Tutorial and applications in econometrics: Self-normalization, Gaussian approximation, and inference with many moment inequalities

Kengo Kato (U. of Tokyo)

May 15, 2014@NUS

Schedule

- Part 1a: Introduction to partially identified models.
- Part 1b: Inference with many moment inequalities.
- Part 1c: Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors.

Most of the lectures are based upon the following joint works with Victor Chernozhukov (MIT) and Denis Chetverikov (UCLA):

- Testing many moment inequalities. (2013). arXiv:1312.7614.
- Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. arXiv:1212.6906. Ann. Statist. (2013).
- Comparison and anti-concentration bounds for maxima of Gaussian random vectors. arXiv:1301.4807. To appear in Probab. Theory Related Fields. (2014).

Preliminary

- In preparing the paper "Testing many moment inequalities", we found that the self-normalization theory is useful for inference with (many) moment inequalities, a class of partially identified models in which people in econometrics have had a lot of interests in the last decade.
- There we studied inference procedures based upon (i) a moderate deviation inequality for self-normalized sums, (ii) (a version of) high-dimensional central limit theorem (developed in the last two papers), and (iii) combination of (i) and (ii).

Preliminary (cont.)

- Part 1b will cover the content of "Testing" paper.
- Part 1a will cover a brief introduction to inference for partially identified models, which hopefully motivates Part 1b.
- Part 1c will cover the content of the remaining two papers, on which some results in Part 1b rely (the material in Part 1c has only small connection to self-normalization theory, but hopefully you will find it intriguing).

Part 1a: Introduction to partially identified models

What is partially identified model?

• Romano and Shaikh (Econometrica, 2010, p.169):

A partially identified model is any model in which the parameter of interest is not uniquely defined by the distribution of the observed data.

• The model only restricts the value of the parameter of interest to a (multi-element) set, called *identified set*.

What is partially identified model? (cont.)

 Partially identified models frequently appear in economic applications, where you typically encounter the following situation: you are interested in the parameter in the latent structure, but the observed data does not contain enough information to give you point identification of the parameter.

Example 1: interval data

• Suppose you have a r.v. Y which is *unobservable*, but there are observable r.v.'s Y_1, Y_2 that bracket Y in the sense that

$$Y_1 \leq Y \leq Y_2.$$

• For example:

(interval censoring) Let Y be the income. Some surveys only record brackets of income, say, $(y_0, y_1], \ldots, (y_{K-1}, y_K]$. Defining

$$Y_1 = y_{k-1}, Y_2 = y_k, ext{ when } Y \in (y_{k-1}, y_k], ext{ } k = 1, \dots, K,$$

we have $Y_1 \leq Y \leq Y_2$. (missing data) Let $Y \in [0, 1]$ and $D \in \{0, 1\}$, and we only observe Y when D = 1, so the observe variable is the pair (D, DY). Then

$$DY \le Y \le DY + (1 - D).$$

Example 1: interval data (cont.)

- The parameter of interest is $\theta = \mathbf{E}[\mathbf{Y}]$.
- However, without additional information, you can only know from the data that θ satisfies the restriction:

 $\mathrm{E}[Y_1] \leq \theta \leq \mathrm{E}[Y_2].$

• In this case, the identified set is the closed interval

 $[\mathrm{E}[Y_1],\mathrm{E}[Y_2]].$

Example 2: regression with interval outcomes

- Keep the setting in Example 1, but suppose there exists a regressor X in ℝ^d, and the conditional mean E[Y | X] is a linear function of X, i.e., E[Y | X] = X^Tθ, where θ is the parameter of interest.
- Consider the simple case where the distribution of X is discrete:

$$\mathbf{P}(X \in \{x(1),\ldots,x(J)\}) = 1.$$

• Then the identified set is

 $\{\theta: \operatorname{E}[Y_1 \mid X = x(j)] \leq x(j)^T \theta \leq \operatorname{E}[Y_2 \mid X = x(j)], \forall j\}.$

Example 3: entry model

- Based on Ciliberto and Tamer (2009, Econometrica).
- Let m denote the number of firms that could potentially enter the market; let m-tuple $D = (D_1, \ldots, D_m)$ denote the observed entry decisions of these firms; that is, $D_j = 1$ if the firm j enters the market and $D_j = 0$ otherwise. Let $\mathcal{D} = \{0, 1\}^m$.
- Let X and ε denote (exogenous) characteristics of the market as well as characteristics of the firms that are observed and not observed by the researchers, respectively.
- Profit of the firm $m{j}$ is given by

$$\pi_j(D, X, \varepsilon, \theta),$$

where π_j is known up to θ which is the parameter of interest.

