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This part is based upon the papers:

Chernozhukov, V., Chetverikov, D. and K. (2013). Gaussian
approximations and multiplier bootstrap for maxima of sums of
high-dimensional random vectors. arXiv:1212.6906. Ann. Statist.

Chernozhukov, V., Chetverikov, D. and K. (2014). Comparison and
anti-concentration bounds for maxima of Gaussian random vectors.
arXiv:1301.4807. To appear in Probab. Theory Related Fields

Some other papers related to this lecture:

Chernozhukov, V., Chetverikov, D., and K. (2014). Gaussian
approximation of suprema of empirical processes. arXiv:1212.6885.
To appear in Ann. Statist.

Chernozhukov, V., Chetverikov, D., and K. (2013).
Anti-concentration and honest, adaptive confidence bands.
arXiv:1303:7152. Revised and resubmitted to Ann. Statist.
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Introduction

Let x1, . . . , xn be independent random vectors in Rp, p ≥ 2.

E[xi] = 0 and E[xix
T
i ] exists. E[xix

T
i ] may be degenerate.

(Important!) Possibly p� n. Keep in mind p = pn.

Consider approximating the distribution of

T0 = max
1≤j≤p

1
√
n

n∑
i=1

xij.

By making
xi,p+1 = −xi1, . . . , xi,2p = −xip,

we have

max
1≤j≤p

∣∣∣∣∣ 1
√
n

n∑
i=1

xij

∣∣∣∣∣ = max
1≤j≤2p

1
√
n

n∑
i=1

xij.
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Introduction

Let y1, . . . , yn be independent normal random vectors with

yi ∼ N(0,E[xix
T
i ]).

Define

Z0 = max
1≤j≤p

1
√
n

n∑
i=1

yij.

When p is fixed, (subject to the Lindeberg condition) the central limit
theorem guarantees that

sup
t∈R
|P(T0 ≤ t)− P(Z0 ≤ t)| → 0.
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Introduction

Basic question: How large p = pn can be while having

sup
t∈R
|P(T0 ≤ t)− P(Z0 ≤ t)| → 0?

Related to multivariate CLT with growing dimension (Portnoy, 1986,
PTRF; Götze, 1991, AoP; Bentkus, 2003, JSPI, etc.).

Define

X =
1
√
n

n∑
i=1

xi, Y =
1
√
n

n∑
i=1

yi.

They are concerned with conditions under which

sup
A∈A
|P(X ∈ A)− P(Y ∈ A)| → 0,

while allowing for p = pn →∞.
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Introduction

Bentkus (2003) proved that (in case of i.i.d. and E[xix
T
i ] = I),

sup
A:convex

|P(X ∈ A)− P(Y ∈ A)| = O(p1/4E[|x1|3]n−1/2).

Typically E[|x1|3] = O(p3/2), so that the RHS=o(1) provided that

p = o(n2/7).

The main message of the paper: to make

sup
t∈R
|P(T0 ≤ t)− P(Z0 ≤ t)| → 0,

p can be much larger. Subject to some conditions,

log p = o(n1/7)

will suffice.
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Figure: P-P plots comparing distributions of T0 and Z0 in the example motivated by
the problem of selecting the penalty level of the Dantzig selector. Here xij are
generated as xij = zijεi with εi ∼ t(4), (a t-distribution with four degrees of
freedom), and zij are non-stochastic (simulated once using U [0, 1] distribution
independently across i and j). The dashed line is 45◦. The distributions of T0 and Z0

are close, as (qualitatively) predicted by the GAR derived in the paper. The quality of
the Gaussian approximation is particularly good for the tail probabilities, which is most
relevant for practical applications.
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Introduction

Still the above approximation results are not directly applicable unless
the covariance structure between the coordinates in X is unknown.

In some cases, we know the covariance structure. E.g. think of
xi = εizi where εi is a scalar (error) r.v. with mean zero and
common variance, and zi is the vector of non-stochastic covariates.
Then T0 is the maximum of t-statistics.

But usually not. In such cases the distribution of Z0 is unknown.

⇒ We propose a Gaussian multiplier bootstrap for approximating the
distribution of T0 when the covariance structure between the
coordinates of X is unknown. Its validity is established through the
Gaussian approximation results. Still p can be much larger than n.
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Applications

Selecting design-adaptive tuning parameters for Lasso (Tibshirani,
1996, JRSSB) and Dantzig selector (Candes and Tao, 2007, AoS).

Multiple hypotheses testing (too many references).

Adaptive specification testing. These three applications are examined
in the arXiv paper.

Testing many moment inequalities. Will be treated if time allowed.
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Literature

Classical CLTs with p = pn →∞: Portnoy (1986, PTRF), Götze
(1991, AoP), Bentkus (2003, JSPI), among many others.

Modern approaches on multivariate CLTs: Chatterjee (2005,
arXiv),Chatterjee and Meckes (2008, ALEA), Reinert and Röllin
(2009, AoP), Röllin (2011,AIHP). Developing Stein’s methods for
normal approximation. Harsha, Klivans, and Meka (2012, J.ACM).

