), stock, and bond market returns.
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Chen-Fan (06b) SCOMDY models:

Yj,t+1 = E[Yj,t+1’1-t] + 4/ Var(Y/',t—Q—l‘It)ej,t—Q—lv Jj=1..N,

o {€r11 = (€1t41,---, €ne+1) 1t >0} indep. of Z; = o({Y*!, X'}),

iid., E(ejr) =0, E(e5,) = 1, each €j; has unknown marginal cdf
Fo(o),
J

@ €; has a joint dist. F°(e) = C(FP(€e1), ..., Ff(en);ao), where
C(-):10,1]N — [0,1] is a copula with unknown parameter «,.
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Chen-Fan (06b) SCOMDY models:

Yj,t+1 = E[Yj,t+1’l-t] + 4/ Var(Y/',t—Q—l‘It)ej,t—Q—lv Jj=1..N,

o {€r11 = (€1t41,---, €ne+1) 1t >0} indep. of Z; = o({Y*!, X'}),

iid., E(ejr) =0, E(e5,) = 1, each €j; has unknown marginal cdf
Fo(o),
J

@ €; has a joint dist. F°(e) = C(FP(€e1), ..., Ff(en);ao), where
C(-):10,1]N — [0,1] is a copula with unknown parameter «,.

o Different specifications of E[Yj¢11|Z¢], Var(Yj+1|Z¢) and C(+;a

lead to many different examples of SCOMDY models.
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Chen-Fan (06b) SCOMDY models:

Yj,t+1 = E[Yj,t+1’l-t] + 4/ Var(Y/',t—Q—l‘It)ej,t—Q—lv Jj=1..N,

o {€r+1 = (€1t41,---, €ne+1) 1t >0} indep. of Z; = o({Y*!, X'}),
iid., E(ejr) =0, E(e5,) = 1, each €j; has unknown marginal cdf

FC)

@ €; has a joint dist. F°(e) = C(FP(€e1), ..., Ff(en);ao), where
C(-):10,1]N — [0,1] is a copula with unknown parameter «,.

o Different specifications of E[Y]¢11|Z¢], Var(Yj+1|Z:) and C(+;a0)
lead to many different examples of SCOMDY models.

o Easy to estimate; useful for conditional VaR, contagion,
comovements.
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Chen-Fan (06b) SCOMDY models:
Yj,t+1 = E[Yj,t+1’l-t] + 4/ Var(Y/',t—Q—l‘It)ej,t—Q—lv Jj=1..N,

o {€r+1 = (€1t41,---, enet1) :t >0} indep. of Z; = o({Y!, X}),
iid., E(ejr) =0, E(e5,) = 1, each €j; has unknown marginal cdf
Fo(o),

J

@ €; has a joint dist. F°(e) = C(FP(€e1), ..., Ff(en);ao), where
C(-):10,1]N — [0,1] is a copula with unknown parameter «,.

o Different specifications of E[Y]¢11|Z¢], Var(Yj+1|Z:) and C(+;a0)
lead to many different examples of SCOMDY models.

o Easy to estimate; useful for conditional VaR, contagion,
comovements.

@ Cherubini et al (10) apply SCOMDY to build term structure of
multivariate equity derivatives models.
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SCOMDY model: Excess returns on Barclays MBS index (Sf), excess
market (daily Fama-French factor) returns (My), and excess returns on the
Barclays bond index (Bf):

MBS Market Sf = Cs + pSSf,l + IBSMte,1 + 0s,t€s5.t
Stock Market : M; = cy +pyMi_1 +0mtem e
Bonds Market : Bf =cg+pyBi 1+ BgM;i 1 +0B e+

Volatility : 02, = w;+0;02,_1+ hi (0i—1€ic-1), i € {S,M, B},

E(ei¢) =0and E (¢7,) =1 for i € {S, M, B}. (es.t,em.t €B,t) are
indep. across time but jointly distributed according to unknown marginals
Fi(-), i € {S, M, B}, and Student’s t-copula, which has copula density
c(wX,v) =
v+42 v 1.\ —° 2 vi2
3 2 y 2
FERCE () (T
det (Z) (T (31)) v ie{5.14,8) v
with X the correlation matrix, T, the scalar Student’ t dist.,
X = (XS,XM,XB), Xj = Tv_l (u,-).

