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Introduction

An econometric (or statistical) model is a family of probability
distributions indexed by unknown parameters. A model is called

parametric if all of its parameters are in �nite-dimensional parameter
spaces;

nonparametric if all of its parameters are in in�nite-dimensional
parameter spaces;

semiparametric if its parameters of interest are in �nite-dimensional
spaces but its nuisance parameters are in in�nite-dimensional spaces;

semi-nonparametric if it contains both �nite-dimensional and
in�nite-dimensional unknown parameters of interest.
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Duration Model with Unobserved Heterogeneity

fTi ,Xigni=1 a random sample from

p(T jX , β0, h0) =
Z
U
g(T jX , u, β0)fU (u)du,

g(T jX , u, β0): the density of duration T conditional on a scalar
unobserved heterogeneity U and observed X . Ex. g(T jX , u, β0) can
be Weibull density as in Heckman and Singer (84):

g(T jX , u, β0) = θ0,1T θ0,1�1 exp
h
θ00,2X + u � T θ0,1 exp

�
θ00,2X + u

�i
.

U is indep. of X . Misspecifying density fU (u) � h20(u) leads to
inconsistent estimation of θ0.
Let α0 = (β0, h0) 2 B �H, which can estimated by sieve MLE:

bαn = arg max
β2B , h2Hn

n

∑
i=1
logf

Z
U
g(Ti jXi , u, β)h2(u)dug

where Hn is a sieve space that becomes dense in H as n! ∞.
Semiparametric mixture models are widely used.
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Shape-invariant system of Engel curves with endogenous
expenditure

Blundell et al. (03) show that a system of Engel curves satisfying
Slutsky�s symmetry and allowing for demographic e¤ects on budget
shares in a given year must take the form:

Y1`i = h1`(Y2i � h0(X1i )) + h2`(X1i ) + ε`i , ` = 1, ...,N,

where Y1`i is the i � th household budget share on `� th goods, Y2i
is the i � th household log-total non-durable expenditure, X1i is a
vector of the i � th household demographic variables.
Blundell-Chen-Kristensen (07) consider a semi-nonparametric mean
instrumental variables (IV) regression:

E [Y1`i � fh1`(Y2i � g(X 01i β1)) + X 01i β2`gjX1i ,X2i ] = 0,
Chen-Pouzo (09, 12) estimate a semi-nonparametric quantile IV:

E [1
�
Y1`i � h1`(Y2i � g(X 01i β1)) + X 01i β2`

�
jX1i ,X2i ] = γ 2 (0, 1).

Both are estimated via sieve minimum distance (MD).
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Nonlinear habit-based asset pricing models

Consumption based asset pricing models: E (Mt+1Rj ,t+1 � 1jIt ) = 0,
j = 1, ...,N, Mt+1 =

∂U/∂Ct+1
∂U/∂Ct

is IMRS (intertemporal marginal rate
of substitution in consumption), and is a pricing kernel or SDF.

Hansen-Singleton (82): U = ∑∞
t=0 δt

h
(C 1�γ
t � 1)/(1� γ)

i
,

Mt+1 = δ
�
Ct+1
Ct

��γ
. GMM with unconditional moment restrictions

E

 "
δ

�
Ct+1
Ct

��γ

Rj ,t+1 � 1
#
Zt

!
= 0, j = 1, ...,N,

Zt=(1, lagged cons growth, lagged EWR and lagged VWR).
Many �nance and macro economists suspect misspeci�cation of time
separable utility in consumption.
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One popular theoretical �x is to let period t utility depend on habit
level Ht , which is some function of current and lagged consumptions.
Constantinides (90), Abel (90), Campbell-Cochrane (99), ...

Is habit linear or nonlinear, is habit internal or external? Economic
theories o¤ered no guidance, but di¤erent welfare implications.

