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Schedule

Part 1a: Introduction to partially identified models.

Part 1b: Inference with many moment inequalities.

Part 1c: Gaussian approximations and multiplier bootstrap for
maxima of sums of high-dimensional random vectors.
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Most of the lectures are based upon the following joint works with Victor
Chernozhukov (MIT) and Denis Chetverikov (UCLA):

Testing many moment inequalities. (2013). arXiv:1312.7614.

Gaussian approximations and multiplier bootstrap for maxima of sums
of high-dimensional random vectors. arXiv:1212.6906. Ann. Statist.
(2013).

Comparison and anti-concentration bounds for maxima of Gaussian
random vectors. arXiv:1301.4807. To appear in Probab. Theory
Related Fields. (2014).
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Preliminary

In preparing the paper “Testing many moment inequalities”, we found
that the self-normalization theory is useful for inference with (many)
moment inequalities, a class of partially identified models in which
people in econometrics have had a lot of interests in the last decade.

There we studied inference procedures based upon (i) a moderate
deviation inequality for self-normalized sums, (ii) (a version of)
high-dimensional central limit theorem (developed in the last two
papers), and (iii) combination of (i) and (ii).
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Preliminary (cont.)

Part 1b will cover the content of ”Testing” paper.

Part 1a will cover a brief introduction to inference for partially
identified models, which hopefully motivates Part 1b.

Part 1c will cover the content of the remaining two papers, on which
some results in Part 1b rely (the material in Part 1c has only small
connection to self-normalization theory, but hopefully you will find it
intriguing).
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Part 1a: Introduction to partially identified models
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What is partially identified model?

Romano and Shaikh (Econometrica, 2010, p.169):

A partially identified model is any model in which the
parameter of interest is not uniquely defined by the
distribution of the observed data.

The model only restricts the value of the parameter of interest to a
(multi-element) set, called identified set.
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What is partially identified model? (cont.)

Partially identified models frequently appear in economic applications,
where you typically encounter the following situation: you are
interested in the parameter in the latent structure, but the observed
data does not contain enough information to give you point
identification of the parameter.
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Example 1: interval data

Suppose you have a r.v. Y which is unobservable, but there are
observable r.v.’s Y1, Y2 that bracket Y in the sense that

Y1 ≤ Y ≤ Y2.

For example:
1 (interval censoring) Let Y be the income. Some surveys only record

brackets of income, say, (y0, y1], . . . , (yK−1, yK ]. Defining

Y1 = yk−1, Y2 = yk, when Y ∈ (yk−1, yk], k = 1, . . . ,K,

we have Y1 ≤ Y ≤ Y2.
2 (missing data) Let Y ∈ [0, 1] and D ∈ {0, 1}, and we only observe
Y when D = 1, so the observe variable is the pair (D,DY ). Then

DY ≤ Y ≤ DY + (1−D).
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Example 1: interval data (cont.)

The parameter of interest is θ = E[Y ].

However, without additional information, you can only know from the
data that θ satisfies the restriction:

E[Y1] ≤ θ ≤ E[Y2].

In this case, the identified set is the closed interval[
E[Y1],E[Y2]

]
.

Kengo Kato (U. Tokyo) Tutorial 1a May 15, 2014 10 / 38



Example 2: regression with interval outcomes

Keep the setting in Example 1, but suppose there exists a regressor
X in Rd, and the conditional mean E[Y | X] is a linear function of
X, i.e., E[Y | X] = XT θ, where θ is the parameter of interest.

Consider the simple case where the distribution of X is discrete:

P(X ∈ {x(1), . . . , x(J)}) = 1.

Then the identified set is

{θ : E[Y1 | X = x(j)] ≤ x(j)T θ ≤ E[Y2 | X = x(j)], ∀j}.
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Example 3: entry model

Based on Ciliberto and Tamer (2009, Econometrica).

Let m denote the number of firms that could potentially enter the
market; let m-tuple D = (D1, . . . , Dm) denote the observed entry
decisions of these firms; that is, Dj = 1 if the firm j enters the
market and Dj = 0 otherwise. Let D = {0, 1}m.

Let X and ε denote (exogenous) characteristics of the market as well
as characteristics of the firms that are observed and not observed by
the researchers, respectively.