N
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o All 3 estimated “news impact curves” exhibit the same asymmetry:
bad news increases volatility more than does good news. For
mortgage-backed securities and stocks, some goods news actually
decreases volatility, as in Fostel and Geanakoplos (10). As in Linton
and Mammen (05), most good news in the stock market does not
have much effect on volatility.

e We find (i) shocks to bonds and shocks to mortgage-backed securities
are highly correlated, (ii) shocks to mortgage-backed securities and
shocks to stocks are moderately negatively correlated, and (iii) shocks
to bonds and shocks to stocks are also moderately negatively
correlated.

@ With estimated semi-nonparametric GARCH and residual copula
dependence parameters, we can easily calculate VaR for a portfolio
comprised of mortgage-backed securities, stocks, and bonds.

Tutorial in Econometrics Part |l: Sieve Inferen NUS, IMS, May 16, 2014 13 / 42



2. Sieve Extremum Estimation

Tutorial in Econometrics Part Il: Sieve Inferen NUS, IMS, May 16, 2014 14 / 42



Sieve extremum estimation

e Data: {Z; = (Y{, X{)'}]_, is stationary, ergodic.
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Sieve extremum estimation

e Data: {Z; = (Y{, X{)'}]_, is stationary, ergodic.
e Parameter space, (®, d), is a possibly infinite dimensional (often
non-compact) metric space.
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Sieve extremum estimation

e Data: {Z; = (Y{, X{)'}]_, is stationary, ergodic.

e Parameter space, (®, d), is a possibly infinite dimensional (often
non-compact) metric space.

o A sieve {©,} is a sequence of approximating parameter spaces that
become dense in ® as n — oo, i.e., for any 6 € © there is an element
70 in ©, satisfying d(0, 1,0) — 0 as n — 0.
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Sieve extremum estimation

Data: {Z; = (Y{, X{)'}/_, is stationary, ergodic.
e Parameter space, (®, d), is a possibly infinite dimensional (often
non-compact) metric space.

A sieve {®,} is a sequence of approximating parameter spaces that
become dense in @ as n — oo, i.e., for any 6 € © there is an element
70 in ©, satisfying d(0, 1,0) — 0 as n — 0.

A population criterion @ : @ — R is maximized at a “pseudo-true”
parameter 6, € ©.
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Sieve extremum estimation

e Data: {Z; = (Y{, X{)'}]_, is stationary, ergodic.

@ Parameter space, (@, d), is a possibly infinite dimensional (often
non-compact) metric space.

o A sieve {©,} is a sequence of approximating parameter spaces that
become dense in @ as n — oo, i.e., for any 6 € © there is an element
70 in ©, satisfying d(0, 1,0) — 0 as n — 0.

@ A population criterion @ : @ — R is maximized at a “pseudo-true”
parameter 6, € ©.

° (A{)n is a sample criterion, which is a joint measurable function of 8 and
data {Z;}7_;, and converges to Q in some sense as n — ©o.
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Sieve extremum estimation

e Data: {Z; = (Y{, X{)'}]_, is stationary, ergodic.
@ Parameter space, (@, d), is a possibly infinite dimensional (often
non-compact) metric space.

o A sieve {©,} is a sequence of approximating parameter spaces that
become dense in @ as n — oo, i.e., for any 6 € © there is an element
70 in ©, satisfying d(0, 1,0) — 0 as n — 0.

@ A population criterion @ : @ — R is maximized at a “pseudo-true”
parameter 6, € ©.

° (A{)n is a sample criterion, which is a joint measurable function of 8 and
data {Zt}’t’zl, and converges to @ in some sense as n — 0.

o Sieve extremum estimator: any estimator 9,, that solves

Qn(hn) > sup @Q,(8) — Op(y,), withn, — 0asn— oco.
0c®,
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@ Examples of sieves @,: Polynomial series, Hermite polynomial series
(SNP), Fourier series, Splines, Wavelets, Neural Networks, etc. See
e.g. Judd (98), Chen (07).
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@ Examples of sieves @,: Polynomial series, Hermite polynomial series
(SNP), Fourier series, Splines, Wavelets, Neural Networks, etc. See
e.g. Judd (98), Chen (07).

