Nonlinear Error Correction Model and Multiple-Threshold Cointegration

Man Wang Dong Hua University, China

Joint work with N.H.Chan

May 23, 2014

1 Introduction

2 Least Squares Estimator (LSE) of TVECM

3 Smoothed LSE (SLSE)

4 Simulation and Empirical Studies

- Simulation Study
- Term Structure of Interest Rates

1 Introduction

2 Least Squares Estimator (LSE) of TVECM

3 Smoothed LSE (SLSE)

4 Simulation and Empirical Studies
 a Simulation Study

Term Structure of Interest Rates

Linear Cointegration: If $x_{1,t}$ and $x_{2,t}$ are both I(1), and $x_{1,t} + \beta x_{2,t}$ is I(0), then we say that $x_{1,t}$ and $x_{2,t}$ are cointegrated.

Granger representation theorem: $(x_{1,t}, x_{2,t})$ has a vector error correction model (VECM) representation as

$$\begin{bmatrix} \Delta x_{1,t} \\ \Delta x_{2,t} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} z_{t-1} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} \Delta x_{1,t-1} \\ \Delta x_{2,t-1} \end{bmatrix} + \begin{bmatrix} u_{1,t} \\ u_{2,t} \end{bmatrix},$$

where $z_{t-1} = x_{1,t-1} + \beta x_{2,t-1}$ is the error correction term, called the equilibrium error.

The linear cointegration implies consistent adjustment towards long-run equilibrium.

Balke and Fomby (1997) proposed threshold cointegration, assuming that the system adjustment follows a threshold model. The threshold vector ECM (TVECM):

$$\begin{bmatrix} \Delta x_{1,t} \\ \Delta x_{2,t} \end{bmatrix} = \sum_{j=1}^{3} \left(\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}^{(j)} + \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}^{(j)} z_{t-1} \\ + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}^{(j)} \begin{bmatrix} \Delta x_{1,t-1} \\ \Delta x_{2,t-1} \end{bmatrix} \right) \mathbf{1} \{ z_{t-1} \text{ in } j - \text{th regime} \} + \begin{bmatrix} u_{1,t} \\ u_{2,t} \end{bmatrix}^{(j)}$$

m-regime TVECM

Variables:

- $x_t: p-$ dimensional I(1) vector, cointegrated with single cointegrating vector $(1, \beta')$.
- $z_{t-1}(\beta) = x_{1,t-1} + x'_{2,t-1}\beta$: the error correction term, where $x_t = (x_{1,t}, x'_{2,t})'$.
- $X_{t-1}(\beta) = (1, z_{t-1}(\beta), \Delta x'_{t-1}, \dots, \Delta x'_{t-l})$, where $\Delta x_{t-i}, i = 1, \dots, l$ are the lagged difference terms.

An *m*-regime TVECM:

$$\Delta x_t = \sum_{j=1}^m A'_j X_{t-1}(\beta) 1\{\gamma_{j-1} \le z_{t-1}(\beta) < \gamma_j\} + u_t, \quad t = l+1, \dots, n.$$
(1)

 $-\infty=\gamma_0<\gamma_1<\ldots<\gamma_m=\infty$ are thresholds and A_j is coefficient in the j-th regime.

Multiple-threshold cointegration is widely used, but estimation theories are limited to the one threshold cointegration (two-regime TVECM).

- Hansen and Seo (2002) constructed the MLE whose consistency is still unknown.
- Seo (2011) gave the asymptotics of the LSE and SLSE.

Goal: estimation of multiple threshold cointegration (*m*-regime TVECM with m>2).

1 Introduction

2 Least Squares Estimator (LSE) of TVECM

3 Smoothed LSE (SLSE)

4 Simulation and Empirical Studies

- Simulation Study
- Term Structure of Interest Rates

An m-regime TVECM:

$$\Delta x_t = \sum_{j=1}^m A'_j X_{t-1}(\beta) 1\{\gamma_{j-1} \le z_{t-1}(\beta) < \gamma_j\} + u_t, \quad t = l+1, \dots, n.$$

We denote:

$$\tilde{X}_{j}(\beta,\gamma) = \begin{pmatrix} X_{l}'(\beta)1\{\gamma_{j-1} \leq z_{l}(\beta) < \gamma_{j}\} \\ \vdots \\ X_{n-1}'(\beta)1\{\gamma_{j-1} \leq z_{n-1}(\beta) < \gamma_{j}\} \end{pmatrix},$$

$$y = (\Delta x_{l+1}', \ldots, \Delta x_{n}')', u = (u_{l+1}, \ldots, u_{n})',$$

$$\lambda = \operatorname{vec} \left(A_{1}', \ldots, A_{m}'\right),$$

Then,

$$y = \left(\left(\tilde{X}_1(\beta, \gamma), \dots, \tilde{X}_m(\beta, \gamma) \right) \otimes I_p \right) \lambda + u.$$

