Tutorial and applications in econometrics: Self-normalization, Gaussian approximation, and inference with many moment inequalities

Kengo Kato (U. of Tokyo)

May 15, 2014@NUS

Schedule

- Part 1a: Introduction to partially identified models.
- Part 1b: Inference with many moment inequalities.
- Part 1c: Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors.

Most of the lectures are based upon the following joint works with Victor Chernozhukov (MIT) and Denis Chetverikov (UCLA):

- Testing many moment inequalities. (2013). arXiv:1312.7614.
- Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. arXiv:1212.6906. Ann. Statist. (2013).
- Comparison and anti-concentration bounds for maxima of Gaussian random vectors. arXiv:1301.4807. To appear in Probab. Theory Related Fields. (2014).

Preliminary

- In preparing the paper "Testing many moment inequalities", we found that the self-normalization theory is useful for inference with (many) moment inequalities, a class of partially identified models in which people in econometrics have had a lot of interests in the last decade.
- There we studied inference procedures based upon (i) a moderate deviation inequality for self-normalized sums, (ii) (a version of) high-dimensional central limit theorem (developed in the last two papers), and (iii) combination of (i) and (ii).

Preliminary (cont.)

- Part 1b will cover the content of "Testing" paper.
- Part 1a will cover a brief introduction to inference for partially identified models, which hopefully motivates Part 1b.
- Part 1c will cover the content of the remaining two papers, on which some results in Part 1b rely (the material in Part 1c has only small connection to self-normalization theory, but hopefully you will find it intriguing).

Part 1a: Introduction to partially identified models

What is partially identified model?

- Romano and Shaikh (Econometrica, 2010, p.169):

A partially identified model is any model in which the parameter of interest is not uniquely defined by the distribution of the observed data.

- The model only restricts the value of the parameter of interest to a (multi-element) set, called identified set.

What is partially identified model? (cont.)

- Partially identified models frequently appear in economic applications, where you typically encounter the following situation: you are interested in the parameter in the latent structure, but the observed data does not contain enough information to give you point identification of the parameter.

Example 1: interval data

- Suppose you have a r.v. \boldsymbol{Y} which is unobservable, but there are observable r.v.'s $\boldsymbol{Y}_{\mathbf{1}}, \boldsymbol{Y}_{\mathbf{2}}$ that bracket \boldsymbol{Y} in the sense that

$$
Y_{1} \leq \boldsymbol{Y} \leq \boldsymbol{Y}_{2}
$$

- For example:
(1) (interval censoring) Let \boldsymbol{Y} be the income. Some surveys only record brackets of income, say, $\left(y_{0}, y_{1}\right], \ldots,\left(y_{K-1}, y_{K}\right]$. Defining

$$
Y_{1}=y_{k-1}, Y_{2}=y_{k}, \text { when } Y \in\left(y_{k-1}, y_{k}\right], k=1, \ldots, K
$$

we have $\boldsymbol{Y}_{\mathbf{1}} \leq \boldsymbol{Y} \leq \boldsymbol{Y}_{\mathbf{2}}$.
(2) (missing data) Let $Y \in[0,1]$ and $D \in\{0,1\}$, and we only observe \boldsymbol{Y} when $\boldsymbol{D}=\mathbf{1}$, so the observe variable is the pair $(\boldsymbol{D}, \boldsymbol{D Y})$. Then

$$
D Y \leq Y \leq D Y+(1-D)
$$

Example 1: interval data (cont.)