Profit of the firm j is given by

πj(D,X, ε, θ),

where πj is known up to θ which is the parameter of interest.
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Assume that both X and ε are observed by the firms and that a
Nash equilibrium is played, so that for each j,

πj((Dj, D−j), X, ε, θ) ≥ πj((1−Dj, D−j), X, ε, θ).

Then there exist sets R1(d,X, θ) and R2(d,X, θ) for ε such that
1) D = d is the unique equilibrium whenever ε ∈ R1(d,X, θ); 2)
D = d is one of several equilibria whenever ε ∈ R2(d,X, θ).
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When ε ∈ R1(d,X, θ) for some d ∈ D, we know for sure that
D = d but when ε ∈ R2(d,X, θ), the probability that D = d
depends on the equilibrium selection mechanism, and, without further
information, can be anything in [0, 1].

Hence

P(ε ∈ R1(d,X, θ) | X) ≤ P(D = d | X)

≤ P(ε ∈ R1(d,X, θ) | X) + P(ε ∈ R2(d,X, θ) | X).

≥ 2m+1 inequalities.
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Example 4: CRS (2013, Quant. Econ.)

Based on Chesher, Rosen, Smolinski (2013, Quant. Econ.).

An individual is choosing an alternative out of options in D.

Let D denote his choice; let X denote characteristics of the individual
that are observed by the researcher; and let V denote characteristics
of the individual that are not observed by the researcher.

Choosing an alternative d ∈ D yields the utility

u(d,X, V ).
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The individual is maximizing his utility, so that

u(D,X, V ) ≥ u(d,X, V ), ∀d ∈ D.

The object of interest is the pair (u, PV ) where PV denotes the
distribution of the vector V .

A complication arises because in many applications, X may be
endogenous (not independent of V ); hence assume that there exists a
vector Z of instruments that is related with X but independent of V .

To generate moment inequalities, let τ (d,X, u) denote the set for
V such that D = d whenever V ∈ τ (d,X, u), so that

V ∈ τ (D,X, u).
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Since V ∈ τ (D,X, u), we have that for any set S,

P(V ∈ S) = P(V ∈ S | Z) ≥ P(τ (D,X, u) ⊂ S | Z),

so that for each S, we have a conditional moment inequality.

Then the question is “how to choose a class of sets S to sharply
identify (u, PV )?”

CRS proved that it suffices to consider all unions of sets on the
support of τ (D,X, u). When X is discrete with the support
consisting of m points, this gives |D| · 2m sets.

Chesher and Rosen (2013) provide a more general framework called
Generalized Instrumental Variable model.
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Moment inequality model

In many examples, partially identified models can be represented as
moment inequality models.

Let ξ be a r.v. taking values in a measurable space (S,S) with
distribution P , let Θ be an ambient parameter space which is
B-measurable subset of a metric space (usually subset of a Euclidean
space), and let g = (g1, . . . , gp)

T : S ×Θ→ Rp be a
B-measurable map.

Then the identified set is assumed to be

ΘI = ΘI(P ) = {θ ∈ Θ : EP [gj(ξ, θ)] ≤ 0, 1 ≤ ∀j ≤ p}.

i.i.d. data ξ1, . . . , ξn ∼ P are available.

We will keep this setting in what follows.
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Inference on what?

There may be two possibilities.

The entire identified set ΘI — we want to construct a stochastic
subset Cn(α) ⊂ Θ based on the data ξ1, . . . , ξn such that

P(ΘI ⊂ Cn(α)) ≥ 1− α. (or approximately)

Any particular θ ∈ ΘI — we want to construct Cn(α) such that

inf
θ∈ΘI

P(θ ∈ Cn(α)) ≥ 1− α. (or approximately)

The CR for the latter is generally smaller than the former. Probably
more suitable when there is a “true parameter”.

We will focus on the latter problem in the next lecture when p is
possibly large (p = pn →∞); in this lecture we assume p is fixed.
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Inference on ΘI
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CHT approach

Based on Chernozhukov, Hong, Tamer (2007,Ecoometrica).

For a given p× p positive definite matrix W (θ), consider

Q(θ) = Q(θ, P ) = (EP [g(ξ, θ)])T+W (θ)(EP [g(ξ, θ)])+,

where ((x1, . . . , xp)
T )+ = (max{x1, 0}, . . . ,max{xp, 0})T .