 Assume that both X and ε are observed by the firms and that a Nash equilibrium is played, so that for each j,

$$\pi_j((D_j, D_{-j}), X, \varepsilon, \theta) \geq \pi_j((1 - D_j, D_{-j}), X, \varepsilon, \theta).$$

• Then there exist sets $R_1(d, X, \theta)$ and $R_2(d, X, \theta)$ for ε such that 1) D = d is the unique equilibrium whenever $\varepsilon \in R_1(d, X, \theta)$; 2) D = d is one of several equilibria whenever $\varepsilon \in R_2(d, X, \theta)$. • When $\varepsilon \in R_1(d, X, \theta)$ for some $d \in \mathcal{D}$, we know for sure that D = d but when $\varepsilon \in R_2(d, X, \theta)$, the probability that D = d depends on the equilibrium selection mechanism, and, without further information, can be anything in [0, 1].

Hence

$$egin{aligned} & \mathrm{P}(arepsilon \in R_1(d,X, heta) \mid X) \leq \mathrm{P}(D=d \mid X) \ & \leq \mathrm{P}(arepsilon \in R_1(d,X, heta) \mid X) + \mathrm{P}(arepsilon \in R_2(d,X, heta) \mid X). \end{aligned}$$

• $\geq 2^{m+1}$ inequalities.

Example 4: CRS (2013, Quant. Econ.)

- Based on Chesher, Rosen, Smolinski (2013, Quant. Econ.).
- An individual is choosing an alternative out of options in ${\cal D}.$
- Let *D* denote his choice; let *X* denote characteristics of the individual that are observed by the researcher; and let *V* denote characteristics of the individual that are *not* observed by the researcher.
- ullet Choosing an alternative $d\in\mathcal{D}$ yields the utility

u(d, X, V).

• The individual is maximizing his utility, so that

$$u(D,X,V) \geq u(d,X,V), \; orall d \in \mathcal{D}.$$

The object of interest is the pair (u, P_V) where P_V denotes the distribution of the vector V.

- A complication arises because in many applications, X may be endogenous (not independent of V); hence assume that there exists a vector Z of instruments that is related with X but independent of V.
- To generate moment inequalities, let au(d,X,u) denote the set for V such that D=d whenever $V\in au(d,X,u)$, so that

$$V\in au(D,X,u).$$

• Since $V \in au(D,X,u)$, we have that for any set S,

 $\mathbf{P}(V \in S) = \mathbf{P}(V \in S \mid Z) \ge \mathbf{P}(\tau(D, X, u) \subset S \mid Z),$

so that for each S, we have a conditional moment inequality.

- Then the question is "how to choose a class of sets S to sharply identify (u, P_V) ?"
- CRS proved that it suffices to consider all unions of sets on the support of $\tau(D, X, u)$. When X is discrete with the support consisting of m points, this gives $|\mathcal{D}| \cdot 2^m$ sets.
- Chesher and Rosen (2013) provide a more general framework called *Generalized Instrumental Variable* model.

Moment inequality model

- In many examples, partially identified models can be represented as moment inequality models.
- Let ξ be a r.v. taking values in a measurable space (S, \mathcal{S}) with distribution P, let Θ be an ambient parameter space which is B-measurable subset of a metric space (usually subset of a Euclidean space), and let $g = (g_1, \ldots, g_p)^T : S \times \Theta \to \mathbb{R}^p$ be a B-measurable map.
- Then the identified set is assumed to be

 $\Theta_I = \Theta_I(P) = \{\theta \in \Theta : \operatorname{E}_P[g_j(\xi, \theta)] \leq 0, \ 1 \leq \forall j \leq p\}.$

- i.i.d. data $\xi_1, \ldots, \xi_n \sim P$ are available.
- We will keep this setting in what follows.