- The parameter of interest is $\boldsymbol{\theta}=\mathbf{E}[\boldsymbol{Y}]$.
- However, without additional information, you can only know from the data that $\boldsymbol{\theta}$ satisfies the restriction:

$$
\mathrm{E}\left[\boldsymbol{Y}_{1}\right] \leq \boldsymbol{\theta} \leq \mathrm{E}\left[\boldsymbol{Y}_{2}\right]
$$

- In this case, the identified set is the closed interval

$$
\left[\mathrm{E}\left[\boldsymbol{Y}_{1}\right], \mathrm{E}\left[\boldsymbol{Y}_{2}\right]\right] .
$$

Example 2: regression with interval outcomes

- Keep the setting in Example 1, but suppose there exists a regressor \boldsymbol{X} in \mathbb{R}^{d}, and the conditional mean $\mathbf{E}[\boldsymbol{Y} \mid \boldsymbol{X}]$ is a linear function of \boldsymbol{X}, i.e., $\mathbf{E}[\boldsymbol{Y} \mid \boldsymbol{X}]=\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{\theta}$, where $\boldsymbol{\theta}$ is the parameter of interest.
- Consider the simple case where the distribution of \boldsymbol{X} is discrete:

$$
\mathrm{P}(X \in\{x(1), \ldots, x(J)\})=1
$$

- Then the identified set is

$$
\left\{\theta: \mathrm{E}\left[Y_{1} \mid X=x(j)\right] \leq x(j)^{T} \theta \leq \mathrm{E}\left[Y_{2} \mid X=x(j)\right], \forall j\right\}
$$

Example 3: entry model

- Based on Ciliberto and Tamer (2009, Econometrica).
- Let \boldsymbol{m} denote the number of firms that could potentially enter the market; let \boldsymbol{m}-tuple $\boldsymbol{D}=\left(\boldsymbol{D}_{1}, \ldots, \boldsymbol{D}_{\boldsymbol{m}}\right)$ denote the observed entry decisions of these firms; that is, $\boldsymbol{D}_{\boldsymbol{j}}=\mathbf{1}$ if the firm \boldsymbol{j} enters the market and $\boldsymbol{D}_{j}=\mathbf{0}$ otherwise. Let $\mathcal{D}=\{\mathbf{0}, \mathbf{1}\}^{m}$.
- Let \boldsymbol{X} and ε denote (exogenous) characteristics of the market as well as characteristics of the firms that are observed and not observed by the researchers, respectively.
- Profit of the firm \boldsymbol{j} is given by

$$
\pi_{j}(D, X, \varepsilon, \theta)
$$

where $\boldsymbol{\pi}_{\boldsymbol{j}}$ is known up to $\boldsymbol{\theta}$ which is the parameter of interest.

- Assume that both \boldsymbol{X} and ε are observed by the firms and that a Nash equilibrium is played, so that for each \boldsymbol{j},

$$
\pi_{j}\left(\left(D_{j}, D_{-j}\right), X, \varepsilon, \theta\right) \geq \pi_{j}\left(\left(1-D_{j}, D_{-j}\right), X, \varepsilon, \theta\right)
$$

- Then there exist sets $\boldsymbol{R}_{\mathbf{1}}(\boldsymbol{d}, \boldsymbol{X}, \boldsymbol{\theta})$ and $\boldsymbol{R}_{\mathbf{2}}(\boldsymbol{d}, \boldsymbol{X}, \boldsymbol{\theta})$ for ε such that 1) $D=d$ is the unique equilibrium whenever $\varepsilon \in R_{1}(d, X, \theta)$; 2) $D=d$ is one of several equilibria whenever $\varepsilon \in R_{2}(d, X, \theta)$.
- When $\varepsilon \in \boldsymbol{R}_{1}(\boldsymbol{d}, \boldsymbol{X}, \boldsymbol{\theta})$ for some $\boldsymbol{d} \in \mathcal{D}$, we know for sure that $D=d$ but when $\varepsilon \in \boldsymbol{R}_{2}(d, X, \theta)$, the probability that $D=d$ depends on the equilibrium selection mechanism, and, without further information, can be anything in $[\mathbf{0}, \mathbf{1}]$.
- Hence

$$
\begin{aligned}
& \mathbf{P}\left(\varepsilon \in R_{1}(d, X, \theta) \mid X\right) \leq \mathbf{P}(D=d \mid X) \\
& \quad \leq \mathbf{P}\left(\varepsilon \in R_{1}(d, X, \theta) \mid X\right)+\mathbf{P}\left(\varepsilon \in R_{2}(d, X, \theta) \mid X\right)
\end{aligned}
$$

$-\geq 2^{m+1}$ inequalities.

