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Purpose of this Lecture

Purpose of this lecture: Many nonlinear dynamic models in labor,
IO and asset pricing can be estimated via semiparametric two-step or
multi-step procedures. This lecture will focus on simple ways to
conduct inference for general models estimated via semiparametric
two-step or multi-step GMM in which unknown functions are
estimated via the method of sieves.
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Existing General Theory on Semiparametric Two-step GMM

If nuisance functions ho() were known, the finite dimensional
parameter θo is (over-)identified by dg (≥ dθ) moment conditions:

E

[
T−1

T

∑
t=1

g (Zt , θo , ho(·))
]
= 0.

ho() is in fact unknown, but can be consistently estimated by ĥT (·).
Then θo is estimated by a semiparametric two-step GMM

θ̂T = arg min
θ∈Θ

[
1

T

T

∑
t=1

g
(
Zt , θ, ĥT (·)

)]′
WT

[
1

T

T

∑
t=1

g
(
Zt , θ, ĥT (·)

)]
.

Newey (94), Andrews (94), Pakes and Olley (95), Chen, Linton and
van Keilegom (03), Chen (07):

√
T consistency and asymptotic

normality (CAN) of θ̂T

Newey (94): if θ̂T is
√
T CAN, then Avar

(
θ̂T

)
does not depend on

how ho() is estimated in the first step.

Chen et al Sieve GMM NUS, IMS, May 16, 2014 3 / 35



Existing General Theory on Semiparametric Two-step GMM

If nuisance functions ho() were known, the finite dimensional
parameter θo is (over-)identified by dg (≥ dθ) moment conditions:

E

[
T−1

T

∑
t=1

g (Zt , θo , ho(·))
]
= 0.

ho() is in fact unknown, but can be consistently estimated by ĥT (·).
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Advantage and Difficulty of Semiparametric Two-step GMM

Advantage: Easy to compute. One could apply all kinds of
nonparametric methods to estimate ho() in the first-step.

Too many applications in labor, IO, asset pricing and other
structural models to mention them during the talk.

Difficulty: Generally no closed form expression for Avar(θ̂).

Questions: (1) assuming
√
T CAN, when is the procedure

semiparametrically efficient? (2) how to check
√
T rate? (3)

assuming
√
T CAN, how to estimate Avar(θ̂)? (4) how to conduct

overidentification test? (5) how to conduct inference robust to slower
than

√
T rate?
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The Rest of This Lecture

Answer to Question (1): Semiparametric efficiency: Ai and Chen
(12), Chen, Hahn and Liao (13).

Answers to Questions (2), (3) and (4): Chen, Hahn and Liao (12).

Answer to Question (5): Chen, Hahn, Liao and Ridder (12): Semi-
and non-parametric multistep procedures, and inference robust to
slower than root-T rate.

An Empirical Example: Multivariate semi-nonparametric
GARCH + Residual copula model: Chen (13).
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I Will Mention Results from the Following Papers

Ai and Chen (AC, 12): “Semiparametric Efficiency Bound for Models
of Sequential Moment Restrictions containing unknown functions”,
2012 Journal of Econometrics.

Chen, Hahn and Liao (CHL, 13): “Asymptotic Efficiency of
Semiparametric Two-step GMM”.

Chen, Hahn and Liao (CHL, 12): “Semiparametric Two-step GMM
with Weakly Dependent Data”.

Chen, Hahn, Liao and Ridder (CHLR, 12): “nonparametric Two-step
sieve estimation and inference”.
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Review: Root-T CAN of the Second-step GMM

Data: {Zt = (Y ′t ,X ′t )
′}Tt=1 is stationary, ergodic.

Recall semiparametric two-step GMM

θ̂T = arg min
θ∈Θ

[
1

T

T

∑
t=1

g
(
Zt , θ, ĥT (·)

)]′
WT

[
1

T

T

∑
t=1

g
(
Zt , θ, ĥT (·)

)]
.

Let G (θ, h) = E [g (Z , θ, h)], and Γ1(θ, h) be the ordinary derivative
of G (θ, h) wrt θ. Let Γ1 = Γ1(θo , ho).

Assume Γ′1W Γ1 is non-singular, with W = p limT→∞ WT .