Let $S_n(\theta) = u'u$,

Ma

1 LS estimator:

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} S_n(\theta). \quad \theta = (\beta, \gamma = (\gamma_1, \gamma_2, \dots, \gamma_{m-1}), \lambda')' \in \Theta.$$

$$\begin{array}{l} \textcircled{2} \quad \mbox{2-step procedure:} \\ \mbox{Fix } (\beta,\gamma), \ y = \left[\left(\tilde{X_1}(\beta,\gamma), \tilde{X_2}(\beta,\gamma), \ldots, \tilde{X_m}(\beta,\gamma) \right) \otimes I_p \right] \lambda + u. \\ \\ \hat{\lambda}_{(\beta,\gamma)} = \left(\left[\begin{array}{ccc} \tilde{X_1}'\tilde{X_1} & \tilde{X_1}'\tilde{X_2} & \ldots & \tilde{X_1}'\tilde{X_m} \\ \tilde{X_1}'\tilde{X_2} & \tilde{X_2}'\tilde{X_2} & \ldots & \tilde{X_2}'\tilde{X_m} \\ & \ddots & & \\ \tilde{X_1}'\tilde{X_m} & \tilde{X_m}'X_2 & \ldots & \tilde{X_m}'\tilde{X_m} \end{array} \right]^{-1} \left(\begin{array}{c} \tilde{X_1}' \\ \tilde{X_2}' \\ \vdots \\ \tilde{X_m}' \end{array} \right) \otimes I_p \right) y. \end{array} \right) (2 \\ \\ \mbox{Step1: } (\hat{\beta}, \hat{\gamma}) = \underset{(\beta, \gamma) \in \Theta_{\beta, \gamma}}{\operatorname{argmin}} S_n(\beta, \gamma, \hat{\lambda}(\beta, \gamma)), \\ \\ \\ \mbox{Step2: } \hat{\lambda} = \hat{\lambda}(\hat{\beta}, \hat{\gamma}). \end{array}$$

Assumptions 1.

- 1.1 The parameter space Θ is compact with max $\{|\lambda_{z_1}|, |\lambda_{z_m}|\}$ and $\min_{1 \leq i < j \leq m-1} \{|\gamma_i \gamma_j|\} \text{ bounded away from zero.}$
- 1.2 $\{u_t\}$ is an i.i.d. sequence of random variables with $\mathsf{E} u_t = \mathsf{0}$, $\mathsf{E} u_t u_t^{'} = \Sigma$.
- 1.3 $\{ \Delta x_t, z_t \}$ is a sequence of strictly stationary strong mixing random vectors with mixing numbers $\alpha_m, m = 1, 2, \ldots$, that satisfy $\alpha_m = o(m^{-(\alpha_0+1)/(\alpha_0-1)})$ as $m \to \infty$ for some $\alpha_0 > 1$, and for some $\varepsilon > 0$. $\mathbb{E}|X_t X_t'|^{\alpha_0-1} < \infty$ and $\mathbb{E}|X_{t-1}u_t|^{\alpha_0+\varepsilon}| < \infty$. Furthermore, $\mathbb{E}\Delta x_t = 0$, and the partial sum process, $x_{[ns]}/\sqrt{n}, s \in [0, 1]$, converges weakly to a vector Brownian motion **B** with a covariance matrix Ω , which is the long-run covariance matrix of Δx_t and has rank p-1 such that $(1, \beta_0')\Omega = 0$. In particular, assume that $x_{2[nx]}/\sqrt{n}$ converges weakly to a vector of Brownian motion B with a covariance matrix Ω , which is finite and positive definite.
- 1.4 Let $u_t(\xi, \gamma, \lambda)$ be defined as the error u_t by replacing $z_t(\beta)$ by $z_t + \xi$, where ξ belongs to a compact set in R and let

$$S(\xi,\gamma,\lambda) = \mathsf{E}(u_t^{'}(\xi,\gamma,\lambda)u_t(\xi,\gamma,\lambda)).$$

Assumptions 2.

2.1 The probability distribution of z_t has a density with respect to the Lebesgue measure that is continuous, bounded, and everywhere positive, and that the density function $f(z_t|x_{2,t})$ is bounded by M > 0 for almost every $x_{2,t}$, t = 1, 2, ..., n.

2.2
$$\mathsf{E}[X_{t-1}^{'}(A_{j}^{0}-A_{j+1}^{0})(A_{j}^{0}-A_{j+1}^{0})^{'}X_{t-1}|z_{t-1}=\gamma_{j}^{0}] > 0 \quad \forall j = 1, 2, \dots, m-1.$$

Theorem 1

Under Assumptions 1 and 2, $\hat{\theta}$ is consistent, further $n^{3/2}(\hat{\beta} - \beta^0)$ is $O_p(1)$ and $n(\hat{\gamma} - \gamma^0) = O_p(1)$, $n(\hat{\lambda} - \lambda^0)$ is asymptotically normal.