@ Examples of criterion function @n(): ML, MD, GMM, GEL, ...
virtually all the existing criterion function for estimating nonlinear
parametric models are valid choices; see Chen (07).
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@ Examples of sieves @,: Polynomial series, Hermite polynomial series
(SNP), Fourier series, Splines, Wavelets, Neural Networks, etc. See
e.g. Judd (98), Chen (07).

@ Examples of criterion function @n(): ML, MD, GMM, GEL, ...
virtually all the existing criterion function for estimating nonlinear
parametric models are valid choices; see Chen (07).

o Sieve M-estimation: a special case of sieve extremum estimation
when Q,(0) = 1y? 11(0,2). Eg., sieve maximum likelihood (ML),
sieve least squares (LS), sieve nonlinear least squares (NLS), sieve
quantile regression (QR).
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Examples of sieves ©,: Polynomial series, Hermite polynomial series
(SNP), Fourier series, Splines, Wavelets, Neural Networks, etc. See
e.g. Judd (98), Chen (07).

Examples of criterion function @n(): ML, MD, GMM, GEL, ...
virtually all the existing criterion function for estimating nonlinear
parametric models are valid choices; see Chen (07).

Sieve M-estimation: a special case of sieve extremum estimation
when Q,(0) = 1y? 11(0,2). Eg., sieve maximum likelihood (ML),
sieve least squares (LS), sieve nonlinear least squares (NLS), sieve
quantile regression (QR).

Ex: Yy = 0o(X;) + &, Ele|Xe] =0. Let {pj(X),j=1,2,..} bea
sequence of known basis functions that can approximate any 8 € ©
well. pko(X) = (p1(X), ..., px,(X))'. Then

@, = {h: h(x) = ph(x)'A: A€ Rk}, with k, — oo slowly as

n — o0, is a finite-dimensional linear sieve for @. And 9 is a sieve (or
series) LS estimator of 0,:

~ -1 B n
6 = arg max — Z[Yf — 9(Xt)]2 = pk"(-)'(P/P) Z pk”(Xt) Y.
0o, n 5 t=1
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o Sieve MD estimation: a special case of sieve extremum estimation
when —@,(0) can be expressed as some distance from zero.

e For conditional moment restriction E[p(Z,6,)|X] = 0, one typical
quadratic distance is

3\'—‘

ir”ﬁ (Xe, 0)'{Z(X)} "t m(Xe, 0),

where m (X, 0) is a nonparametrically estimated moment condition of
fixed, finite dimension and £(X;) — X(X;) in prob., where £(X;) is a
psd weighting matrix of the same fixed, finite dimension as that of
m(X;, 0). For example, m(X;,0) could be any series estimate of the
conditional mean function m(X;,0) = E[p(Z,0)|X = X¢]; see
Newey-Powell (03) and Ai-Chen (03).
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e For conditional moment restriction E[p(Z,0,)|X] = 0, another
typical quadratic distance is

- Z:)n(e) = /g\n (G)I/Wgn (9),

with g,(6,) — 0 in prob. Here g,(0) is a sample average of some
unconditional moment conditions of increasing dimension and
W — W in prob., where W is a psd weighting matrix of the same
increasing dimension as that of g,(0). This is “sieve GMM".

e E[p(Z,0,)|X] = 0 iff the increasing number of unconditional
moment restrictions hold:

E[P(Zf' Go)poj(Xf)] = O'J =12, .., km,n,

where {po;(X),j =1,2, ..., km,n} is a sequence of known basis
functions that can approximate any real-valued square integrable
functions of X well as k, , — oo. Let

pFmn (X) = (por(X), ... Poks, (X))'. Then E[p(Z,60,)|X] =0 can be
estimated via the above sieve GMM using

£0(6) = LTI, p(Z:,8) ® phro (Xy).
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Why method of sieves?

@ Easy to compute. Once when the unknown functions are
approximated by finite dimensional sieves, the implementation is the
same as any parametric nonlinear extremum estimation.

@ Easier to impose shape (monotonicity, concavity), additivity,
non-negativity and other restrictions on unknown functions.