Chen-Ludvigson (04, 09):

U = ∑∞
t=0 δt

h
((Ct �Ht )1�γ � 1)/(1� γ)

i
, here Ht = Ctg (c�t ) is

unknown habit level, 0 � g < 1, g nondecreasing in �rst argument of
c�t =

�
Ct�1
Ct
, ..., Ct�LCt

�
. Mt+1 =

∂U/∂Ct+1
∂U/∂Ct

. For external habit,

∂U/∂Ct = C
�γ
t (1� g (c�t ))

�γ; for internal habit, ∂U/∂Ct =

C�γ
t

"
(1� g (c�t ))

�γ � Etf
L

∑
j=0

δj
�
Ct+j
Ct

��γ

(1� g(c�t+j ))�γ ∂Ht+j
∂Ct

g
#
.
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Chen-Ludvigson (04, 09): Sieve minimum distance (SMD) with
conditional moment restrictions:

E (Mt+1Rj ,t+1 � 1jwt ) = 0, j = 1, ...,N, wt � It ,

Let f Ct
Ct�1

,Rj ,t ,wtg be stationary ergodic. Do not specify parametric

LOM. wt =
h ccay t ,RRELt ,SPEXt , Ct

Ct�1

i0
in empirical work.

Using quarterly data, some empirical �ndings are: (1) estimated habit
is nonlinear ; (2) internal habit �ts data signi�cantly better than
external habit; (3) estimated δ,γ are sensible; (4) estimated habit
generated SDF performs well in explaining cross-sectional stock
returns; (5) more �ndings about pricing errors, and model comparison
in terms of HJ pricing errors.
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Semi-nonparametric GARCH + residual copula models

Many explanations of the recent �nancial crisis have emphasized the
role of �nancial frictions and collateral, �leverage cycle� in
Geanakoplos (10) assumes that bad news is accompanied by increased
uncertainty (volatility). �News impact curve�.

Engle (10): �risk assessment� is also important in understanding the
�nancial crisis.

Our model: semi-nonparametric GARCH + residual copula, slightly
modi�ed SCOMDY model of Chen-Fan (06).

We use daily data from the last 4 years to address both �news impact
curve�and risk assessment�based on 3 series: mortgage-backed
security (MBS), stock, and bond market returns.
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Chen-Fan (06b) SCOMDY models:
Yj ,t+1 = E [Yj ,t+1jIt ] +

p
Var(Yj ,t+1jIt )εj ,t+1, j = 1, ...,N,

fεt+1 � (ε1t+1, . . . , εNt+1)0 : t � 0g indep. of It = σ(fYt ,Xtg),
i.i.d., E (εjt ) = 0, E (ε2jt ) = 1, each εjt has unknown marginal cdf
F oj (�),

εt has a joint dist. F o (ε) = C (F o1 (ε1), . . . ,F oN (εN ); αo ), where
C (�) : [0, 1]N ! [0, 1] is a copula with unknown parameter αo .

Di¤erent speci�cations of E [Yj ,t+1jIt ], Var(Yj ,t+1jIt ) and C (�; αo )
lead to many di¤erent examples of SCOMDY models.

Easy to estimate; useful for conditional VaR, contagion,
comovements.

Cherubini et al (10) apply SCOMDY to build term structure of
multivariate equity derivatives models.
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SCOMDY model: Excess returns on Barclays MBS index (Set ), excess
market (daily Fama-French factor) returns (Me

t ), and excess returns on the
Barclays bond index (Bet ):

MBS Market : Set = cS + ρSS
e
t�1 + βSM

e
t�1 + σS ,t εS ,t

Stock Market : Me
t = cM + ρMM

e
t�1 + σM ,t εM ,t

Bonds Market : Bet = cB + ρMB
e
t�1 + βBM

e
t�1 + σB ,t εB ,t

Volatility : σ2i ,t = ωi + θiσ
2
i ,t�1 + hi (σi ,t�1εi ,t�1) , i 2 fS ,M,Bg ,

E (εi ,t ) = 0 and E
�
ε2i ,t
�
= 1 for i 2 fS ,M,Bg. (εS ,t , εM ,t , εB ,t )0 are

indep. across time but jointly distributed according to unknown marginals
Fi (�), i 2 fS ,M,Bg, and Student�s t-copula, which has copula density
c (u;Σ, v) =

Γ
� v+2

2

� �
Γ
� v
2

��2p
det (Σ)

�
Γ
� v+1

2

��3 �1+ xΣ�1x0

v

�� v+3
2

∏
i2fS ,M ,Bg

�
1+

x2i
v

� v+2
2

,

with Σ the correlation matrix, Tv the scalar Student�t dist.,
x = (xS , xM , xB ) , xi = T�1v (ui ).
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All 3 estimated �news impact curves� exhibit the same asymmetry:
bad news increases volatility more than does good news. For
mortgage-backed securities and stocks, some goods news actually
decreases volatility, as in Fostel and Geanakoplos (10). As in Linton
and Mammen (05), most good news in the stock market does not
have much e¤ect on volatility.