1 Introduction

2 Least Squares Estimator (LSE) of TVECM

3 Smoothed LSE (SLSE)

4 Simulation and Empirical Studies

- Simulation Study
- Term Structure of Interest Rates

The objective function of the LSE of a threshold model is discontinuous. See and Linton (2007) proposed to smooth it by replacing $1\{s > 0\}$ by a smooth function $\mathcal{K}(s/h)$, where h is bandwidth.

The minimizer of the smoothed objective function is called the SLSE. Herein $\mathcal{K}(s)$ is smooth, bounded, with

$$\underset{s \to -\infty}{\lim} \mathcal{K}(s) = 0, \\ \underset{s \to +\infty}{\lim} \mathcal{K}(s) = 1.$$

The smoothing is reasonable because

$$\mathcal{K}(s/h) \to 1\{s > 0\}, \text{as } h \to 0.$$

SLSE for an m-regime TVECM:

$$\Delta x_t = \sum_{j=1}^m A'_j X_{t-1}(\beta) 1\{\gamma_{j-1} \le z_{t-1}(\beta) < \gamma_j\} + u_t, \quad t = l+1, \dots, n.$$
(3)

Let

$$\mathcal{K}_{t-1}(\beta,\gamma_{j-1},\gamma_j) = \mathcal{K}(\frac{z_{t-1}(\beta) - \gamma_{j-1}}{h}) + \mathcal{K}(\frac{\gamma_j - z_{t-1}(\beta)}{h}) - 1,$$

and replace $1\{\gamma_{j-1} \leq z_{t-1}(\beta) < \gamma_j\}$ with $\mathcal{K}_{t-1}(\beta, \gamma_{j-1}, \gamma_j)$.

• Denote $X_j^*(\beta,\gamma) = X_{t-1}(\beta)\mathcal{K}_{t-1}(\beta,\gamma_{j-1},\gamma_j)$, then the smoothed objective function become

$$S_n^* = u^{*'}u^*$$
, where $u^* = y - [(X_1^*(\beta, \gamma), \dots, X_m^*(\beta, \gamma)) \otimes I_p] \lambda$.

•
$$\hat{\theta}^* = \underset{\theta \in \Theta}{\operatorname{argmin}} S_n^*$$
 is defined as SLSE of m -regime TVECM.

Assumptions 3.

- 3.1 \mathcal{K} is twice differentiable everywhere, $\mathcal{K}^{(1)}$ is symmetric around zero, and $\mathcal{K}^{(1)}$ and $\mathcal{K}^{(2)}$ are uniformly bounded and uniformly continuous. Furthermore, $\int |\mathcal{K}^{(1)}(s)|^4 ds$, $\int |s^2 \mathcal{K}^{(1)}(s)| ds$, $\int |\mathcal{K}^{(2)}(s)|^2 ds$ and $\int |s^2 \mathcal{K}^{(2)}(s)| ds$ are finite.
- 3.2 $\mathcal{K}(x) \mathcal{K}(0)$ has the same sign as x and for some integer $\nu \ge 2$ and each integer $i \ (1 \le i \le \nu)$, $\int |s^i \mathcal{K}^{(1)}(s)| ds < \infty$,

$$\int s^{i-1} \operatorname{sgn}(s) \mathcal{K}^{(1)}(s) ds = 0 \text{ and } \int s^{\nu-1} \operatorname{sgn}(s) \mathcal{K}^{(1)}(s) ds \neq 0.$$

3.3 Furthermore, for some $\epsilon > 0$,

$$\lim_{n\to\infty}h^{i-\nu}\int_{|hs|>\epsilon}|s^{i}\mathcal{K}^{(1)}(s)|ds=0 \text{ and } \lim_{n\to\infty}h^{-1}\int_{|hs|>\epsilon}|s^{i}\mathcal{K}^{(2)}(s)|ds=0.$$

3.4 $\{h\}$ is a function of n and satisfies that for some sequence $q \ge 1$,

$$nq^3 \to 0,$$

 $\log(nq)(n^{1-6/r}h^2q^{-2})^{-1} \to 0,$

and $h^{-9k/2-3}n^{(9k/2+2)/r+\epsilon}\alpha_q \to 0$, where k is the dimension of θ and r > 4 is specified in Assumptions 4.

Assumptions 4.