Inference on what?

There may be two possibilities.

• The entire identified set Θ_I — we want to construct a stochastic subset $\mathcal{C}_n(\alpha) \subset \Theta$ based on the data ξ_1, \ldots, ξ_n such that

$$\mathrm{P}(\Theta_I \subset \mathcal{C}_n(\alpha)) \geq 1 - \alpha.$$
 (or approximately)

• Any particular $heta\in\Theta_I$ — we want to construct $\mathcal{C}_n(lpha)$ such that

$$\inf_{ heta\in\Theta_I} \mathrm{P}(heta\in\mathcal{C}_n(lpha)) \geq 1-lpha. \hspace{0.2cm} (ext{or approximately})$$

The CR for the latter is generally smaller than the former. Probably more suitable when there is a "true parameter".

• We will focus on the latter problem in the next lecture when p is possibly large $(p = p_n \rightarrow \infty)$; in this lecture we assume p is fixed.

Inference on Θ_I

CHT approach

- Based on Chernozhukov, Hong, Tamer (2007, Ecoometrica).
- ullet For a given p imes p positive definite matrix W(heta), consider

$$Q(heta)=Q(heta,P)=(\mathrm{E}_P[g(\xi, heta)])_+^TW(heta)(\mathrm{E}_P[g(\xi, heta)])_+,$$
 where $((x_1,\ldots,x_p)^T)_+=(\max\{x_1,0\},\ldots,\max\{x_p,0\})^T.$ Then

$$heta \in \Theta_I \Leftrightarrow Q(heta) = 0.$$

• Define the sample analogue of Q(heta) by

$$\hat{Q}(heta) = \left(rac{1}{n}\sum_{i=1}^n g(\xi_i, heta)
ight)_+^T W(heta) \left(rac{1}{n}\sum_{i=1}^n g(\xi_i, heta)
ight)_+$$

Consistent estimation of Θ_I

• A lower contour set $C_n(c)$ of level c of \hat{Q} is defined by

$$C_n(c) = \{ heta \in \Theta : \hat{Q}(heta) \leq c/n \}.$$

• The estimator for Θ_I will take of the form

$$\hat{\Theta}_I = C_n(c_n),$$

where $c_n \uparrow \infty$ slowly; CHT suggested $c_n = \log n$ (c_n could be 0 for some examples but not generally so).

Rates of convergence of $\hat{\Theta}_I$ in Hausdorff distance

 Denote by d(·, ·) the metric on Θ; then the Hausdorff distance between subsets in Θ is defined by

$$d_H(A,B) = \max\left\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(b,A)
ight\},$$

where $d(a, B) = \inf_{b \in B} d(a, b)$.

• CHT proved that, (when Θ is a subset of a Euclidean space),

$$d_H(\hat{\Theta}_I,\Theta_I) = O_P(\sqrt{\max(c_n,1)/n}),$$

(of course) subject to suitable regularity conditions.

Inference on Θ_I

Idea:

$$\Theta_I \subset C_n(c) \Leftrightarrow \sup_{ heta \in \Theta_I} n \hat{Q}(heta) \leq c.$$

Hence by taking

$$c_{1-lpha} = (1-lpha)$$
-quantile of $\sup_{ heta \in \Theta_I} n \hat{Q}(heta),$

we have

$$\mathrm{P}(\Theta_I \subset C_n(c_{1-\alpha})) \geq 1-\alpha.$$

• Critical value c_{1-lpha} can be approximated by

- **(**) subsampling applied with Θ_I replaced by $\hat{\Theta}_I$; or
- **2** simulating the limit distribution of $\sup_{\theta \in \Theta_I} n\hat{Q}(\theta)$.

Some other references

Beresteanu and Molinari (2008), Bugni (2010, Econometrica), Romano and Shaikh (2010), and Kaido (2012)...