Then:
√
T
(

θ̂T − θo
)
→d N [0,Vθ ] with

Vθ =
(
Γ′1W Γ1

)−1 (Γ′1WV1W Γ1

) (
Γ′1W Γ1

)−1
,

iff T−
1
2

T

∑
t=1

g
(
Zt , θo , ĥT

)
→d N [0,V1] for a positive definite V1.
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Semiparametric efficiency?

If second-step GMM is optimally weighted (W = V−11 ), then

√
T
(

θ̂T − θo
)
→d N [0,

(
Γ′1V

−1
1 Γ1

)−1
]

d
= N (0,V o

θ ).

Question: Is this limited information optimality the same as full
semiparametric efficiency bound?

Answer: It depends on how true unknown functions ho() is specified
in the semiparametric structural model.

AC (12): semiparametric efficiency bound for sequential moment
restriction. If ho() depends on “endogenous” variables, then this
limited information optimality is NOT fully efficient in general.

CHL (13): semiparametric efficiency bound for overlapping moment
restriction when ho() is “exactly identified”, then this limited
information optimality is fully efficient.
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AC (12)’s Result on Semiparametric efficiency

AC characterize the semiparametric efficiency bound for the
sequential moment restrictions containing unknown functions:

E [ρt(Z ; θo , ho(·))|X (t)] = 0 for t = 1, ...,T almost surely, (1)

where {1} ⊆ {X (1)} ⊂ · · · ⊂ {X (T )}. When X (1) is constant then
E [ρ1(Z ; θ, h(·))|X (1)] = E [ρ1(Z ; θ, h(·))]. Z = (Y ′,X (T )′)′.
ho(·) = (ho1(·), ..., hoL(·)) may depend on endogenous variables Y
and other unknown parameters.

A special case of the sequential moment model (1) is:

E [g (Z ; θo , ho(·))] = 0, E [ρ2(Z ; ho(·))|X (2)] = 0, (2)

AC (12): For model (2), the limited information optimally weighted
second-step GMM is NOT fully efficient whenever
E [g (Z ; θo , ho(·)) ρ2(Z ; ho(·))|X (2)] 6= 0.
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CHL (13)’s Positive Result on Semiparametric efficiency

Semiparametric model: θo is (over-) identified by (3):

E [g (Z ; θo , h1,o(·), ..., hL,o(·))] = 0, (3)

where the functions ho(·) = (h1,o(·), ..., hL,o(·)) are identified by (4):

E [ρ`(Z , h`,o (X`))|X`] = 0 almost surely X`, ` = 1, ..., L, (4)

where the conditioning variables X`, ` = 1, ..., L, could be nested,
overlapping or non-nested.

CHL (13): For model (3)-(4), if (4) “exactly identifies” h`,o for
` = 1, ..., L, then the limited information optimally weighted the
limited information optimally weighted second-step GMM is fully
efficient.

This covers many recent papers in labor and IO on semiparametric
two-step GMM estimation of structure models.
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CHL (12)’s answers to Questions (2), (3) and (4)

Alternative characterization of Avar(θ̂) of the second-step GMM θ̂
with first-step sieve extremum estimation.

Consistent kernel estimation of long-run variance: (1) Wald tests; (2)
overidentification J tests.

Robust orthonormal series estimation of long-run variance: (1) F
tests; (2) robust overidentification J tests

Numerical equivalence of asymptotic variance estimates.
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Sieve Semiparametric Two–step GMM

A semiparametric model specifies that

E [g (Zi , θ, ho(·, θ))] = 0 at θ = θo ∈ Θ, (5)

and for any fixed θ ∈ Θ, ho(·, θ) ∈ H solves

Q(ho) = sup
h∈H

Q(h). (6)

If ho() were known, the finite dimensional structural parameter θo is
(over-)identified by dg (≥ dθ) moment conditions (5). But ho() is
unknown, except that it is identified as a maximizer of Q() over H.
We suppress the arguments of the function ho ; thus
(θ, h) ≡ (θ, h(·, θ)), (θ, ho) ≡ (θ, ho(·, θ)), (θo , ho) ≡ (θo , ho(·, θo)).