Example 4: CRS (2013, Quant. Econ.)

- Based on Chesher, Rosen, Smolinski (2013, Quant. Econ.).
- An individual is choosing an alternative out of options in \mathcal{D}.
- Let \boldsymbol{D} denote his choice; let \boldsymbol{X} denote characteristics of the individual that are observed by the researcher; and let \boldsymbol{V} denote characteristics of the individual that are not observed by the researcher.
- Choosing an alternative $\boldsymbol{d} \in \mathcal{D}$ yields the utility

$$
u(d, X, V)
$$

- The individual is maximizing his utility, so that

$$
u(D, X, V) \geq u(d, X, V), \forall d \in \mathcal{D}
$$

The object of interest is the pair $\left(\boldsymbol{u}, \boldsymbol{P}_{\boldsymbol{V}}\right)$ where $\boldsymbol{P}_{\boldsymbol{V}}$ denotes the distribution of the vector \boldsymbol{V}.

- A complication arises because in many applications, \boldsymbol{X} may be endogenous (not independent of \boldsymbol{V}); hence assume that there exists a vector \boldsymbol{Z} of instruments that is related with \boldsymbol{X} but independent of \boldsymbol{V}.
- To generate moment inequalities, let $\boldsymbol{\tau}(\boldsymbol{d}, \boldsymbol{X}, \boldsymbol{u})$ denote the set for \boldsymbol{V} such that $D=\boldsymbol{d}$ whenever $\boldsymbol{V} \in \tau(\boldsymbol{d}, \boldsymbol{X}, u)$, so that

$$
V \in \tau(D, X, u)
$$

- Since $\boldsymbol{V} \in \boldsymbol{\tau}(\boldsymbol{D}, \boldsymbol{X}, \boldsymbol{u})$, we have that for any set \boldsymbol{S},

$$
\mathrm{P}(V \in S)=\mathrm{P}(V \in S \mid Z) \geq \mathrm{P}(\tau(D, X, u) \subset S \mid Z)
$$

so that for each S, we have a conditional moment inequality.

- Then the question is "how to choose a class of sets S to sharply identify $\left(u, P_{V}\right)$?"
- CRS proved that it suffices to consider all unions of sets on the support of $\boldsymbol{\tau}(\boldsymbol{D}, \boldsymbol{X}, \boldsymbol{u})$. When \boldsymbol{X} is discrete with the support consisting of m points, this gives $|\mathcal{D}| \cdot 2^{m}$ sets.
- Chesher and Rosen (2013) provide a more general framework called Generalized Instrumental Variable model.

Moment inequality model

- In many examples, partially identified models can be represented as moment inequality models.
- Let $\boldsymbol{\xi}$ be a r.v. taking values in a measurable space $(\boldsymbol{S}, \boldsymbol{\mathcal { S }})$ with distribution \boldsymbol{P}, let $\boldsymbol{\Theta}$ be an ambient parameter space which is B-measurable subset of a metric space (usually subset of a Euclidean space $)$, and let $\boldsymbol{g}=\left(\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{\boldsymbol{p}}\right)^{T}: \boldsymbol{S} \times \Theta \rightarrow \mathbb{R}^{p}$ be a B-measurable map.
- Then the identified set is assumed to be

$$
\Theta_{I}=\Theta_{I}(P)=\left\{\theta \in \Theta: \mathrm{E}_{P}\left[g_{j}(\xi, \theta)\right] \leq 0,1 \leq \forall j \leq p\right\}
$$

- i.i.d. data $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{n} \sim \boldsymbol{P}$ are available.
- We will keep this setting in what follows.

Inference on what?

There may be two possibilities.