We �nd (i) shocks to bonds and shocks to mortgage-backed securities
are highly correlated, (ii) shocks to mortgage-backed securities and
shocks to stocks are moderately negatively correlated, and (iii) shocks
to bonds and shocks to stocks are also moderately negatively
correlated.

With estimated semi-nonparametric GARCH and residual copula
dependence parameters, we can easily calculate VaR for a portfolio
comprised of mortgage-backed securities, stocks, and bonds.
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2. Sieve Extremum Estimation
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Sieve extremum estimation

Data: fZt = (Y 0t ,X 0t )0gnt=1 is stationary, ergodic.

Parameter space, (Θ, d), is a possibly in�nite dimensional (often
non-compact) metric space.

A sieve fΘng is a sequence of approximating parameter spaces that
become dense in Θ as n! ∞, i.e., for any θ 2 Θ there is an element
πnθ in Θn satisfying d(θ,πnθ)! 0 as n! ∞.
A population criterion Q : Θ ! R is maximized at a �pseudo-true�
parameter θo 2 Θ.bQn is a sample criterion, which is a joint measurable function of θ and
data fZtgnt=1, and converges to Q in some sense as n! ∞.
Sieve extremum estimator: any estimator θ̂n that solves

bQn(θ̂n) � sup
θ2Θn

bQn(θ)�OP (ηn), with ηn ! 0 as n! ∞.
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Examples of sieves Θn: Polynomial series, Hermite polynomial series
(SNP), Fourier series, Splines, Wavelets, Neural Networks, etc. See
e.g. Judd (98), Chen (07).

Examples of criterion function bQn(): ML, MD, GMM, GEL, ...
virtually all the existing criterion function for estimating nonlinear
parametric models are valid choices; see Chen (07).
Sieve M-estimation: a special case of sieve extremum estimation
when bQn(θ) = 1

n ∑n
t=1 l(θ,Zt ). E.g., sieve maximum likelihood (ML),

sieve least squares (LS), sieve nonlinear least squares (NLS), sieve
quantile regression (QR).
Ex: Yt = θo (Xt ) + εt , E [εt jXt ] = 0. Let fpj (X ), j = 1, 2, ...g be a
sequence of known basis functions that can approximate any θ 2 Θ
well. pkn (X ) = (p1(X ), ..., pkn (X ))

0. Then
Θn = fh : h(x) = pkn (x)0A : A 2 Rkng, with kn ! ∞ slowly as
n! ∞, is a �nite-dimensional linear sieve for Θ. And bθ is a sieve (or
series) LS estimator of θo :

bθ = arg max
θ2Θn

�1
n

n

∑
t=1
[Yt � θ(Xt )]2 = pkn (�)0(P 0P)�

n

∑
t=1
pkn (Xt )Yt .
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Sieve MD estimation: a special case of sieve extremum estimation
when �bQn(θ) can be expressed as some distance from zero.

For conditional moment restriction E [ρ(Z , θo )jX ] = 0, one typical
quadratic distance is

�bQn(θ) = 1
n

n

∑
t=1

bm(Xt , θ)0fbΣ(Xt )g�1 bm(Xt , θ),
where bm(Xt , θ) is a nonparametrically estimated moment condition of
�xed, �nite dimension and bΣ(Xt )! Σ(Xt ) in prob., where Σ(Xt ) is a
psd weighting matrix of the same �xed, �nite dimension as that ofbm(Xt , θ). For example, bm(Xt , θ) could be any series estimate of the
conditional mean function m(Xt , θ) = E [ρ(Z , θ)jX = Xt ]; see
Newey-Powell (03) and Ai-Chen (03).
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For conditional moment restriction E [ρ(Z , θo )jX ] = 0, another
typical quadratic distance is