Then
θ ∈ ΘI ⇔ Q(θ) = 0.

Define the sample analogue of Q(θ) by

Q̂(θ) =

(
1

n

n∑
i=1

g(ξi, θ)

)T
+

W (θ)

(
1

n

n∑
i=1

g(ξi, θ)

)
+

.
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Consistent estimation of ΘI

A lower contour set Cn(c) of level c of Q̂ is defined by

Cn(c) = {θ ∈ Θ : Q̂(θ) ≤ c/n}.

The estimator for ΘI will take of the form

Θ̂I = Cn(cn),

where cn ↑ ∞ slowly; CHT suggested cn = logn (cn could be 0
for some examples but not generally so).
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Rates of convergence of Θ̂I in Hausdorff distance

Denote by d(·, ·) the metric on Θ; then the Hausdorff distance
between subsets in Θ is defined by

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)

}
,

where d(a,B) = infb∈B d(a, b).

CHT proved that, (when Θ is a subset of a Euclidean space),

dH(Θ̂I ,ΘI) = OP (
√

max(cn, 1)/n),

(of course) subject to suitable regularity conditions.
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Inference on ΘI

Idea:
ΘI ⊂ Cn(c)⇔ sup

θ∈ΘI

nQ̂(θ) ≤ c.

Hence by taking

c1−α = (1− α)-quantile of sup
θ∈ΘI

nQ̂(θ),

we have
P(ΘI ⊂ Cn(c1−α)) ≥ 1− α.

Critical value c1−α can be approximated by

1 subsampling applied with ΘI replaced by Θ̂I ; or
2 simulating the limit distribution of supθ∈ΘI

nQ̂(θ).
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Some other references

Beresteanu and Molinari (2008), Bugni (2010, Econometrica), Romano
and Shaikh (2010), and Kaido (2012)...
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Inference on θ ∈ ΘI
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Duality

We may exploit duality between construction of confidence sets for
any fixed θ ∈ ΘI and testing the hypothesis

Hθ : EP [gj(ξ, θ)] ≤ 0, 1 ≤ ∀j ≤ p,

against
H ′θ : EP [gj(ξ, θ)] > 0, 1 ≤ ∃j ≤ p.

To fix idea: suppose there is a test statistic Tn(θ) for testing Hθ v.s.
H ′θ, and denote by Rn,α(θ) any rejection region with size α, i.e.,

P(Tn(θ) ∈ Rn,α(θ)) ≤ α,

whenever Hθ is true (i.e., θ ∈ ΘI). Then the CR

Cn(α) = {θ : Tn(θ) /∈ Rn,α(θ)}

contains θ with probability at least 1− α whenever θ ∈ ΘI .
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Hence the problem boils down to testing the following multivariate
one-sided problem (with composite null hypothesis): let X1, . . . , Xn

be i.i.d. random vectors in Rp with mean
µ = (µ1, . . . , µp)

T = E[X1], and consider testing

H0 : µj ≤ 0, 1 ≤ ∀j ≤ p, v.s. H1 : µj > 0, 1 ≤ ∃j ≤ p.

Closely related to classical multivariate one-sided tests where the null
is simple — Kudo (1963, Biometrika), Perlman (1969, Ann. Math.
Statist.) etc.
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Idea of Rosen (2008, J. Econometrics)

Suppose Σ = E[(X1 − µ)(X1 − µ)T ] is non-singular.

Consider the test of the form

Tn := min
t∈Rp

−

n(X̄ − t)TΣ−1(X̄ − t) > c⇒ reject H0,

where X̄ = n−1
∑n
i=1Xi and Rp− = {t ∈ Rp : tj ≤ 0, ∀j}.

When Σ = I, Tn = n|(X̄)+|2.

We need to choose c such that

sup
µj≤0,∀j

P(Tn > c) ≤ α+ o(1).
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By simple algebra,

Tn = min
t∈K
|
√
nΣ−1/2X̄ − t|2,

where K = Σ−1/2Rp− (polyhedral cone).

Denote by K◦ its polar cone:

K◦ = {t ∈ Rp : tT s ≤ 0, ∀s ∈ K}.