© Can simultaneously obtain optimal convergence rates for unknown
functions and root-n normality for regular functionals (such as finite
dimensional parameter); see Chen-Shen (98, sieve M estimation for
time series); Chen-Pouzo (09, sieve MD for iid)

Tutorial in Econometrics Part Il: Sieve Inferen NUS, IMS, May 16, 2014 19 /




Estimation methods for unknown functionals

@ Joint estimation procedure: Simultaneous estimation of all the
unknown parameters of interests.

Profile sieve extremum estimator: For a semi-nonparametric model,

® = B x 'H, with B a finite-dimensional compact space, H an
infinite-dimensional function space. Then ®, = B X H,. The profile sieve
extremum estimator consists of two steps:

o Step 1, for fixed p, compute
Qn(B. h(B)) = suphen, Qn(B. h) — op(1);

o Step 2, estimate B, by B, = arg maxgep Qn(B. h(B)), and estimate
ho by h, = h(B,).
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Estimation methods for unknown functionals

o Semiparametric two-step procedure:

@ Step 1: for fixed B, estimate unknown h() using whatever
nonparametric methods, say, using a sieve estimator
h(B) = arg maxpep, Qua(B, h)

@ Step 2, estimate unknown f_ using one of existing nonlinear
extremum procedure with plugged in estimated h(), say,

‘B = arg maxgep Q2 n(,B h( ))

o Advantages of 2-step: easier to compute; easier to establish root-n
asymptotic normality of regular functionals (B).

o Disadvantages of 2-step: generally inefficient; difficult to obtain a
consistent estimator of Avar(Bn).

o Advantages of 2-step with sieve as 1st step: easy to compute a
consistent estimator of Avar(B ) even when there is no closed form
expression of Avar([% ). Ai-Chen (07); Ackerberg-Chen-Hahn (11),
Chen-Hahn-Liao (12, time series)
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Example: Semi-nonparametric copula-based Markov model

e True cond. density, p°(:| Y1) of Y; given Y1 = (Y;_1,.., Y1) is:

POV = go(-)e(Fo(Ye-1), Fo()i o),

the g—th, g € (0, 1), conditional quantile of Y; given Yt~ 1 is:
Q) =F* (Gt lalFoly)s o]

where Cyq [-|u; ao] = 2 C(u, 5 a0) = C1( ;&00) is the cond. dist of
Ur = Fo(Y:) given Us—1 = u; and C 2‘1 [q]u uco] is the g—th
conditional quantile of U; given U;—1 = u.

@ Chen-Fan (06a) two-step estimation: stepl:
Fly) = n}rl Yi—11{Y: < y}: rescaled empirical cdf; step 2:
pseudo-MLE & :

1 ~ ~
— | F(Y:o1), F(Y:);
mfxnt;ogc( (Yi—1), F(Y:):a)
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e Ex:, any strictly stationary 1st order Markov series { Y;}7_; can be
equivalently expressed as: f(Y;|Yi—1) = c(G(Yi=1), G(Y2))F(Ye),
i.e., can be generated using a copula C(uy, up; ) with a marginal cdf
F: (i) generate n independent U(O 1) rv. {Xe}7_q; (i) Ur = X,

U = Gyt (Xe|Us-134), and Ye 2 G2 (Ur).

Tutorial in Econometrics Part |Il: Sieve Inferen NUS, IMS, May 16, 2014 23 / 42



e Ex:, any strictly stationary 1st order Markov series { Y;}7_; can be
equivalently expressed as: f(Y;|Yi—1) = c(G(Yi=1), G(Y2))F(Ye),
i.e., can be generated using a copula C(uy, up; ) with a marginal cdf
F: (i) generate n independent U(O 1) rv. {Xe}7_q; (i) Ur = X,

U = Gyt (Xe|Us-134), and Ye 2 G2 (Ur).

o In the next graph, {Y;}]_; is generated using “Clayton(15) + t(3)":
Gt (Xl Ve a) = [0 — 1)U 417V, with « = 15,