Inference on $heta \in \Theta_I$

Duality

• We may exploit duality between construction of confidence sets for any fixed $\theta \in \Theta_I$ and testing the hypothesis

 $H_{ heta}: \mathrm{E}_{P}[g_{j}(\xi, heta)] \leq 0, 1 \leq orall j \leq p,$

against

$$H'_{ heta}: \mathrm{E}_{P}[g_{j}(\xi, heta)] > 0, 1 \leq \exists j \leq p.$$

• To fix idea: suppose there is a test statistic $T_n(\theta)$ for testing H_{θ} v.s. H'_{θ} , and denote by $R_{n,\alpha}(\theta)$ any rejection region with size α , i.e.,

 $\mathrm{P}(T_n(\theta) \in R_{n,\alpha}(\theta)) \leq \alpha,$

whenever $H_{ heta}$ is true (i.e., $heta \in \Theta_I$). Then the CR

$$\mathcal{C}_n(\alpha) = \{\theta: T_n(\theta) \notin R_{n,\alpha}(\theta)\}$$

contains θ with probability at least $1 - \alpha$ whenever $\theta \in \Theta_I$.

• Hence the problem boils down to testing the following multivariate one-sided problem (with composite null hypothesis): let X_1, \ldots, X_n be i.i.d. random vectors in \mathbb{R}^p with mean $\mu = (\mu_1, \ldots, \mu_p)^T = \mathbb{E}[X_1]$, and consider testing

$$H_0: \mu_j \leq 0, 1 \leq orall j \leq p, ext{ v.s. } H_1: \mu_j > 0, 1 \leq \exists j \leq p.$$

 Closely related to classical multivariate one-sided tests where the null is simple — Kudo (1963, Biometrika), Perlman (1969, Ann. Math. Statist.) etc.

Idea of Rosen (2008, J. Econometrics)

$$ullet$$
 Suppose $\Sigma = \mathrm{E}[(X_1-\mu)(X_1-\mu)^T]$ is non-singular.

Consider the test of the form

$$T_n := \min_{t \in \mathbb{R}^p_-} n(\bar{X} - t)^T \Sigma^{-1} (\bar{X} - t) > c \Rightarrow ext{ reject } H_0,$$

where $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$ and $\mathbb{R}^p_- = \{t \in \mathbb{R}^p : t_j \leq 0, \forall j\}.$ • When $\Sigma = I$, $T_n = n | (\bar{X})_+ |^2$.

ullet We need to choose c such that

$$\sup_{\mu_j \le 0, \forall j} \mathrm{P}(T_n > c) \le \alpha + o(1).$$

• By simple algebra,

$$T_n = \min_{t \in K} |\sqrt{n}\Sigma^{-1/2}\bar{X} - t|^2,$$

where $K = \Sigma^{-1/2} \mathbb{R}^p_-$ (polyhedral cone).

• Denote by K° its polar cone:

$$K^{\circ} = \{t \in \mathbb{R}^p : t^T s \leq 0, \forall s \in K\}.$$

Then

$$T_n = |\operatorname{Proj}_{K^{\circ}} \sqrt{n} \Sigma^{-1/2} \bar{X}|^2.$$

Close look at K°

• Since, for
$$e_j=(0,\ldots,\underbrace{1}_{j ext{th}},\ldots,0)^T$$
, $K=\{t\in\mathbb{R}^p:(\Sigma^{1/2}e_j)^Tt\leq 0,\;\forall j\},$

the polar cone K° is expressed as

$$K^{\circ} = \left\{ \sum_{j=1}^p \lambda_j \Sigma^{1/2} e_j : \lambda_j \geq 0
ight\}.$$

• Proof: Use $(K^{\circ})^{\circ} = K$.

• When Σ is diagonal, $K^{\circ} = \{t \in \mathbb{R}^p : t_j \geq 0, \forall j\}$.

• Observe that, whenever $\mu_j \leq 0, orall j$,

$$T_n \leq \min_{t \in \mathbb{R}^p_-} n(\bar{X} - \mu - t)^T \Sigma^{-1} (\bar{X} - \mu - t)$$
$$= |\operatorname{Proj}_{K^\circ} \sqrt{n} \Sigma^{-1/2} (\bar{X} - \mu)|^2 =: T'_n$$

and the equality takes place when $\mu_j=0, orall j$, so that

$$\sup_{\mu_j \leq 0, \forall j} \mathrm{P}(T_n > c) = \mathrm{P}(T'_n > c).$$

- Recall that the projection onto a closed convex set is a contraction.
- Hence by CLT and the continuous mapping theorem,

$$T'_n \stackrel{d}{
ightarrow} |\mathrm{Proj}_{K^\circ} Z|^2,$$

where $Z \sim N_p(0, I_p)$.