- The entire identified set Θ_{I} - we want to construct a stochastic subset $\mathcal{C}_{n}(\alpha) \subset \Theta$ based on the data ξ_{1}, \ldots, ξ_{n} such that

$$
\mathrm{P}\left(\Theta_{I} \subset \mathcal{C}_{n}(\alpha)\right) \geq 1-\alpha . \quad \text { (or approximately) }
$$

- Any particular $\boldsymbol{\theta} \in \Theta_{I}$ - we want to construct $\mathcal{C}_{\boldsymbol{n}}(\boldsymbol{\alpha})$ such that

$$
\inf _{\theta \in \Theta_{I}} \mathrm{P}\left(\boldsymbol{\theta} \in \mathcal{C}_{n}(\alpha)\right) \geq 1-\alpha . \quad \text { (or approximately) }
$$

The CR for the latter is generally smaller than the former. Probably more suitable when there is a "true parameter".

- We will focus on the latter problem in the next lecture when \boldsymbol{p} is possibly large $\left(\boldsymbol{p}=\boldsymbol{p}_{\boldsymbol{n}} \rightarrow \infty\right)$; in this lecture we assume \boldsymbol{p} is fixed.

Inference on Θ_{I}

CHT approach

- Based on Chernozhukov, Hong, Tamer (2007,Ecoometrica).
- For a given $\boldsymbol{p} \times \boldsymbol{p}$ positive definite matrix $\boldsymbol{W}(\boldsymbol{\theta})$, consider

$$
Q(\theta)=Q(\theta, P)=\left(\mathrm{E}_{P}[g(\xi, \theta)]\right)_{+}^{T} W(\theta)\left(\mathrm{E}_{P}[g(\xi, \theta)]\right)_{+}
$$

where $\left(\left(x_{1}, \ldots, x_{p}\right)^{T}\right)_{+}=\left(\max \left\{x_{1}, 0\right\}, \ldots, \max \left\{x_{p}, 0\right\}\right)^{T}$.

- Then

$$
\theta \in \Theta_{I} \Leftrightarrow Q(\theta)=\mathbf{0} .
$$

- Define the sample analogue of $\boldsymbol{Q (\theta)}$ by

$$
\hat{Q}(\theta)=\left(\frac{1}{n} \sum_{i=1}^{n} g\left(\xi_{i}, \theta\right)\right)_{+}^{T} W(\theta)\left(\frac{1}{n} \sum_{i=1}^{n} g\left(\xi_{i}, \theta\right)\right)_{+} .
$$

Consistent estimation of Θ_{I}

- A lower contour set $C_{n}(c)$ of level c of \hat{Q} is defined by

$$
C_{n}(c)=\{\theta \in \Theta: \hat{Q}(\theta) \leq c / n\}
$$

- The estimator for Θ_{I} will take of the form

$$
\hat{\Theta}_{I}=C_{n}\left(c_{n}\right)
$$

where $\boldsymbol{c}_{\boldsymbol{n}} \uparrow \infty$ slowly; CHT suggested $\boldsymbol{c}_{\boldsymbol{n}}=\log \boldsymbol{n}$ ($\boldsymbol{c}_{\boldsymbol{n}}$ could be $\mathbf{0}$ for some examples but not generally so).

Rates of convergence of $\hat{\Theta}_{I}$ in Hausdorff distance

- Denote by $d(\cdot, \cdot)$ the metric on Θ; then the Hausdorff distance between subsets in Θ is defined by

$$
d_{H}(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}
$$

where $d(a, B)=\inf _{b \in B} d(a, b)$.

- CHT proved that, (when Θ is a subset of a Euclidean space),

$$
d_{H}\left(\hat{\Theta}_{I}, \Theta_{I}\right)=O_{P}\left(\sqrt{\max \left(c_{n}, 1\right) / n}\right)
$$

(of course) subject to suitable regularity conditions.