Bootstrap in high dim.: Mammen (1993, AoS), Arlot, Blanchard, and
Roquain (2010a,b, AoS).
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Main theorem

Theorem

Suppose that there exists const. 0 < c1 < C1 s.t.
c1 ≤ n−1

∑n
i=1 E[x2

ij] ≤ C1, 1 ≤ ∀j ≤ p. Then

sup
t∈R
|P(T0 ≤ t)− P(Z0 ≤ t)|

≤ C inf
γ∈(0,1)

[
n−1/8(M

3/4
3 ∨M1/2

4 ) log7/8(pn/γ)

+ n−1/2Q(1− γ) log3/2(pn/γ) + γ
]
,

where Mk = max1≤j≤p(n
−1
∑n
i=1 E[|xij|k])1/k. Here

Q(1− γ) = (1− γ)-quantile of max
i,j
|xij|

∨ (1− γ)-quantile of max
i,j
|yij|.
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Comments

The constant C depends only on c1, C1, lower and upper bounds on
coordinate-wise variances. No restriction on correlation structure.

The extra parameter γ appears essentially to avoid the appearance of
the term of the form

E[ max
1≤j≤p

|xij|k]

in the bound. Notice the difference from

max
1≤j≤p

(n−1
n∑
i=1

E[|xij|k])1/k.

To avoid this, we use a suitable truncation (which actually replies on
self-normalization), and γ controls the level of truncation.

Kengo Kato (U. Tokyo) Tutorial Part 1c May 16, 2014 12 / 29



Techniques

There are a lot of techniques used to prove the main thm.

Directly bounding the probability difference
(P(T0 ≤ t)− P(Z0 ≤ t)) is difficult. Transform the problem into
bounding

E[g(X)− g(Y )], g: smooth,

where X = n−1/2
∑n
i=1 xi, Y = n−1/2

∑n
i=1 yi.

How? Approximate z = (z1, . . . , zp)
T 7→ max1≤j≤p zj by

Fβ(z) = β−1 log(
∑p
j=1e

βzj).

Then 0 ≤ Fβ(z)−max1≤j≤p zj ≤ β−1 log p.
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Techniques

Approximate the indicator function 1(· ≤ t) by a smooth function h
(standard). Then take g = h ◦ Fβ.

Use a variant of Stein’s method to bound

E[g(X)− g(Y )]. (*)

Truncation + some fine properties of Fβ are used here.

To obtain a bound on the probability difference from (*), we need an
anti-concentration ineq. for maxima of normal random vectors.

Intuition: from (*), we will have a bound on

P(T0 ≤ t)− P(Z0 ≤ t+ error).

Want to replace P(Z0 ≤ t+ error) by P(Z0 ≤ t).
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Simplified anti-concentration ineq.

Lemma (Simplified AC inequality)

Let (Y1, . . . , Yp)
T be a normal random vector with E[Yj] = 0 and

E[Y 2
j ] = 1 for all 1 ≤ j ≤ p. Then ∀ε > 0,

sup
t∈R

P(| max
1≤j≤p

Yj − t| ≤ ε) ≤ 4ε(E[ max
1≤j≤p

Yj] + 1).

This bound is universally tight (up to constant).

Note 1: E[max1≤j≤p Yj] ≤
√

2 log p.
Note 2: The inequality is dimension-free: Easy to extend it to separable
Gaussian processes.
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Some consequences

Assumption: either

(E.1) E[exp(|xij|/Bn)] ≤ 2, ∀i, j; or

(E.2) (E[ max
1≤j≤p

x4
ij])

1/4 ≤ Bn, ∀i.

Moreover, assume both

(M.1) c1 ≤ n−1∑n
i=1E[x2

ij] ≤ C1, ∀j; and

(M.2) n−1∑n
i=1E[|xij|2+k] ≤ Bkn, k = 1, 2, ∀j.

Here Bn →∞ is allowed.
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Example

Consider e.g. the case where xi = εizi with εi mean zero scalar error
and zi vector of non-stochastic covariates normalized s.t.
n−1

∑n
i=1 z

2
ij = 1, ∀j. Then (E.2),(M.1),(M.2) are satisfied if

E[ε2
i ] ≥ c1, E[ε4

i ] ≤ C1, |zij| ≤ Bn, ∀i, j,

after adjusting constants.
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Corollary

Corollary

Suppose that one of the following conditions is satisfied:

(i) (E.1) and B2
n log7(pn) ≤ C1n

1−c1 ; or

(ii) (E.2) and B4
n log7(pn) ≤ C1n

1−c1 .

Moreover, suppose that (M.1) and (M.2) are satisfied. Then

sup
t∈R
|P(T0 ≤ t)− P(Z0 ≤ t)| ≤ Cn−c,

where c, C depend only on c1, C1.

Kengo Kato (U. Tokyo) Tutorial Part 1c May 16, 2014 18 / 29



Multiplier bootstrap

Unless the covariance structure of X is known, the distribution of Z0

is still unknown.