G = cdf of t(3). However, structural break test of Davis et al. (05)
detects several breaks; Markov switching model also fits well.
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e Ex:, any strictly stationary 1st order Markov series { Y;}7_; can be
equivalently expressed as: f(Y;|Yi—1) = c(G(Yi=1), G(Y2))F(Ye),
i.e., can be generated using a copula C(uy, up; ) with a marginal cdf
F: (i) generate n independent U(O 1) rv. {Xe}7_q; (i) Ur = X,
Ut = 2|1 (Xt|Ut 1; 0() and Yt G~ (Ut)

o In the next graph, {Y;}]_; is generated using “Clayton(15) + t(3)":

Gt (Xl Ve a) = [0 — 1)U 417V, with « = 15,
G = cdf of t(3). However, structural break test of Davis et al. (05)
detects several breaks; Markov switching model also fits well.

o If one cares about conditional VaR or tail dependence, then
copula-based Markov model is better; see Chen-Fan (06a),
Chen-Koenker-Xiao (09), Bouye-Salmon (09).
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@ Chen-Wu-Yi (09) sieve MLE: Let Z; = (Y;_1, Y%), and
U, g, Ze) = logp(Ye| Y1) =

log £(Y:) +logc (F(Yi—1), F(Y:);a) |
= logf(Y:)+logc </1(y < thl)f(y)dy,/l(y < Yo)f(y)dy;a

Then the joint log-likelihood function of the data {Y:}7_; is
1 & 1
Lo(a, f) = - Y U, f,Z;) + - log f(Y1).
t=2

The sieve MLE 8, = (Xy, 8n) is defined as

Ln(@p, fr) > max _ La(a, f) — O, (1),

ac A, feF,

Fn= {fK e F: fK —[ZakAk , /fKn(y)dy:].},

or

K,
Fo=1 "1k, € F: fi,(y) = exp{ ) axAc(y)}, /fKn(y)dy =1,
k=1
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Table: Clayton, true F = t3: estimation of &

] \ \ Sieve | Ideal | 2step | Para
a=2 Mean 1.969 2.002 1.912 1.989
T Bias -0.031 0.002 -0.088 -0.011
(0.500) Var 0.019 0.007 0.101 0.012
A MSE 0.020 0.007 0.109 0.012
(0.707) aggm_s) (1.70,2.25 ) | (1.83,2.17) | (1.36,2.60 ) | ( 1.76,2.19)
a=10 | Mean 9.687 10.00 7.115 9.967
T Bias -0.313 0.004 -2.886 -0.033
(0.833) Var 0.351 0.085 4.852 0.129
A MSE 0.449 0.085 13.18 0.130
(0.933) | a5 g7 5) | (8.68, 10.87) | (9.43,10.6 ) | (3.87,12.5) | (9.26,10.6)
x=12 | Mean 11.62 12.01 7.896 11.98
T Bias -0.382 0.012 -4.104 -0.016
(0.857) Var 0.541 0.119 5.656 0.222
A MSE 0.687 0.120 22.50 0.222
(0.944) | a5 o75) | (105,133) | (11.3,12.7) | (4.35 13.6) | (11.0, 12.9)
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Table: Clayton, true F = t3: estimation of F. Reported Bias?, Var and MSE are
the true ones multiplied by 1000.

Sieve 2step Para Mis-N

Qi3 | Qo3| Quz | Q3| Quz | Q| Quz | Q

aw=2 Mean 0.325 | 0.673 | 0.333 | 0.666 | 0.333 | 0.667 | 0.347 | O.!
Biasl203 0.026 | 0.007 | 0.011 | 0.013 | 0.009 | 0.009 | 0.282 | 12

