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This part is based upon the paper:

Chernozhukov, V., Chetverikov, D. and K. (2013). Testing many
moment inequalities. arXiv:1312.7614.
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Introduction

In the previous lecture, we’ve seen that the following multivariate
one-sided testing problem is closely connected to the inference
problem on parameters defined by moment inequalities.

Let X1, ..., Xn be an i.i.d. sequence of random vectors in Rp with
µ = E[X1], and consider testing

H0 : µj ≤ 0, 1 ≤ ∀j ≤ p,

against
H1 : µj > 0, 1 ≤ ∃j ≤ p.

Here
µ = (µ1, . . . , µp)

T , Xi = (Xi1, . . . , Xip)
T .

Focus on the case where p is large, and possibly much larger than n.
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Test statistic

Define

µ̂j =
1

n

n∑
i=1

Xij, σ̂
2
j =

1

n

n∑
i=1

(Xij − µ̂j)2.

We consider here the max-type test statistic

T = max
1≤j≤p

√
nµ̂j

σ̂j
.

Reject H0 if T > c.
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Critical values

We want to choose c such that,

sup
µj≤0,∀j

P(T > c) ≤ α+ o(1),

which we also want to hold uniformly over a wide class of
distributions.

Interpret “T > c” as

√
nµ̂j > σ̂jc, ∃j,

whenever σ̂j = 0,∃j.
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Basic idea for calculating critical values

Under H0, µj ≤ 0, ∀j, so that

T ≤ max
j

√
n(µ̂j − µj)/σ̂j,

where the equality takes place when µj = 0, ∀j. Enough to
approximate or bound quantiles of the r.v. on the right side.
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Methods

We consider two methods to calculate critical values:

Self-Normalized (SN) method; fast, works under very weak conditions
but conservative.

Multiplier Bootstrap (MB) method; slower (requires simulations),
requires stronger conditions but nonconservative.

For each method, we consider

One-step method – no selection procedure.

Two-step method – selection procedure is used to get rid of
inequalities that are clearly non-binding.
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Literature

Inference with unconditional moment inequalities: Chernozhukov,
Hong, and Tamer (2007, ECMT), Romano and Shaikh (2008, JSPI),
Menzel (2009, thesis), Andrews and Guggenberger (2009, ET),
Andrews and Soares (2010, ECMT), Canay (2010, JoE), Bugni
(2011), Andrews and Jia Barwick (2012, ECMT), Romano, Shaikh,
and Wolf (2014, ECMT).

Except for Menzel (2009), the number of moment inequalities p is
assumed to be fixed in the analysis of these papers.
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Andrews and Jia Barwick (2012) proposed computationally intensive
methods using a novel moment selection (recommended moment
selection) for inference on parameters defined by moment inequalities,
which leads to CRs with good coverage properties.

Romano, Shaikh, and Wolf (2014) proposed computationally less
intensive alternatives; but still assume p is fixed in their analysis.

Menzel (2009) studied the case where the number of inequalities
p = pn is growing slowly with n; p should be o(n2/7).

This paper covers the case where p is possibly much larger than n.
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Inference with conditional moment inequalities: Andrews and Shi
(2013, ECMT), Chernozhukov, Lee, and Rosen (2013, ECMT),
Armstrong (2011), Chetverikov (2011), Armstrong and Chan (2012).

A small number of conditional inequalities gives rise to a large
number of unconditional inequalities, but these have certain
continuity and tightness structure, which the literature on conditional
moment inequalities heavily exploits/relies upon.

Our approach does not exploit/rely upon such structure and can
handle both many unstructured moment inequalities as well as many
structured moment inequalities arising from conversion of a small
number of conditional inequalities.
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Notation

Assume in what follows

E[X2
1j] <∞, σ

2
j = Var(X1j) > 0, ∀j.

Nominal size: α ∈ (0, 1/2).