Inference on Θ_{I}

- Idea:

$$
\Theta_{I} \subset C_{n}(c) \Leftrightarrow \sup _{\theta \in \Theta_{I}} n \hat{Q}(\theta) \leq c
$$

- Hence by taking

$$
c_{1-\alpha}=(1-\alpha) \text {-quantile of } \sup _{\theta \in \Theta_{I}} n \hat{Q}(\theta)
$$

we have

$$
\mathbf{P}\left(\Theta_{I} \subset C_{n}\left(c_{1-\alpha}\right)\right) \geq 1-\alpha
$$

- Critical value $\boldsymbol{c}_{1-\alpha}$ can be approximated by
(1) subsampling applied with Θ_{I} replaced by $\hat{\Theta}_{I}$; or
(2) simulating the limit distribution of $\sup _{\boldsymbol{\theta} \in \Theta_{I}} n \hat{Q}(\boldsymbol{\theta})$.

Some other references

Beresteanu and Molinari (2008), Bugni (2010, Econometrica), Romano and Shaikh (2010), and Kaido (2012)...

Inference on $\boldsymbol{\theta} \in \Theta_{I}$

Duality

- We may exploit duality between construction of confidence sets for any fixed $\boldsymbol{\theta} \in \Theta_{I}$ and testing the hypothesis

$$
\boldsymbol{H}_{\theta}: \mathrm{E}_{P}\left[g_{j}(\xi, \theta)\right] \leq 0,1 \leq \forall j \leq p
$$

against

$$
H_{\theta}^{\prime}: \mathrm{E}_{P}\left[g_{j}(\xi, \theta)\right]>0,1 \leq \exists j \leq p
$$

- To fix idea: suppose there is a test statistic $\boldsymbol{T}_{\boldsymbol{n}}(\boldsymbol{\theta})$ for testing $\boldsymbol{H}_{\boldsymbol{\theta}}$ v.s. $\boldsymbol{H}_{\boldsymbol{\theta}}^{\prime}$, and denote by $\boldsymbol{R}_{\boldsymbol{n}, \boldsymbol{\alpha}}(\boldsymbol{\theta})$ any rejection region with size $\boldsymbol{\alpha}$, i.e.,

$$
\mathbf{P}\left(T_{n}(\theta) \in R_{n, \alpha}(\theta)\right) \leq \alpha
$$

whenever $\boldsymbol{H}_{\boldsymbol{\theta}}$ is true (i.e., $\boldsymbol{\theta} \in \boldsymbol{\Theta}_{\boldsymbol{I}}$). Then the $C R$

$$
\mathcal{C}_{n}(\alpha)=\left\{\theta: T_{n}(\theta) \notin R_{n, \alpha}(\theta)\right\}
$$

contains $\boldsymbol{\theta}$ with probability at least $\mathbf{1}-\boldsymbol{\alpha}$ whenever $\boldsymbol{\theta} \in \boldsymbol{\Theta}_{\boldsymbol{I}}$.

- Hence the problem boils down to testing the following multivariate one-sided problem (with composite null hypothesis): let $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}$ be i.i.d. random vectors in $\mathbb{R}^{\boldsymbol{p}}$ with mean $\mu=\left(\mu_{1}, \ldots, \mu_{p}\right)^{T}=\mathrm{E}\left[\boldsymbol{X}_{1}\right]$, and consider testing

$$
\boldsymbol{H}_{0}: \boldsymbol{\mu}_{j} \leq 0,1 \leq \forall j \leq p, \text { v.s. } \boldsymbol{H}_{1}: \boldsymbol{\mu}_{j}>0,1 \leq \exists j \leq p
$$

- Closely related to classical multivariate one-sided tests where the null is simple - Kudo (1963, Biometrika), Perlman (1969, Ann. Math. Statist.) etc.

Idea of Rosen (2008, J. Econometrics)

- Suppose $\boldsymbol{\Sigma}=\mathrm{E}\left[\left(\boldsymbol{X}_{\mathbf{1}}-\boldsymbol{\mu}\right)\left(\boldsymbol{X}_{\mathbf{1}}-\boldsymbol{\mu}\right)^{\boldsymbol{T}}\right]$ is non-singular.
- Consider the test of the form

$$
T_{n}:=\min _{t \in \mathbb{R}_{-}^{p}} n(\bar{X}-t)^{T} \Sigma^{-1}(\bar{X}-t)>c \Rightarrow \text { reject } H_{0}
$$

where $\bar{X}=n^{-1} \sum_{i=1}^{n} X_{i}$ and $\mathbb{R}_{-}^{p}=\left\{t \in \mathbb{R}^{p}: t_{j} \leq 0, \forall j\right\}$.