Then
Tn = |ProjK◦

√
nΣ−1/2X̄|2.
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Close look at K◦

Since, for ej = (0, . . . , 1︸︷︷︸
jth

, . . . , 0)T ,

K = {t ∈ Rp : (Σ1/2ej)
T t ≤ 0, ∀j},

the polar cone K◦ is expressed as

K◦ =


p∑
j=1

λjΣ
1/2ej : λj ≥ 0

 .
Proof: Use (K◦)◦ = K.

When Σ is diagonal, K◦ = {t ∈ Rp : tj ≥ 0, ∀j}.
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Observe that, whenever µj ≤ 0, ∀j,

Tn ≤ min
t∈Rp

−

n(X̄ − µ− t)TΣ−1(X̄ − µ− t)

= |ProjK◦
√
nΣ−1/2(X̄ − µ)|2 =: T ′n

and the equality takes place when µj = 0,∀j, so that

sup
µj≤0,∀j

P(Tn > c) = P(T ′n > c).
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Recall that the projection onto a closed convex set is a contraction.

Hence by CLT and the continuous mapping theorem,

T ′n
d→ |ProjK◦Z|2,

where Z ∼ Np(0, Ip).

Possible to simulate the limit distribution.

Bootstrap may be used to approximate the distribution of T ′n (but
not Tn).
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Failure of bootstrap to approximate the distribution of Tn

Due to Andrews (2000, Econometrica).

Consider p = 1,Σ = 1, so that under H0,

Tn = n(X̄)2
+

d→
{

0 µ < 0

(N(0, 1))2
+ µ = 0.

Consider µ = 0. Let X∗1 , . . . , X
∗
n be i.i.d. draws from the e.d. of

{X1, . . . , Xn}. Then

T ∗n = n(X̄∗)+ =
(√
n(X̄∗ − X̄) +

√
nX̄

)2
+
.
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As
√
nX̄

d→ N(0, 1), P(
√
nX̄ > 1) = P(N(0, 1) > 1) + o(1);

on the event
√
nX̄ > 1,

T ∗n ≥
(√
n(X̄∗ − X̄) + 1

)2
+
.

Moreover, conditional on X1, X2, . . . , for a.e. realizations of
X1, X2, . . . ,

right side
d→ (N(0, 1) + 1)2

+.

Hence, with probability P(N(0, 1) > 1) + o(1),

conditional 0.95-quantile of T ∗n

≥ 0.95-quantile of (N(0, 1) + 1)2
+ − o(1).
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Comments

Replace Σ by Σ̂ = n−1
∑n
i=1(Xi − X̄)(Xi − X̄)T in practice.

Validity follows immediately(?).

Rosen actually proposed to bounding quantiles of the limit
distribution as

P(|ProjK◦Z|2 > c) ≤
1

2
P(χ2

p > c) +
1

2
P(χ2

p−1 > c),

but this will lead to more conservative CRs.
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Alternative approaches

Subsampling applied to Tn. See Romano and Shaikh (2008, J. Stat.
Plan. Infer.) and Andrews and Guggenberger (2009, Econometric
Theory).

Incorporating moment selection. Exclude j such that X̄j is negatively
small when calculating critical values. See Andrews and Soares (2010,
Econometrica), Andrews and Jia Barwick (2012, Econometrica),
Romano, Shaikh, Wolf (2014, Econometrica) etc.

Other test statistics: (in addition to already mentioned references)
Canay (2010, J. Econometrics), Chernozhukov, Chetverikov, K.
(2013), etc.
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Multiple hypothesis testing

The problem of testing moment inequalities discussed so far is related
but different from the multiple hypothesis testing problem:
H0j : µj ≤ 0 v.s. H1j : µj > 0, j = 1, . . . , p.

In testing moment inequalities, we try to control

sup
H0j ,1≤j≤p

P(at least one of H0j, 1 ≤ j ≤ p, is rejected) ≤ α,

and improve the power when some of inequalities are not binding
(µj < 0) by moment selection.

In multiple hypothesis testing, we typically try to control

max
J⊂{1,...,p}

sup
H0j ,j∈J

P(at least one of H0j, j ∈ J , is rejected) ≤ α.
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