Parameter spaces: Θ is a compact subset in Rdθ . (H, ds(, )) is a
possibly infinite dimensional (often non-compact) metric space.
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Sieve Semiparametric Two–step GMM

In the first-step unknown function ho() is estimated via a sieve
extremum estimator ĥ that solves

Q̂T (ĥ) ≥ sup
h∈HT

Q̂T (h)− oP(T
−1)

where Q̂T is a random criterion that converges to Q over the sieve
HT = HK (T ) as T → ∞. A sieve {HK (T )} is a sequence of
approximating parameter spaces that become dense in (H, ds(, )) as
K (T )→ ∞.

In the second-step θo is estimated by GMM with plugged-in ĥ():

θ̂T = arg min
θ∈Θ

[
1

T

T

∑
t=1

g
(
Zt , θ, ĥ(·)

)]′
WT

[
1

T

T

∑
t=1

g
(
Zt , θ, ĥ(·)

)]
.
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The first-step sieve extremum estimation is very general. Different
choices of criterion functions Q(), Q̂T and different choices of the
sieve spaces allow for all kinds of nonparametric first step.

Examples of sieves HT : Polynomial series, Hermite polynomial series
(SNP), Fourier series, Splines, Wavelets, Neural Networks, etc. See
e.g. Judd (98), Chen (07).

Examples of criterion functions Q(), Q̂T : ML, QML, MD, GMM,
GEL, ... virtually all the existing criterion function for estimating
nonlinear parametric models are valid choices; see Chen (07).

Sieve M: Q̂T (h) =
1
T ∑T

t=1 ϕ(Zt , h). ML, QML, LS, NLS, QR.

Sieve MD: Q̂T (h) =
−1
T ∑T

t=1 m̂(Xt , h)′m̂(Xt , h) for conditional
moment restriction E [ρ(Z , ho)|X ] = 0, where m̂(X , h) is a consistent
nonparametric estimator of E [ρ(Z , h)|X ], Newey-Powell (03),
Ai-Chen (03).
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Asy. Normality of Sieve Semiparametric Two-step GMM

Under mild conditions we have: ds(ĥ, ho) = op(1).

Define a metric within a small ds(·, ·) neighborhood B(ho) of ho :

‖h− ho‖ =
{
−
[

∂2

∂τ2
Q(ho + τ(h− ho))

]
|τ=0

}1/2

for any h ∈ B(ho),

Let BT (ho) = B(ho) ∩HT and ho,T ∈ arg minh∈BT (ho ) ‖h− ho‖.
Let V (and VT ) be the closed linear span of B(ho)− {ho} (and
BT (ho)− {ho,T}) under ‖·‖. Let 〈·, ·〉 be the inner-product induced
by ‖·‖ .

Under mild conditions we have:
∥∥∥ĥ− ho

∥∥∥ = op(T−1/4). See, e.g.,

Chen-Shen (98) for sieve M estimation for weakly dependent data;
Chen-Pouzo (12) for sieve MD estimation.
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∥∥∥ĥ− ho

∥∥∥ = op(T−1/4). See, e.g.,

Chen-Shen (98) for sieve M estimation for weakly dependent data;
Chen-Pouzo (12) for sieve MD estimation.

Chen et al Sieve GMM NUS, IMS, May 16, 2014 15 / 35



Asy. Normality of Sieve Semiparametric Two-step GMM

Under mild conditions we have: ds(ĥ, ho) = op(1).
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Asymptotic normality of the second-step GMM

Let Γ2(θ, h)[v ] ≡ ∂G [θ,h(·)+τv (·)]
∂τ

∣∣∣
τ=0

be the pathwise derivative of

G (θ, h) = E [g (Z , θ, h)] at h ∈ H in the direction v ∈ V .

A necessary condition for T−
1
2

T

∑
t=1

g
(
Zt , θo , ĥ

)
→d N [0,V1] is that

Γ2,j (θo , ho)[] : V → R is a bounded functional for all j = 1, ..., dg

Iff Γ2,j (θo , ho)[] : V → R is a bounded functional, there is a Riesz
representer v ∗j ∈ V such that

Γ2,j (θo , ho)[v ] =
〈
v , v ∗j

〉
for all v ∈ V ,∥∥v ∗j ∥∥2 = sup

v∈V ,v 6=0

|Γ2,j (θo , ho)[v ]|2

‖v‖2
< ∞.