�bQn(θ) = bgn(θ)0cW bgn(θ),
with bgn(θo )! 0 in prob. Here bgn(θ) is a sample average of some
unconditional moment conditions of increasing dimension andcW ! W in prob., where W is a psd weighting matrix of the same
increasing dimension as that of bgn(θ). This is �sieve GMM�.
E [ρ(Z , θo )jX ] = 0 i¤ the increasing number of unconditional
moment restrictions hold:

E [ρ(Zt , θo )p0j (Xt )] = 0, j = 1, 2, ..., km,n,

where fp0j (X ), j = 1, 2, ..., km,ng is a sequence of known basis
functions that can approximate any real-valued square integrable
functions of X well as km,n ! ∞. Let
pkm,n (X ) = (p01(X ), ..., p0km,n (X ))

0. Then E [ρ(Z , θo )jX ] = 0 can be
estimated via the above sieve GMM usingbgn(θ) = 1

n ∑n
t=1 ρ(Zt , θ)
 pkm,n (Xt ).
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Why method of sieves?

1 Easy to compute. Once when the unknown functions are
approximated by �nite dimensional sieves, the implementation is the
same as any parametric nonlinear extremum estimation.

2 Easier to impose shape (monotonicity, concavity), additivity,
non-negativity and other restrictions on unknown functions.

3 Can simultaneously obtain optimal convergence rates for unknown
functions and root-n normality for regular functionals (such as �nite
dimensional parameter); see Chen-Shen (98, sieve M estimation for
time series); Chen-Pouzo (09, sieve MD for iid)
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Estimation methods for unknown functionals

Joint estimation procedure: Simultaneous estimation of all the
unknown parameters of interests.

Pro�le sieve extremum estimator: For a semi-nonparametric model,
Θ = B �H, with B a �nite-dimensional compact space, H an
in�nite-dimensional function space. Then Θn = B �Hn. The pro�le sieve
extremum estimator consists of two steps:

Step 1, for �xed β, computebQn(β,eh(β)) � suph2Hn bQn(β, h)� oP (1);
Step 2, estimate βo by bβn = argmaxβ2B bQn(β,eh(β)), and estimate
ho by bhn = eh(bβn).
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Estimation methods for unknown functionals

Semiparametric two-step procedure:
Step 1: for �xed β, estimate unknown h() using whatever
nonparametric methods, say, using a sieve estimatoreh(β) = argmaxh2Hn bQ1,n(β, h)
Step 2, estimate unknown βo using one of existing nonlinear
extremum procedure with plugged in estimated h(), say,bβn = argmaxβ2B bQ2,n(β,eh(β)).
Advantages of 2-step: easier to compute; easier to establish root-n
asymptotic normality of regular functionals (β).
Disadvantages of 2-step: generally ine¢ cient; di¢ cult to obtain a
consistent estimator of Avar(bβn).
Advantages of 2-step with sieve as 1st step: easy to compute a
consistent estimator of Avar(bβn) even when there is no closed form
expression of Avar(bβn). Ai-Chen (07); Ackerberg-Chen-Hahn (11),
Chen-Hahn-Liao (12, time series)
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Example: Semi-nonparametric copula-based Markov model

True cond. density, p0(�jY t�1) of Yt given Y t�1 � (Yt�1, ...,Y1) is:

p0(�jY t�1) = g0(�)c(F0(Yt�1),F0(�); α0),

the q�th, q 2 (0, 1), conditional quantile of Yt given Y t�1 is:

QYq (y) = F
�1
0

�
C�12j1 [qjF0(y); α0]

�
where C2j1[�ju; α0] � ∂

∂uC (u, �; α0) � C1(u, �; α0) is the cond. dist of
Ut � F0(Yt ) given Ut�1 = u; and C�12j1 [qju; α0] is the q�th
conditional quantile of Ut given Ut�1 = u.
Chen-Fan (06a) two-step estimation: step1:bF (y) = 1

n+1 ∑n
t=1 1fYt � yg: rescaled empirical cdf; step 2:

pseudo-MLE bα :

max
α

1
n

n

∑
t=2
log c(bF (Yt�1), bF (Yt ); α)
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Ex:, any strictly stationary 1st order Markov series fYtgnt=1 can be
equivalently expressed as: f (Yt jYt�1) = c(G (Yt�1),G (Yt ))f (Yt ),
i.e., can be generated using a copula C (u1, u2; α) with a marginal cdf
F : (i) generate n independent U(0, 1) r.v. fXtgnt=1; (ii) U1 = X1,
Ut = C�12j1 (Xt jUt�1; α), and Yt , G�1(Ut ).