7(0.500) | Varjgs | 0.054 | 0.049 | 1.430 | 0.801 | 0.002 | 0.002 | 1.921 | 5.
A(0.707) | MSEjgs | 0.080 | 0.056 | 1.441 | 0.814 | 0.011 | 0.011 | 2.203 | 18
«=10 | Mean | 0319 | 0.664 | 0.331 | 0.666 | 0.333 | 0.667 | 0.364 | 0.
Bias2;; | 0.128 | 0.042 | 0.001 | 0.013 | 0.009 | 0.009 | 1.132 | 7.
7(0.833) | Vargs | 0.109 | 0.137 | 22.28 | 9.800 | 0.003 | 0.003 | 0.711 | 3.
A(0.933) | MSE s | 0.236 | 0.178 | 22.29 | 9.813 | 0.012 | 0.012 | 1.843 | 1C
«=12 | Mean | 0318 | 0.661 | 0.331 | 0.665 | 0.333 | 0.667 | 0.374 | 0.
Bias;; | 0.154 | 0.079 | 0.001 | 0.023 | 0.010 | 0.010 | 1.903 | 5.
7(0.857) | Vargs | 0.127 | 0.141 | 28.83 | 12.08 | 0.003 | 0.003 | 0.950 | 2.
1(0.944) | MSEyps | 0.281 | 0.220 | 28.83 | 12.10 | 0.013 | 0.013 | 2.853 | 7.
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Table: Clayton, true F = t3:

estimation of 0.01 conditional quantile

] | Sieve | Ideal [ 2step [ Para [ Mis-N [ Mis-EV |
a=>5 |ntBI'351203 36.26 | 0.000 | 150.0 | 0.172 | 900.7 704.8
7(0.714) IntVarjgs | 32.15 | 5.450 | 985.3 | 10.18 | 463.7 313.4
A(0.871) | IntMSE;qs | 68.41 | 5.450 | 1135 | 10.35 1364 1018
a=10 IntBiasl203 7.712 | 0.000 | 527.3 | 0.040 | 815.3 427.4
7(0.833) IntVarjgs | 19.36 | 2.475 | 855.3 | 3.716 | 361.7 202.7
/\(0.933) IntMSE s | 27.07 | 2.475 | 1383 | 3.756 1177 630.1
a=12 IntBiasl203 2.851 | 0.000 | 367.7 | 0.004 | 181.1 175.9
7(0.857) IntVar;gs | 6.236 | 1.068 | 590.9 | 1.578 | 59.44 46.12
A(0.944) | IntMSEys | 9.086 | 1.069 | 958.7 | 1.582 | 240.5 | 222.0

For each a, evaluation is based on the common support of 1000 MC simulated
data. Reported integrated Bias?, integrated Var and the integrated MSE are the
true ones multiplied by 1000.
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0.5

Comparison of 0.01 conditional quantile estimates

Tutorial in Econometrics Part |l: Sieve Inferen

NUS, IMS, May 16, 2014

30 / 42




3. Limiting distributions of sieve estimates.
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Limiting dist. of plug-in sieve estimates of regular

functionals

@ +/n normality of semiparametric 2-step GMM estimators: Newey
(94), Chen-Linton-Keilegom (03), Chen (07, beta-mixing, non-smooth
criterion).

@ +/n normality of sieve simultaneous M-estimator; efficiency of sieve
MLE: Chen-Shen (98, beta-mixing)

@ +/n normality and inference of sieve MD estimator of
semi-nonparametric conditional moment restrictions: Ai-Chen (03,
iid), Ai-Chen (07, could be misspecified, iid), Chen-Pouzo (09, iid).
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Limiting dist. of plug-in sieve estimates of irregular

functionals

@ Irregular functionals are also called nonsmooth functionals or
unbounded functionals, which have singular semiparamertic
information bound, and hence can not be estimated at a root-n rate.

@ Asym normality of sieve M-estimators of possibly irregular functionals:
Chen-Liao-Sun (2013, time series).

@ Asym normality of sieve MD estimators of possibly irregular
functionals: Chen-Pouzo (2010, iid); allowing for nonparametric
endogeneity.
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4. Sieve Wald statistics; consistent sieve variance
estimation.
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o Consistent variance estimation of semiparametric 2-step GMM
estimators with sieve as 1st step: Ai-Chen (07),
Ackerberg-Chen-Hahn (12), Chen, Hahn and Liao (12, time series).

@ Robust sieve long-run variance estimation of sieve M estimator of
possibly irregular functionals: Chen-Liao-Sun (13, time series).

@ Consistent sieve variance estimation of sieve MD estimators of
possibly irregular functionals: Chen-Pouzo (10, iid).
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Sieve MD estimates of irregular functionals: Chen-Pouzo

@ Nonpara conditional moment model: E[p(Z; ho(Y'))|X] = 0.
@ Functionals of interest: 4)( ), e.g., (p(h) = h(y) (for y € supp(Y)),
[ w(y)Vh(y)dy or [w(y)|Vh(y)|*dy.