- When $\Sigma=I, T_{n}=n\left|(\bar{X})_{+}\right|^{2}$.
- We need to choose \boldsymbol{c} such that

$$
\sup _{\mu_{j} \leq 0, \forall j} \mathrm{P}\left(T_{n}>c\right) \leq \alpha+o(1)
$$

- By simple algebra,

$$
T_{n}=\min _{t \in K}\left|\sqrt{n} \Sigma^{-1 / 2} \bar{X}-t\right|^{2}
$$

where $K=\Sigma^{-\mathbf{1} / \mathbf{2}} \mathbb{R}_{-}^{\boldsymbol{p}}$ (polyhedral cone).

- Denote by \boldsymbol{K}° its polar cone:

$$
K^{\circ}=\left\{t \in \mathbb{R}^{p}: t^{T} s \leq 0, \forall s \in K\right\}
$$

Then

$$
T_{n}=\left|\operatorname{Proj}_{K^{\circ}} \sqrt{n} \Sigma^{-1 / 2} \bar{X}\right|^{2}
$$

Close look at K°

- Since, for $e_{j}=(0, \ldots, \underbrace{1}_{j \text { th }}, \ldots, 0)^{T}$,

$$
K=\left\{t \in \mathbb{R}^{p}:\left(\Sigma^{1 / 2} e_{j}\right)^{T} t \leq 0, \forall j\right\}
$$

the polar cone K° is expressed as

$$
K^{\circ}=\left\{\sum_{j=1}^{p} \lambda_{j} \Sigma^{1 / 2} e_{j}: \lambda_{j} \geq 0\right\}
$$

- Proof: Use $\left(\boldsymbol{K}^{\circ}\right)^{\circ}=\boldsymbol{K}$.
- When Σ is diagonal, $K^{\circ}=\left\{t \in \mathbb{R}^{p}: t_{j} \geq 0, \forall j\right\}$.
- Observe that, whenever $\boldsymbol{\mu}_{\boldsymbol{j}} \leq \mathbf{0}, \forall \boldsymbol{j}$,

$$
\begin{aligned}
T_{n} & \leq \min _{t \in \mathbb{R}_{-}^{p}} n(\bar{X}-\mu-t)^{T} \Sigma^{-1}(\bar{X}-\mu-t) \\
& =\left|\operatorname{Proj}_{K^{\circ}} \sqrt{n} \Sigma^{-1 / 2}(\bar{X}-\mu)\right|^{2}=: T_{n}^{\prime}
\end{aligned}
$$

and the equality takes place when $\boldsymbol{\mu}_{\boldsymbol{j}}=\mathbf{0}, \forall \boldsymbol{j}$, so that

$$
\sup _{\mu_{j} \leq 0, \forall j} \mathrm{P}\left(T_{n}>c\right)=\mathrm{P}\left(T_{n}^{\prime}>c\right)
$$

- Recall that the projection onto a closed convex set is a contraction.
- Hence by CLT and the continuous mapping theorem,

$$
T_{n}^{\prime} \xrightarrow{d}\left|\operatorname{Proj}_{K^{\circ}} Z\right|^{2}
$$

where $Z \sim N_{p}\left(0, I_{p}\right)$.

- Possible to simulate the limit distribution.
- Bootstrap may be used to approximate the distribution of $\boldsymbol{T}_{\boldsymbol{n}}^{\prime}$ (but not $\boldsymbol{T}_{\boldsymbol{n}}$).