In the next graph, fYtgnt=1 is generated using �Clayton(15) + t(3)�:
C�12j1 (Xt jUt�1; α) = [(X

�α/(1+α)
t � 1)U�α

t�1 + 1]
�1/α, with α = 15,

G = cdf of t(3). However, structural break test of Davis et al. (05)
detects several breaks; Markov switching model also �ts well.

If one cares about conditional VaR or tail dependence, then
copula-based Markov model is better; see Chen-Fan (06a),
Chen-Koenker-Xiao (09), Bouye-Salmon (09).
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Chen-Wu-Yi (09) sieve MLE: Let Zt = (Yt�1,Yt ), and
`(α, g ,Zt ) � log p(Yt jY t�1) =

log f (Yt ) + log c (F (Yt�1),F (Yt ); α)

= log f (Yt ) + log c
�Z

1(y � Yt�1)f (y)dy ,
Z
1(y � Yt )f (y)dy ; α

�
Then the joint log-likelihood function of the data fYtgnt=1 is

Ln(α, f ) �
1
n

n

∑
t=2
`(α, f ,Zt ) +

1
n
log f (Y1).

The sieve MLE bθn � (bαn, bgn) is de�ned as
Ln(bαn,bfn) � max

α2A,f 2Fn
Ln(α, f )�Op (1) ,

Fn =
(
fKn 2 F : fKn (y) = [

Kn

∑
k=1

akAk (y)]
2,
Z
fKn (y)dy = 1

)
,

or

Fn =
(
fKn 2 F : fKn (y) = expf

Kn

∑
k=1

akAk (y)g,
Z
fKn (y)dy = 1

)
,
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Table: Clayton, true F = t3: estimation of α

Sieve Ideal 2step Para Mis-N Mis-EV
α = 2 Mean 1.969 2.002 1.912 1.989 2.400 2.957
τ Bias -0.031 0.002 -0.088 -0.011 0.400 0.957
(0.500) Var 0.019 0.007 0.101 0.012 0.103 0.056
λ MSE 0.020 0.007 0.109 0.012 0.264 0.971
(0.707) αMC(2.5,97.5) (1.70, 2.25 ) (1.83, 2.17 ) (1.36, 2.60 ) ( 1.76,2.19) (1.99,3.28) ( 2.57, 3.36 )

α = 10 Mean 9.687 10.00 7.115 9.967 11.42 11.57
τ Bias -0.313 0.004 -2.886 -0.033 1.425 1.570
(0.833) Var 0.351 0.085 4.852 0.129 0.577 1.194
λ MSE 0.449 0.085 13.18 0.130 2.607 3.659
(0.933) αMC(2.5,97.5) (8.68, 10.87) (9.43, 10.6 ) (3.87, 12.5) (9.26,10.6) ( 10.33,12.9) (9.68, 12.9)

α = 12 Mean 11.62 12.01 7.896 11.98 13.67 13.82
τ Bias -0.382 0.012 -4.104 -0.016 1.668 1.816
(0.857) Var 0.541 0.119 5.656 0.222 0.770 1.917
λ MSE 0.687 0.120 22.50 0.222 3.552 5.214
(0.944) αMC(2.5,97.5) (10.5, 13.3) ( 11.3,12.7 ) (4.35, 13.6) (11.0, 12.9) ( 12.3, 15.7) (11.4, 15.4)
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Table: Clayton, true F = t3: estimation of F . Reported Bias2, Var and MSE are
the true ones multiplied by 1000.