V{p(ha)—(h

[1villsa

[|vi |2, = 2lho)[gk(n) ()] D15, Dy L 40Uh) [gk(m) ()],

o)} = N(0,1),

Asymp normality:

°
)

(

dm(j;'ho) [qk(n)(‘)/])/ W (W[qk(n)(.>/]>:|

o W =3(X)"p(Z, ho)p(Z, ho)'E(X) !
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e NPIV example: Y1 = ho(Y2) + U, E(U|X) =0.
o NPQIV example: Y; = ho(Y2) + U, Pr(U < 0|X) =
e Asymp normalityzw = N(0,1),

o [|vi|[2, = L) gk(n) ()} D115, D, 4lh0) [gk(m) ()],

o NPIV: D,=E (E[¢“") (V2)| X]E[¢“( (2)|X])
o= (E[q“") (v2) | X] VE[gH7 (v2)|X]') .

o NPQIV:
Dy=77 E (Elfyjv,.x (0065 ™) (¥2) | XIE[fy )y, x (0) g7 (¥2)X]'),
O,=D,.

e Operator Th = E [h(Y2)|X] (for NPIV) and
Th = E [fy}y, x(0)h(Y2)|X] (for NPQIV) mapping from
h € H C L?(fy,) to L2(fx) are compact, with {lpj(-) iy > 1} the
eigenfunctions, and ji; > ... > p; > p; 4 "\, 0 the singular values.

2
o ||vi3 = 1(1) 7 (dq’(ho) [¢J()]) , which could go to infinity.
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e Sieve t statistic: M = N(0,1),

Vi,

()
3)
q
=
2
—~
L
O

®
<
1
™
x
|
e
N
>
=)
N
>
/@
X
|

becomes the robust variance

Applying it to NPIV example, ||V?]|2
estimator of parametric 2SLS.

n,sd
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5. Sieve QLR statistics.

6. Sieve F statistic for weakly dependent data.
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7. Conclusion and future research
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Concluding remarks

@ Semi-nonparametric methods are useful for complicated nonlinear
non-Gaussian, nonseparable structural models.
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sieve M-estimation for weakly dependent time series models are
relatively complete; sieve Wald, QLR tests are also available and easy
to implement
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Concluding remarks

@ Semi-nonparametric methods are useful for complicated nonlinear
non-Gaussian, nonseparable structural models.

@ Multi-step estimation is typical for complicated dynamic models.

o Large sample properties (consistency, rate, limiting distribution) of
sieve M-estimation for weakly dependent time series models are
relatively complete; sieve Wald, QLR tests are also available and easy
to implement

o Large sample properties (consistency, rate, limiting distribution) of
sieve MD-estimation (or sieve GMM) for cross-section and small-T
panel data structural models are relatively complete.
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Concluding remarks

@ Semi-nonparametric methods are useful for complicated nonlinear
non-Gaussian, nonseparable structural models.

@ Multi-step estimation is typical for complicated dynamic models.

o Large sample properties (consistency, rate, limiting distribution) of
sieve M-estimation for weakly dependent time series models are
relatively complete; sieve Wald, QLR tests are also available and easy
to implement

o Large sample properties (consistency, rate, limiting distribution) of
sieve MD-estimation (or sieve GMM) for cross-section and small-T
panel data structural models are relatively complete.

@ Sieve Wald, score and QLR tests, and their bootstrap versions based
on sieve MD for possible irregular functionals are developed.
(Chen-Pouzo, 2013). This allows for inference on general class of
semi-nonparametric conditional moment models involving
nonparametric endogeneity.
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Concluding remarks, future research

@ There is few result on higher order refinements.
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semi-nonparametric time series models with nonlinear non-Gaussian
latent structures.
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Concluding remarks, future research

@ There is few result on higher order refinements.

@ There is few result on simulation based methods for
semi-nonparametric time series models with nonlinear non-Gaussian
latent structures.

@ Choice of smoothing parameters and lag length.
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