Failure of bootstrap to approximate the distribution of T_{n}

- Due to Andrews (2000, Econometrica).
- Consider $p=1, \boldsymbol{\Sigma}=1$, so that under \boldsymbol{H}_{0},

$$
T_{n}=n(\bar{X})_{+}^{2} \xrightarrow{d} \begin{cases}0 & \mu<0 \\ (N(0,1))_{+}^{2} & \mu=0 .\end{cases}
$$

- Consider $\boldsymbol{\mu}=\mathbf{0}$. Let $\boldsymbol{X}_{1}^{*}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}^{*}$ be i.i.d. draws from the e.d. of $\left\{\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right\}$. Then

$$
T_{n}^{*}=n\left(\bar{X}^{*}\right)_{+}=\left(\sqrt{n}\left(\bar{X}^{*}-\bar{X}\right)+\sqrt{n} \bar{X}\right)_{+}^{2} .
$$

- As $\sqrt{n} \bar{X} \xrightarrow{d} N(0,1), \mathrm{P}(\sqrt{n} \bar{X}>1)=\mathrm{P}(N(0,1)>1)+o(1)$; on the event $\sqrt{\boldsymbol{n}} \bar{X}>\mathbf{1}$,

$$
T_{n}^{*} \geq\left(\sqrt{n}\left(\bar{X}^{*}-\bar{X}\right)+1\right)_{+}^{2}
$$

Moreover, conditional on $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots$, for a.e. realizations of X_{1}, X_{2}, \ldots,

$$
\text { right side } \xrightarrow{d}(N(0,1)+1)_{+}^{2}
$$

- Hence, with probability $\mathrm{P}(N(0,1)>1)+o(1)$,
conditional 0.95 -quantile of $\boldsymbol{T}_{\boldsymbol{n}}^{*}$

$$
\geq 0.95 \text {-quantile of }(N(0,1)+1)_{+}^{2}-o(1)
$$

Comments

- Replace Σ by $\hat{\Sigma}=n^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{T}$ in practice. Validity follows immediately(?).
- Rosen actually proposed to bounding quantiles of the limit distribution as

$$
\mathbf{P}\left(\left|\operatorname{Proj}_{K^{\circ}} Z\right|^{2}>c\right) \leq \frac{1}{2} \mathbf{P}\left(\chi_{p}^{2}>c\right)+\frac{1}{2} \mathbf{P}\left(\chi_{p-1}^{2}>c\right)
$$

but this will lead to more conservative CRs.

Alternative approaches

- Subsampling applied to $\boldsymbol{T}_{\boldsymbol{n}}$. See Romano and Shaikh (2008, J. Stat. Plan. Infer.) and Andrews and Guggenberger (2009, Econometric Theory).
- Incorporating moment selection. Exclude \boldsymbol{j} such that $\overline{\boldsymbol{X}}_{\boldsymbol{j}}$ is negatively small when calculating critical values. See Andrews and Soares (2010, Econometrica), Andrews and Jia Barwick (2012, Econometrica), Romano, Shaikh, Wolf (2014, Econometrica) etc.
- Other test statistics: (in addition to already mentioned references) Canay (2010, J. Econometrics), Chernozhukov, Chetverikov, K. (2013), etc.

Multiple hypothesis testing

- The problem of testing moment inequalities discussed so far is related but different from the multiple hypothesis testing problem:

$$
H_{0 j}: \mu_{j} \leq 0 \text { v.s. } H_{1 j}: \mu_{j}>0, j=1, \ldots, p
$$

- In testing moment inequalities, we try to control

$$
\sup _{\boldsymbol{H}_{0 j}, 1 \leq j \leq p} \mathrm{P}\left(\text { at least one of } \boldsymbol{H}_{0 j}, \mathbf{1} \leq j \leq p, \text { is rejected }\right) \leq \alpha
$$

and improve the power when some of inequalities are not binding $\left(\mu_{j}<0\right)$ by moment selection.

- In multiple hypothesis testing, we typically try to control

$$
\max _{J \subset\{1, \ldots, p\}} \sup _{\boldsymbol{H}_{0 j}, j \in J} \mathrm{P}\left(\text { at least one of } \boldsymbol{H}_{0 j}, j \in J, \text { is rejected }\right) \leq \alpha .
$$