Then T−
1
2

T

∑
t=1

g
(
Zt , θo , ĥ

)
=

T−
1
2

T

∑
t=1

g (Zt , θo , ho) +
√
T
〈
ĥ− ho , v∗

〉
+ op(1).
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Asy. Normality of Sieve Semiparametric Two-step GMM

Difficult to solve for v ∗j ∈ V in closed form. But can compute a sieve
Riesz representer v ∗j ,T ∈ VT in closed form such that

Γ2,j (θo , ho)[v ] =
〈
v , v ∗j ,T

〉
for all v ∈ VT , and

∥∥v ∗j ,T∥∥2 = sup
v∈VT ,v 6=0

|Γ2,j (θo , ho)[v ]|2

‖v‖2
→
∥∥v ∗j ∥∥2 < ∞.

Proposition 1. Sieve semiparametric two-step GMM satisfies√
T
(

θ̂T − θo
)
→d N [0,Vθ ] with

Avar(θ̂T ) = Vθ =
(
Γ′1W Γ1

)−1 (Γ′1WV1W Γ1

) (
Γ′1W Γ1

)−1
,

V1 = lim
n→∞

E

[
T−1

T

∑
i=1

T

∑
j=1

{Si (αo) [v
∗
T ]}{Sj (αo) [v

∗
T ]}′

]
,

Si (αo) [v∗T ] =

g (Zi , θo , ho) +
(

∆ (Zi , ho) [v ∗1,T ], ..., ∆ (Zi , ho) [v ∗dg ,T ]
)′

is a sieve
score.
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Consistent kernel estimation of the LRV

Newey-West type kernel estimate of V1 is defined as

V̂1,T =
T−1
∑

t=−T+1

K
(

t

MT

)
ΥT ,t(α̂T ) [v̂

∗
T , v̂∗T ] ,

where MT → ∞ as T → ∞, and ΥT ,t(α̂T ) [v̂
∗
T , v̂∗T ] is defined as

1
T

T

∑
l=t+1

Sl (α̂T ) [v̂
∗
T ]{Sl−t (α̂T ) [v̂

∗
T ]}′ for t ≥ 0

1
T

T

∑
l=−t+1

Sl (α̂T ) [v̂
∗
T ]{Sl+t (α̂T ) [v̂

∗
T ]}′ for t < 0

.

K (·) is the kernel function and MT is the bandwidth. v̂∗T is the
estimate of v∗T .
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1
T

T

∑
l=t+1

Sl (α̂T ) [v̂
∗
T ]{Sl−t (α̂T ) [v̂

∗
T ]}′ for t ≥ 0

1
T

T

∑
l=−t+1

Sl (α̂T ) [v̂
∗
T ]{Sl+t (α̂T ) [v̂

∗
T ]}′ for t < 0

.

K (·) is the kernel function and MT is the bandwidth. v̂∗T is the
estimate of v∗T .
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Kernel auto-correlation robust inference

Theorem 1. Under some regularity conditions, the kernel LRV
estimate V̂1 is consistent, i.e. V̂1,T →p V1. Also,

Γ̂1 =
1

T

T

∑
t=1

∂g(Zt , θ̂T , ĥT )

∂θ
→p Γ1.

V̂θ =
(

Γ̂′1WT Γ̂1

)−1 (
Γ̂′1WT V̂1,TWT Γ̂1

) (
Γ̂′1WT Γ̂1

)−1
→p Vθ

Thus
√
TV̂−1/2

θ (θ̂T − θo)→d N (0, Idθ
)

T (θ̂T − θo)′V̂
−1
θ (θ̂T − θo)→d χ2

dθ
.

Auto-covariance robust inference about θo can be conducted.
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Kernel overidentification test of moment conditions

Suppose the structural parameter θo is over-identified, i.e. dg > dθ.

Given the first-step sieve extremum estimate ĥT and the second-step
GMM estimate θ̂T , we would like to test the validities of the moment
conditions

E [g (Zt , θo , ho)]
?
= 0.