Define

Zij =
Xij − µj

σj
, Zi = (Zi1, . . . , Zip)

T ,

Mn,k = max
1≤j≤p

(E[|Zij|k)1/k, Bn = (E[ max
1≤j≤p

Z4
ij])

1/4.

Note: Bn ≥Mn,4 ≥Mn,3 ≥ 1.
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SN methods

Based on union (Bonferroni) bound combined with a moderate
deviation inequality for self-normalized sums.

Observe that under H0,

P(T > c) ≤
p∑
j=1

P(
√
n(µ̂j − µj)/σ̂j > c).

Given that p is large, the union bound might look too conservative
but in fact it is not.
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Define
Uj =

√
nEn[Zij]/

√
En[Z2

ij].

Then √
n(µ̂j − µj)/σ̂j = Uj/

√
1− U2

j /n,

so that

P(T > c) ≤
p∑
j=1

P(Uj > c/
√

1 + c2/n),

since u 7→ u/
√

1− u2/n is increasing in u.

The last quantity can be controlled well because Uj is a
self-normalized sum, and behaves like N(0, 1) even if Xij has only
2 + δ finite moments
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Take c in such a way that

P(N(0, 1) > c/
√

1 + c2/n) = α/p,

which leads to

c = cSN(α) =
Φ−1(1− α/p)√

1− Φ−1(1− α/p)2/n
.

When p = pn →∞ but log p = o(n),

cSN(α) ∼
√

log(p/α),

so that the the SN critical value depends on p only through log p.
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Validity of one-step SN method

Theorem

Suppose that Φ−1(1− α/p) ≤ n1/6/Mn,3. Then under H0,

P(T > cSN(α)) ≤ α
[
1 +Kn−1/2M3

n,3{1 + Φ−1(1− α/p)}3
]
,

where K is universal. In particular, if there exist constants c1 ∈ (0, 1/2)
and C1 > 0 such that

M3
n,3 log3/2(p/α) ≤ C1n

1/2−c1,

then under H0,

P(T > cSN(α)) ≤ α+ Cn−c1,

where C = C(c1, C1) > 0.
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Moderate deviation inequality for self-normalized sums

Lemma

Let ξ1, . . . , ξn be independent centered random variables with E[ξ2
i ] = 1

and E[|ξi|2+ν ] <∞ for all 1 ≤ i ≤ n where 0 < ν ≤ 1. Let
Sn =

∑n
i=1 ξi, V

2
n =

∑n
i=1 ξ

2
i , and

Dn,ν = (n−1
∑n
i=1 E[|ξi|2+ν ])1/(2+ν). Then uniformly in

0 ≤ x ≤ n
ν

2(2+ν)/Dn,ν ,∣∣∣∣P(Sn/Vn ≥ x)

Φ̄(x)
− 1

∣∣∣∣ ≤ Kn−ν/2D2+ν
n,ν (1 + x)2+ν ,

where K is a universal constant.

Proof.

See Theorem 7.4 in Lai, T.L., de la Pen a, V., and Shao, Q.-M. (2009),
Self-Normalized Processes: Limit Theory and Statistical Applications,
Springer; or the original reference: Jing, B.-Y., Shao, Q.-M., and Wang,
Q. (2003, AoP).
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Two-step SN method

Let 0 < βn < α/2 be some constant.

Let cSN(βn) be the SN critical value with size βn, and define

ĴSN = {j ∈ {1, . . . , p} :
√
nµ̂j > −2σ̂jc

SN(βn)}.

Then the two-step SN critical value is defined by

cSN,MS(α) =


Φ−1(1−(α−2βn)/k̂)√

1−Φ−1(1−(α−2βn)/k̂)2/n
, if k̂ ≥ 1,

0, if k̂ = 0.