- Possible to simulate the limit distribution.
- Bootstrap may be used to approximate the distribution of T_n' (but not T_n).

Failure of bootstrap to approximate the distribution of T_n

- Due to Andrews (2000, Econometrica).
- Consider $p=1, \Sigma=1$, so that under H_0 ,

$$T_n = n(\bar{X})^2_+ \stackrel{d}{\to} egin{cases} 0 & \mu < 0 \ (N(0,1))^2_+ & \mu = 0. \end{cases}$$

• Consider $\mu = 0$. Let X_1^*, \ldots, X_n^* be i.i.d. draws from the e.d. of $\{X_1, \ldots, X_n\}$. Then

$$T_n^* = n(\bar{X}^*)_+ = \left(\sqrt{n}(\bar{X}^* - \bar{X}) + \sqrt{n}\bar{X}
ight)_+^2.$$

• As $\sqrt{n}\bar{X} \xrightarrow{d} N(0,1)$, $P(\sqrt{n}\bar{X} > 1) = P(N(0,1) > 1) + o(1)$; on the event $\sqrt{n}\bar{X} > 1$,

$$T_n^* \geq \left(\sqrt{n}(\bar{X}^* - \bar{X}) + 1\right)_+^2.$$

Moreover, conditional on X_1, X_2, \ldots , for a.e. realizations of X_1, X_2, \ldots ,

right side
$$\stackrel{d}{
ightarrow} (N(0,1)+1)^2_+.$$

• Hence, with probability $\mathrm{P}(N(0,1)>1)+o(1)$,

conditional 0.95-quantile of T_n^* ≥ 0.95 -quantile of $(N(0,1)+1)_+^2 - o(1).$

Comments

- Replace Σ by $\hat{\Sigma} = n^{-1} \sum_{i=1}^{n} (X_i \bar{X}) (X_i \bar{X})^T$ in practice. Validity follows immediately(?).
- Rosen actually proposed to bounding quantiles of the limit distribution as

$$\mathrm{P}(|\mathrm{Proj}_{K^{\circ}}Z|^2 > c) \leq rac{1}{2}\mathrm{P}(\chi_p^2 > c) + rac{1}{2}\mathrm{P}(\chi_{p-1}^2 > c),$$

but this will lead to more conservative CRs.

Alternative approaches

- Subsampling applied to T_n . See Romano and Shaikh (2008, J. Stat. Plan. Infer.) and Andrews and Guggenberger (2009, Econometric Theory).
- Incorporating moment selection. Exclude j such that \bar{X}_j is negatively small when calculating critical values. See Andrews and Soares (2010, Econometrica), Andrews and Jia Barwick (2012, Econometrica), Romano, Shaikh, Wolf (2014, Econometrica) etc.
- Other test statistics: (in addition to already mentioned references) Canay (2010, J. Econometrics), Chernozhukov, Chetverikov, K. (2013), etc.

Multiple hypothesis testing

- The problem of testing moment inequalities discussed so far is related but different from the multiple hypothesis testing problem: $H_{0j}: \mu_j \leq 0$ v.s. $H_{1j}: \mu_j > 0, \ j = 1, \dots, p$.
- In testing moment inequalities, we try to control

 $\sup_{H_{0j},1\leq j\leq p} \mathrm{P}(ext{at least one of } H_{0j}, 1\leq j\leq p$, is rejected) $\leq lpha,$

and improve the power when some of inequalities are not binding $(\mu_j < 0)$ by moment selection.

• In multiple hypothesis testing, we typically try to control

 $\max_{J \subset \{1,...,p\}} \sup_{H_{0j}, j \in J} \mathrm{P}(ext{at least one of } H_{0j}, j \in J, ext{ is rejected}) \leq lpha.$