Sieve 2step Para Mis-N Mis-EV
Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3

α = 2 Mean 0.325 0.673 0.333 0.666 0.333 0.667 0.347 0.557 0.382 0.614
Bias2103 0.026 0.007 0.011 0.013 0.009 0.009 0.282 12.84 2.710 3.145

τ(0.500) Var103 0.054 0.049 1.430 0.801 0.002 0.002 1.921 5.651 0.755 0.947
λ(0.707) MSE103 0.080 0.056 1.441 0.814 0.011 0.011 2.203 18.49 3.465 4.092
α = 10 Mean 0.319 0.664 0.331 0.666 0.333 0.667 0.364 0.584 0.371 0.624

Bias2103 0.128 0.042 0.001 0.013 0.009 0.009 1.132 7.452 1.642 2.123
τ(0.833) Var103 0.109 0.137 22.28 9.800 0.003 0.003 0.711 3.410 2.103 4.192
λ(0.933) MSE103 0.236 0.178 22.29 9.813 0.012 0.012 1.843 10.86 3.744 6.315
α = 12 Mean 0.318 0.661 0.331 0.665 0.333 0.667 0.374 0.598 0.375 0.633

Bias2103 0.154 0.079 0.001 0.023 0.010 0.010 1.903 5.242 2.052 1.351
τ(0.857) Var103 0.127 0.141 28.83 12.08 0.003 0.003 0.950 2.662 2.494 4.934
λ(0.944) MSE103 0.281 0.220 28.83 12.10 0.013 0.013 2.853 7.904 4.547 6.286
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Table: Clayton, true F = t3: estimation of 0.01 conditional quantile

Sieve Ideal 2step Para Mis-N Mis-EV

α = 5 IntBias2103 36.26 0.000 150.0 0.172 900.7 704.8
τ(0.714) IntVar103 32.15 5.450 985.3 10.18 463.7 313.4
λ(0.871) IntMSE103 68.41 5.450 1135 10.35 1364 1018

α = 10 IntBias2103 7.712 0.000 527.3 0.040 815.3 427.4
τ(0.833) IntVar103 19.36 2.475 855.3 3.716 361.7 202.7
λ(0.933) IntMSE103 27.07 2.475 1383 3.756 1177 630.1

α = 12 IntBias2103 2.851 0.000 367.7 0.004 181.1 175.9
τ(0.857) IntVar103 6.236 1.068 590.9 1.578 59.44 46.12
λ(0.944) IntMSE103 9.086 1.069 958.7 1.582 240.5 222.0

For each α, evaluation is based on the common support of 1000 MC simulated
data. Reported integrated Bias2, integrated Var and the integrated MSE are the

true ones multiplied by 1000.
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3. Limiting distributions of sieve estimates.
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Limiting dist. of plug-in sieve estimates of regular
functionals

p
n normality of semiparametric 2-step GMM estimators: Newey

(94), Chen-Linton-Keilegom (03), Chen (07, beta-mixing, non-smooth
criterion).
p
n normality of sieve simultaneous M-estimator; e¢ ciency of sieve

MLE: Chen-Shen (98, beta-mixing)
p
n normality and inference of sieve MD estimator of

semi-nonparametric conditional moment restrictions: Ai-Chen (03,
iid), Ai-Chen (07, could be misspeci�ed, iid), Chen-Pouzo (09, iid).
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Limiting dist. of plug-in sieve estimates of irregular
functionals

Irregular functionals are also called nonsmooth functionals or
unbounded functionals, which have singular semiparamertic
information bound, and hence can not be estimated at a root-n rate.

Asym normality of sieve M-estimators of possibly irregular functionals:
Chen-Liao-Sun (2013, time series).

Asym normality of sieve MD estimators of possibly irregular
functionals: Chen-Pouzo (2010, iid); allowing for nonparametric
endogeneity.
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4. Sieve Wald statistics; consistent sieve variance
estimation.
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Consistent variance estimation of semiparametric 2-step GMM
estimators with sieve as 1st step: Ai-Chen (07),
Ackerberg-Chen-Hahn (12), Chen, Hahn and Liao (12, time series).

Robust sieve long-run variance estimation of sieve M estimator of
possibly irregular functionals: Chen-Liao-Sun (13, time series).

Consistent sieve variance estimation of sieve MD estimators of
possibly irregular functionals: Chen-Pouzo (10, iid).
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Sieve MD estimates of irregular functionals: Chen-Pouzo

Nonpara conditional moment model: E [ρ(Z ; h0(Y ))jX ] = 0.
Functionals of interest: φ(h), e.g., φ(h) = h(y) (for y 2 supp(Y )),R
w(y)rh(y)dy or

R
w(y) jrh(y)j2 dy .