Here k̂ = |ĴSN |.
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Validity of two-step SN method

Theorem

Suppose that supn βn ≤ α/3 and there exist constants 0 < c1 < 1/2
and C1 > 0 such that

M3
n,3 log3/2(p/βn) ≤ C1n

1/2−c1, B2
n log2(p/βn) ≤ C1n

1/2−c1.

Then ∃c, C depending only on c1, C1 such that under H0,

P(T > cSN,MS(α)) ≤ α+ Cn−c.
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MB methods

Intuition:

max
j

√
n(µ̂j − µj)/σ̂j ≈ max

j

√
n(µ̂j − µj)/σj

≈ max
j

√
nEn[Zij],

so that when p is fixed, by CLT and continuous mapping theorem,

max
j

√
nEn[Zij]

d→ max
j
Yj,

where
Y = (Y1, . . . , Yp)

T ∼ N(0,E[Z1Z
T
1 ]).
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When p = pn →∞? The previous argument does not apply as it

stands: what does “
d→” mean when p = pn →∞?

We apply a high-dimensional CLT from Chernozhukov, Chetverikov,
K. (AoS, 2013).

It proved that under mild regularity conditions, the distribution of
maxj

√
nEn[Zij] can be approximated by the that of maxj Yj in

the sense

sup
t
|P(max

j

√
nEn[Zij] ≤ t)− P(max

j
Yj ≤ t)| → small,

even when p� n. The main idea is to directly compare the
distributions of maxj

√
nEn[Zij] and maxj Yj instead of trying

first to compare the whole vectors
√
nEn[Zi] and Y .
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The distribution of maxj Yj is still infeasible since the covariance
structure of Z is unknown.

To deal with this problem, CCK13 suggested to use the Multiplier
Bootstrap method:

1 Generate independent N(0, 1) random variables ε1, . . . , εn
independent of the data Xn

1 = {X1, . . . , Xn}.
2 Construct the Multiplier Bootstrap test statistic:

W = max
1≤j≤p

√
nEn[εi(Xij − µ̂j)]

σ̂j
.

3 Calculate c = cMB(α) as conditional (1− α) of W | Xn
1 .
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Validity of one-step MB method

Theorem

Suppose that there exist constants 0 < c1 < 1/2 and C1 > 0 such that

(M3
n,3 ∨M

2
n,4 ∨Bn)2 log7/2(pn) ≤ C1n

1/2−c1.

Then ∃c, C depending only on c1, C1 such that under H0,

P(T > cMB(α)) ≤ α+ Cn−c.

If µj = 0, ∀j, then∣∣P(T > cMB(α))− α
∣∣ ≤ Cn−c.
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Two-step MB method

Let 0 < βn < α/2 be some constant.

Let cMB(βn) be the (one-step) MB critical value with size βn.

Define the set ĴMB by

ĴMB = {j ∈ {1, . . . , p} :
√
nµ̂j > −2σ̂jc

MB(βn)}.

Then the two-step MB critical value is defined by:
1 Generate independent standard normal random variables ε1, . . . , εn

independent of the data Xn
1 .

2 Construct the bootstrap test statistic

WĴMB
=

{
maxj∈ĴMB

√
nEn[εi(Xij−µ̂j)]

σ̂j
, if ĴMB 6= ∅

0 if ĴMB = ∅.

3 Calculate cMB,MS(α) as

cMB,MS(α) = conditional (1− α+ 2βn)-quantile of WĴMB
| Xn

1 .

Kengo Kato (U. Tokyo) Tutorial Part 1b May 15, 2014 23 / 31



Theorem

Suppose that the assumption of the previous theorem is satisfied.
Moreover, suppose that supn βn < α/2 and log(1/βn) ≤ C1 logn.
Then all the conclusions of the previous theorem hold with cMB(α)
replaced by cMB,MS(α).
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Hybrid method

Using the SN method for moment selection and applying the MB
method to the selected moments.