To handle this case, consider a multiplier bootstrap.

Generate i.i.d. N(0, 1) r.v.’s e1, ..., en independent of x1, ..., xn.

Define

W0 = max
1≤j≤p

1
√
n

n∑
i=1

eixij.

Want to approximate the distribution of T0 by the conditional
distribution of W0 given x1, . . . , xn.
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Multiplier bootstrap (cont.)

Note that conditional on x1, . . . , xn,

n−1/2∑n
i=1eixi ∼ N(0, n−1∑n

i=1xix
T
i ).

“Close” to N(0, n−1
∑n
i=1E[xix

T
i ])

d
= Y .

Recall Z0 = max1≤j≤p Yj .

Bootstrap critical value:

cW0(α) = inf{t ∈ R : Pe(W0 ≤ t) ≥ α}.
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Theorem (Multiplier bootstrap theorem)

Suppose that one of the following conditions is satisfied:

(i) (E.1) and B2
n log7(pn) ≤ C1n

1−c1 ; or

(ii) (E.2) and B4
n log7(pn) ≤ C1n

1−c1 .

Moreover, suppose that (M.1) and (M.2) are satisfied. Then

sup
α∈(0,1)

|P(T0 ≤ cW0(α))− α| ≤ Cn−c,

where c, C depend only on c1, C1.
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Key fact

The key to the above theorem is the fact that

sup
t∈R
|Pe(W0 ≤ t)− P(Z0 ≤ t)|

is essentially controlled by

max
1≤j,k≤p

|n−1∑n
i=1(xijxik − E[xijxik])|,

which can be oP (1) even if p� n.
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Comparison of Gaussian maxima

More formally, the above theorem is deduced from the following
comparison result for Gaussian maxima.

Lemma

Let V ∼ Np(0,Σ
V ) and Y ∼ Np(0,Σ

Y ). Suppose that there exists
0 < c1 < C1 such that c1 ≤ ΣY

jj ≤ C1, 1 ≤ ∀j ≤ p. Then

sup
t∈R
|P( max

1≤j≤p
Vj ≤ t)− P( max

1≤j≤p
Yj ≤ t)|

≤ C∆
1/3
0 (1 ∨ log(p/∆0))2/3,

where C = C(c1, C1) > 0 and

∆0 := max
1≤j,k≤p

|ΣV
jk − ΣY

jk|.
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Maximal inequality

Lemma

Let x1, . . . , xn be independent random vectors in Rp with p ≥ 2. Define
σ2 := max1≤j≤p

∑n
i=1 E[x2

ij]. Then

E[ max
1≤j≤p

|
∑n
i=1(xij − E[xij])|] . σ

√
log p+

√
E[max

i,j
|xij|2] log p.
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Proof sketch of anti-concentration inequality

Recall:

Lemma (Simplified AC inequality)

Let (Y1, . . . , Yp)
T be a normal random vector with E[Yj] = 0 and

E[Y 2
j ] = 1 for all 1 ≤ j ≤ p. Then ∀ε > 0,

sup
t∈R

P(| max
1≤j≤p

Yj − t| ≤ ε) ≤ 4ε(E[ max
1≤j≤p

Yj] + 1).
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Proof sketch-1

The problem boils down to bounding the density of
M := max1≤j≤p Yj .

The crucial observation is that the density of M can be written as

φ(t)G(t),

where the map t 7→ G(t) is non-decreasing.

Hence∫ ∞
t

φ(r)dr︸ ︷︷ ︸
=1−Φ(t)

G(t) ≤
∫ ∞
t

φ(r)G(r)dr = P(M > t),

that is

G(t) ≤
P(M > t)

1− Φ(t)
.
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Proof sketch-2

The Gaussian concentration inequality (due to
Borell-Sudakov-Tsirelson) states that

P(M > E[M ] + t) ≤ e−t2/2.

Then the density of M is bounded by

φ(t)

1− Φ(t)︸ ︷︷ ︸
≤2(t∨1) ∵ Mill’s ineq.

e−(t−E[M ])2+/2 ≤ 2(t ∨ 1)e−(t−E[M ])2+/2.

The right side is
≤ 2(E[M ] + 1).
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Digression-1

Lemma

Let X(t), t ∈ T be a separable, centered Gaussian process indexed by a
semimetric space T such that E[X2(t)] = 1, ∀t ∈ T . Suppose that
supt∈T X(t) is finite a.s. (which ensures that E[supt∈T X(t)] exists
and is finite). Then

sup
x∈R

P(| sup
t∈T

X(t)− x| ≤ ε) ≤ 4ε(E[sup
t∈T

X(t)] + 1).
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Digression-2

Jian Ding, Ronen Eldan, Alex Zhai (arXiv:1311.5592) made an
interesting observation related to the AC inequality.

That is,

(Var( max
1≤j≤p

Yj))
1/2(E[ max

1≤j≤p
Yj] + 1) ≥

3

32
.

Proof: Markov’s inequality + AC.

In words,

a good concentration for the supremum implies that the
expected supremum has to be large
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