Asymp normality:
p
nfφ(bhn)�φ(h0)g

jjv �n jjsd
) N(0, 1),

jjv �n jj2sd =
dφ(h0)
dh [qk (n)(�)]0D�1n fnD�1n

dφ(h0)
dh [qk (n)(�)],

Dn= E
��

dm(X ,h0)
dh [qk (n)(�)0]

�0
Σ(X )�1

�
dm(X ,h0)

dh [qk (n)(�)0]
��
,

fn= E
��

dm(X ,h0)
dh [qk (n)(�)0]

�0
W
�
dm(X ,h0)

dh [qk (n)(�)0]
��

W = Σ(X )�1ρ(Z , h0)ρ(Z , h0)0Σ(X )�1.
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NPIV example: Y1 = h0(Y2) + U, E (U jX ) = 0.
NPQIV example: Y1 = h0(Y2) + U, Pr(U � 0jX ) = γ.

Asymp normality:
p
nfφ(bhn)�φ(h0)g

jjv �n jjsd
) N(0, 1),

jjv �n jj2sd =
dφ(h0)
dh [qk (n)(�)]0D�1n fnD�1n

dφ(h0)
dh [qk (n)(�)],

NPIV: Dn=E
�
E [qk (n)(Y2)jX ]E [qk (n)(Y2)jX ]0

�
,

fn=E
�
E [qk (n)(Y2)jX ]U2E [qk (n)(Y2)jX ]0

�
.

NPQIV:
Dn= 1

γ(1�γ)
E
�
E [fU jY2,X (0)q

k (n)(Y2)jX ]E [fU jY2,X (0)qk (n)(Y2)jX ]0
�
,

fn= Dn.
Operator Th = E [h(Y2)jX ] (for NPIV) and
Th = E

�
fU jY2,X (0)h(Y2)jX

�
(for NPQIV) mapping from

h 2 H � L2(fY2) to L2(fX ) are compact, with
n

ψj (�) : j � 1
o
the

eigenfunctions, and µ1 � ... � µj � µj+1 & 0 the singular values.

jjv �n jj2sd � ∑k (n)
j=1 µ�2j

�
dφ(h0)
dh [ψj (�)]

�2
, which could go to in�nity.
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Sieve t statistic:
p
nfφ(bhn)�φ(h0)g

jjbv �n jjn,sd ) N(0, 1),

jjbv �n jj2n,sd = dφ(bh)
dh [q

k (n)(�)]0 bD�1n bfn bD�1n dφ(bh)
dh [q

k (n)(�)],

bDn= 1
n ∑n

i=1

�
d bm(Xi ,bh)

dh [qk (n)(�)0]
�0 bΣ(Xi )�1 � d bm(Xi ,bh)dh [qk (n)(�)0]

�
,

bfn= 1
n ∑n

i=1

�
d bm(Xi ,bh)

dh [qk (n)(�)0]
�0cWi

�
d bm(Xi ,bh)

dh [qk (n)(�)0]
�

cWi = bΣ(Xi )�1ρ(Zi ,bh)ρ(Zi ,bh)0bΣ(Xi )�1.
Applying it to NPIV example, jjbv �n jj2n,sd becomes the robust variance
estimator of parametric 2SLS.
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5. Sieve QLR statistics.

6. Sieve F statistic for weakly dependent data.
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7. Conclusion and future research
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Concluding remarks

Semi-nonparametric methods are useful for complicated nonlinear
non-Gaussian, nonseparable structural models.

Multi-step estimation is typical for complicated dynamic models.

Large sample properties (consistency, rate, limiting distribution) of
sieve M-estimation for weakly dependent time series models are
relatively complete; sieve Wald, QLR tests are also available and easy
to implement

Large sample properties (consistency, rate, limiting distribution) of
sieve MD-estimation (or sieve GMM) for cross-section and small-T
panel data structural models are relatively complete.

Sieve Wald, score and QLR tests, and their bootstrap versions based
on sieve MD for possible irregular functionals are developed.
(Chen-Pouzo, 2013). This allows for inference on general class of
semi-nonparametric conditional moment models involving
nonparametric endogeneity.
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Concluding remarks, future research

There is few result on higher order re�nements.

There is few result on simulation based methods for
semi-nonparametric time series models with nonlinear non-Gaussian
latent structures.

Choice of smoothing parameters and lag length.
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