Recall

ĴSN = {j ∈ {1, . . . , p} :
√
nµ̂j > −2σ̂jc

SN(βn)}.
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Hybrid method:
1 Generate independent N(0, 1) random variables ε1, . . . , εn

independent of the data Xn
1

2 Construct the bootstrap test statistic

WĴSN
=

{
maxj∈ĴSN

√
nEn[εi(Xij−µ̂j)]

σ̂j
, if ĴSN 6= ∅

0 if ĴSN = ∅.

3 Calculate c = cHB(α) as the conditional (1− α+ 2βn)-quantile of
WĴSN

| Xn
1

Under the same assumption as in the theorem for the two-step MB
method, all the conclusions of the theorem holds for the hybrid
method.
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Optimality from minimax point of view

Discuss optimality from minimax point of view in the sense of Ingster
(1993, Math. Meth. Stat.) and Ingster and Suslina (2003, Lecture
Notes in Stat.).

Consider testing

H0 : max
j
µj ≤ 0, v.s. H1,r : max

j
(µj/σj) ≥ r,

where r > 0.

The constant r is thought of as “distance” between the null and
alternative hypotheses; the smaller r is, the harder to detect H1,r is.
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Minimax rate of testing

Question: when p = pn →∞, determine the minimax rate of
testing, r = r∗n → 0, such that

inf
φn

{
sup

µj≤0,∀j
E[φn] + sup

maxj(µj/σj)≥rn
(1− E[φn])

}
= 1− o(1),

whenever rn = o(r∗n), where infφn is taken over all tests, i.e., all
m’ble functions

φn : (X1, . . . , Xn) 7→ φ(X1, . . . , Xn) ∈ [0, 1];

and moreover if for every α ∈ (0, 1) there exists a test φ∗n with size
α+ o(1) such that

sup
maxj(µj/σj)≥rn

(1− E[φ∗n]) = o(1),

whenever rn/r
∗
n →∞.

Kengo Kato (U. Tokyo) Tutorial Part 1b May 15, 2014 28 / 31



Normal case

Lemma

Let V1, . . . , Vn ∼ N(µ,Σ) i.i.d. with Σ = diag{σ2
1, . . . , σ

2
p} and

σ2
j > 0, ∀j. Consider testing H0 : maxj µj ≤ 0 v.s.
H1 : maxj(µj/σj) ≥ r with r > 0. Then for any test φn,

inf
maxj(µj/σj)≥r

Eµ[φn(V1, . . . , Vn)]

≤ α+ E[|p−1∑p
j=1e

√
nrξj−nr2/2 − 1|],

where α = supµj≤0,∀j Eµ[φn(V1, . . . , Vn)] and
ξ1, . . . , ξp ∼ N(0, 1) i.i.d. If p = pn →∞ as n→∞ and
r = rn = (1− εn)

√
2(log pn)/n where εn > 0 is such that εn → 0

and εn
√

log pn →∞, the second term on the right side is o(1).

Kengo Kato (U. Tokyo) Tutorial Part 1b May 15, 2014 29 / 31



Back to general case

Lemma

Take c(α) ∈ {cSN(α), cSN,MS(α), cMB(α), cMB,MS, cHB}.
Suppose that

B2
n log3/2 p = o(n1/2), sup

n
βn ≤ α/3.

Then
inf

maxj(µj/σj)≥r
P(T > c(α)) ≥ 1− o(1),

if p = pn →∞ and r = rn = (1 + εn)
√

2(log pn)/n where εn > 0
is such that εn → 0 and εn

√
log pn →∞.
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The minimax rate of testing is
√

(log pn)/n, and out tests are all
rate-optimal (we’ve proved a bit more stronger assertion).

Our tests can detect with probability approaching one any deviation
from the null of which the size is

rn = (1 + εn)
√

2(log pn)/n,

and for any test that with correct size (at least asymptotically), there
exists an alternative that is separated from the null by

rn = (1− εn)
√

2(log pn)/n,

against which the test is trivial.
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