Define Ŵ−1
T = ∑T−1

t=−T+1K
(

t
MT

)
ΥT ,t(α̂T ) [v̂

∗
T , v̂∗T ], where

ΥT ,t(α̂T ) [v̂
∗
T , v̂∗T ] is defined as
1
T

T

∑
l=t+1

(
Ŝ∗l ,T − ST

) (
Ŝ∗l−t,T − ST

)′
for t ≥ 0

1
T

T

∑
l=−t+1

(
Ŝ∗l ,T − ST

) (
Ŝ∗l+t,T − ST

)′
for t < 0

with Ŝ∗l ,T = Sl (α̂T ) [v̂
∗
T ] and ST = 1

T

T

∑
l=1

Ŝ∗l ,T .
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Ŝ∗l ,T − ST

) (
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Kernel overidentification test of moment conditions

Our over-identification test statistic is

JT =

[
T−

1
2

T

∑
t=1

g(Zt , θ̂T , ĥT )

]
ŴT

[
T−

1
2

T

∑
t=1

g(Zt , θ̂T , ĥT )

]
.

Proposition 2. Under the null hypothesis E [g (Zt , θo , ho)] = 0 with
dg > dθ, we have:

JT →d χ2
dg−dθ

.
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ŴT

[
T−

1
2

T

∑
t=1

g(Zt , θ̂T , ĥT )
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Numerical Equivalence of LRV Estimates

Suppose a researcher believes ho(·) = P ′K (·)βo,K with fixed K .

He/she estimates βo,K and ho by the parametric extremum estimation

β̂T ,K = argmax βK∈BK Q̂n

(
P ′K (·)β

)
where BK is a nonempty compact subset in RK .

θo is estimated in GMM

θ̂T ,K = argminθ∈Θ

[
T

∑
t=1

gK (Zt , θ, β̂T ,K )

]
WT

T

[
T

∑
t=1

gK (Zt , θ, β̂T ,K )
′
]

,

where gK (Z , θ, βo,K ) ≡ g (Z , θ,P ′K (·) βo,K ).
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Numerical Equivalence of LRV Estimates
Proposition 3. Suppose that the parametric specification is true, then
under some regularity conditions,

√
T (θ̂T ,K − θo)→d N (0,Vθ,K )

where

Vθ,K =
(
Γ′1,KW Γ1,K

)−1 Γ′1,KWV1,KW Γ1,K

(
Γ′1,KW Γ1,K

)−1
,

V1,K = lim
T→∞

Var

{
T−

1
2

T

∑
t=1

[
gK (Zt , θo , βo,K ) + Γ′2,KR

−1
o,K

∂ϕK (Zt , βo,K )

∂βK

]}
,

Γ1,K = E

[
∂gK (Z , θo , βo,K )

∂θ′

]
and Γ2,K = E

[
∂gK (Z , θo , βo,K )

∂β′K

]
.

Note: the asymptotic variance of θ̂T ,K is different from the
asymptotic variance of θ̂T .

Chen et al Sieve GMM NUS, IMS, May 16, 2014 23 / 35



Numerical Equivalence of LRV Estimates

An typical estimator of V1,K is V̂1,K = ∑T−1
t=−T+1K

(
t

MT

)
Υ̂K (t), where:

Υ̂K (t) =


T

∑
l=t+1

Ŝl ,K Ŝ
′
l−t,K

T for t ≥ 0

T

∑
l=−t+1

Ŝl ,K Ŝ
′
l+t,K

T for t < 0
,

Ŝt,K = gK

(
Zt , θ̂T ,K , β̂T ,K

)
+ Γ̂′2,K R̂

−1
K

∂ϕK

(
Zt , β̂T ,K

)
∂β′K

,

Γ̂2,K ≡ 1

T

T

∑
t=1

∂gK

(
Zt , θ̂T ,K , β̂T ,K

)
∂β′K

,

R̂K ≡ − 1

T

T

∑
t=1

∂2ϕP

(
Zt , β̂T ,K

)
∂β∂β′

.
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Numerical Equivalence of LRV Estimates
The consistent estimate of the asymptotic variance of θ̂T ,K can be defined
as

V̂θ,P =
(

Γ̂′1,KWT Γ̂1,K

)−1
Γ̂′1,KWT V̂1,KWT Γ̂1,K

(
Γ̂′1,KWT Γ̂1,K

)−1
where V̂1,K is defined in the previous slide and

Γ̂′1,K =
1

T

T

∑
t=1

∂gK (Zt , θ̂T ,K , β̂T ,K )

∂θ
.

Proposition 4. If K = K (T ), then V̂θ,P = V̂θ for all T

For the sieve method, in finite samples, not only the estimation can
be viewed as a parametric problem after the number of the basis
functions is determined, but also the inference can be conducted as if
the model is parametrically specified.
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Orthonormal series estimation of LRV

{φm}∞
m=1 is a sequence of orthonormal basis in L2[0, 1] with∫ 1

0 φm(s)ds = 0.

We define the following series projection

Λ̂m =
(Γ̂′1WT Γ̂1)−1Γ̂′1WT√

T

T

∑
t=1

φm

( t

T

)
St(θ̂T , ĥT ) [v

∗
T ]

for m = 1, ...,M, where

St(θ̂T , ĥT ) [v
∗
T ] = g(Zt , θ̂T , ĥT ) + ∆(Zt , ĥT ) [v̂

∗
T ] .

Orthonormal series estimator of Vθ is:

V̂θ,M ≡
1

M

M

∑
m=1

Λ̂mΛ̂′m.

A natural extension of Phillips (2005) and Sun (2013) to
semiparametric two-step GMM setting.
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OS robust inference for scalar parameter
Theorem 2. Under some regularity conditions, we have

tM,T ≡
√
T

θ̂T − θo√
V̂θ,M

→ d t(M),

where t(M) is a student-t random variable with degree of freedom M.

When the number of the basis functions M → ∞, tM,T will converge
in distribution to the standard normal distribution.
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OS robust inference for vector parameter
Theorem 3. Under some regularity conditions, we have

FM,T ≡ T

dθ

(
θ̂T − θo

)′
V̂−1θ,M

(
θ̂T − θo

)
.

M − dθ + 1

M
FM,T → d z(dθ,M − dθ + 1),

where z(a, b) denotes the F-distribution with (a, b) degree freedom.

When the number of the basis functions M → ∞, FM,T will converge
in distribution to the chi-square random variable with degree of
freedom dθ.
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OS robust overidentification test of the moment conditions

Let W̃−1
r ,T = 1

M ∑M
m=1 Λ̃mΛ̃′m, where

Λ̃m = T−
1
2

T

∑
t=1

φm

( t

T

) {
g(Zt , θ̃T , ĥT ) + ∆(Zt , ĥT ) [v̂

∗
T ]
}

and θ̃T is some preliminary GMM estimate.

The two-step GMM estimate is defined as

θ̂r ,T = argminθ∈Θ

[
T

∑
t=1

g(Zt , θ, ĥT )

]
W̃r ,T

T

[
T

∑
t=1

g(Zt , θ, ĥT )

]
.

Define Ŵ−1
r ,n = 1

M ∑M
m=1 Λ̂r ,mΛ̂′r ,m, where

Λ̂r ,m = T−
1
2

T

∑
t=1

φm

( t

T

) {
g(Zt , θ̂r ,T , ĥT ) + ∆(Zt , ĥT ) [v̂

∗
T ]
}

.
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]
W̃r ,T

T

[
T

∑
t=1

g(Zt , θ, ĥT )
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∗
T ]
}

and θ̃T is some preliminary GMM estimate.

The two-step GMM estimate is defined as

θ̂r ,T = argminθ∈Θ

[
T

∑
t=1

g(Zt , θ, ĥT )
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OS robust overidentification test of the moment conditions

Define the J-test statistic

JM,T =

[
T

∑
t=1

g(Zt , θ̂r ,T , ĥT )

]
Ŵr ,T

T

[
T

∑
t=1

g(Zt , θ̂r ,T , ĥT )

]
.

Theorem 4. Under the null hypothesis E [g (Zt , θo , ho)] = 0 with
dg > dθ, we have for fixed finite M > (dg − dθ),

J∗M,T ≡
M − (dg − dθ) + 1

M(dg − dθ)
JM,T →d z(dg − dθ,M − (dg − dθ) + 1),

where z(a, b) denotes a F -distributed random variable with degree of
freedom (a, b).
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Summary of CHL (12)

Given the first-step sieve extremum estimation, we provide an explicit
characterization of the asymptotic variance of the semiparametric
two-step GMM estimate.

We provide consistent kernel LRV estimates; kernel based t test, Wald
test, and overidentification test of the moment conditions.

We provide robust orthonormal series LRV estimates; OS based t test,
Wald test and overidentification test of the moment conditions.

We show that our kernel LRV estimates of semiparametric asymptotic
variance are numerical equivalent to the kernel LRV estimates of the
corresponding two-step parametric models. Such results hold similarly
for the series LRV estimates.
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Answers to Question (5): CHLR (12))

Multi-step procedures in which all steps could involve nonparametric
sieve M estimation for weakly dependent data.

nonparametric generated regressors or nonparametric filtered data are
examples that fit into the framework.

Model framework: Assume that ho ∈ H is the unique solution to
suph∈H E [ϕ (Z1, h)] and go ∈ G is the unique solution to
supg∈G E [ψ(Z2, g , ho)]

Two-step sieve M estimation: In the first step, we estimate ho ∈ H
by ĥn ∈ Hn defined as

1

n

n

∑
i=1

ϕ
(
Z1,i , ĥn

)
≥ sup

h∈Hn

1

n

n

∑
i=1

ϕ (Z1,i , h)−Op(ε
2
1,n); (7)

in the second step, we estimate go ∈ G by ĝn ∈ Gn defined as

1

n

n

∑
i=1

ψ
(
Z2,i , ĝn, ĥn

)
≥ sup

g∈Gn

1

n

n

∑
i=1

ψ
(
Z2,i , g , ĥn

)
−Op(ε

2
2,n), (8)
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Example: semi-nonparametric GARCH + residual copula models

Many explanations of the recent financial crisis have emphasized the
role of financial frictions and collateral, “leverage cycle” in
Geanakoplos (10) assumes that bad news is accompanied by increased
uncertainty (volatility). “News impact curve”.

Engle (10): “risk assessment” is also important in understanding the
financial crisis.

Our model: semi-nonparametric GARCH + residual copula, slightly
modified SCOMDY model of Chen-Fan (06).

We use daily data from the last 4 years to address both “news impact
curve” and risk assessment” based on 3 series: mortgage-backed
security (MBS), stock, and bond market returns.

Chen et al Sieve GMM NUS, IMS, May 16, 2014 33 / 35



SCOMDY model: Excess returns on Barclays MBS index (Se
t ), excess

market (daily Fama-French factor) returns (Me
t ), and excess returns on the

Barclays bond index (Be
t ):

MBS Market : Se
t = cS + ρSS

e
t−1 + βSM

e
t−1 + σS,tεS ,t

Stock Market : Me
t = cM + ρMMe

t−1 + σM,tεM,t

Bonds Market : Be
t = cB + ρMBe

t−1 + βBM
e
t−1 + σB,tεB,t

Volatility : σ2
i ,t = ωi + θiσ

2
i ,t−1 + hi (σi ,t−1ε i ,t−1) , i ∈ {S ,M,B} ,

E (ε i ,t) = 0 and E
(
ε2i ,t
)
= 1 for i ∈ {S ,M,B}. (εS ,t , εM,t , εB,t)

′ are
indep. across time but jointly distributed according to unknown marginals
Fi (·), i ∈ {S ,M,B}, and Student’s t-copula, which has copula density
c (u; Σ, v) =

Γ
(
v+2
2

) (
Γ
(
v
2

))2√
det (Σ)

(
Γ
(
v+1
2

))3 (1 +
xΣ−1x′

v

)− v+3
2

i∈{S ,M,B}

(
1 +

x2i
v

) v+2
2

,

with Σ the correlation matrix, Tv the scalar Student’ t dist.,
x = (xS , xM , xB) , xi = T−1v (ui ).
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All 3 estimated “news impact curves” exhibit the same asymmetry:
bad news increases volatility more than does good news. For
mortgage-backed securities and stocks, some goods news actually
decreases volatility, as in Fostel and Geanakoplos (10). As in Linton
and Mammen (05), most good news in the stock market does not
have much effect on volatility.

We find (i) shocks to bonds and shocks to mortgage-backed securities
are highly correlated, (ii) shocks to mortgage-backed securities and
shocks to stocks are moderately negatively correlated, and (iii) shocks
to bonds and shocks to stocks are also moderately negatively
correlated.

With estimated semi-nonparametric GARCH and residual copula
dependence parameters, we can easily calculate VaR for a portfolio
comprised of mortgage-backed securities, stocks, and bonds.
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