- 4.1 $\mathsf{E}[|X_t u_t^{'}|^r] < \infty$, $\mathsf{E}[|X_t X_t^{'}|^r] < \infty$, for some r > 4.
- 4.2 $\{ \triangle x_t, z_t \}$ is a sequence of strictly stationary strongly mixing random vectors with mixing coefficients $\alpha_m, m = 1, 2, \ldots$, that satisfy $\alpha_m \leq Cm^{-(2r-2)/(r-2)-\eta}$ for positive C and η , as $m \to \infty$.
- 4.3 For some integer $\nu \geq 2$ and each integer i such that $1 \leq i \leq \nu 1$, for all z in a neighborhood of threshold $\gamma_j, j = 1, \ldots, m-1$, for almost every $x_{2,t}$ and some $M < \infty, f^{(i)}(z|x_{2,t})$ exists and is a continuous function of z satisfying $|f^{(i)}(z|x_{2,t})| < M$. In addition, $f(z|x_{2,t}) < M$ for all z and almost every $x_{2,t}$.
- 4.4 The conditional joint density $f(z_t, z_{t-m}|x_{2,t}, x_{2,t-m}) < M$, for all (z_t, z_{t-m}) and almost every $(x_{2,t}, x_{2,t-m})$.
- 4.5 θ^0 is an interior point of Θ .

Limiting Distribution

Limiting distribution of $\hat{\theta}^*$.

Theorem 2

Under Assumptions 1-4,

$$\begin{pmatrix} nh^{-1/2}(\hat{\beta}^* - \beta_0) \\ \sqrt{nh^{-1}}(\hat{\gamma}^* - \gamma^0) \end{pmatrix} \\ \stackrel{d}{\Rightarrow} \begin{pmatrix} \sigma_q^2 \int_0^1 BB' & \sigma_{q_1}^2 \int_0^1 B' & \sigma_{q_2}^2 \int_0^1 B' & \dots & \sigma_{q_{m-1}}^2 \int_0^1 B' \\ \sigma_{q_1}^2 \int_0^1 B & \sigma_{q_1}^2 & 0 & \dots & 0 \\ \sigma_{q_{m-1}}^2 \int_0^1 B & 0 & 0 & \dots & \sigma_{q_{m-1}}^2 \end{pmatrix}^{-1} \begin{pmatrix} \int Bd\sum_{j=1}^{m-1} \sigma_{v_j} W_j \\ \sigma_{v_1} W_1(1) \\ \sigma_{v_2} W_2(1) \\ \vdots \\ \sigma_{v_{m-1}} W_{m-1}(1) \end{pmatrix}, \\ \sqrt{n}(\hat{\lambda}^* - \lambda^0) \Longrightarrow \mathcal{N} \left(0, \left[E \begin{pmatrix} I_1 & 0 & \dots & 0 \\ 0 & I_2 & 0 & 0 \\ 0 & 0 & \dots & I_m \end{pmatrix} \otimes X_{t-1} X_{t-1}' \right]^{-1} \otimes \Sigma \right), \\ \text{and} \begin{pmatrix} nh^{-1/2}(\hat{\beta}^* - \beta_0) \\ \sqrt{nh^{-1}}(\hat{\gamma}^* - \gamma^0) \end{pmatrix} \text{ is asymptotically independent of } \sqrt{n}(\hat{\lambda}^* - \lambda^0). \text{ Here } \stackrel{d}{\Longrightarrow} \text{ stands for convergence in distribution.} \end{cases}$$

Notations in Theorem 2 are as follows:

- B, W_1, \ldots, W_{m-1} are mutually independent Brownian motions.
- $\bullet \ \ I_j = 1\{\gamma_{j-1}^0 \leq z_{t-1} < \gamma_j^0\}, \, {\rm here} \ \gamma^0 \ {\rm is \ the \ true \ value \ of \ threshold \ parameters}.$

$$\begin{split} & \tilde{\mathcal{K}}_1(s) = \mathcal{K}^{(1)}(1(s>0) - K(s)). \text{ For } j = 1, \dots, m-1, \\ & \sigma_{v_j}^2 = \mathsf{E}\left[F_j|z_{t-1} = \gamma_j^0\right] f_Z(\gamma_j^0), \text{where} \\ & F_j = ||\mathcal{K}^{(1)}||_2^2 (X_{t-1}'(A_j^0 - A_{j+1}^0)u_t)^2 + ||\tilde{\mathcal{K}}_1||_2^2 (X_{t-1}'(A_j^0 - A_{j+1}^0)(A_j^0 - A_{j+1}^0)'X_{t-1}). \end{split}$$

• For
$$j = 1, \ldots, m-1$$
,
 $\sigma_{q_j}^2 = \mathcal{K}^{(1)}(0) \mathbb{E}[X_{t-1}^{\prime}(A_j^0 - A_{j+1}^0)(A_j^0 - A_{j+1}^0)^{\prime}X_{t-1})|z_{t-1} = \gamma_j^0]f_Z(\gamma_j^0)$
and $\sigma_q^2 = \sum_{j=1}^{m-1} \sigma_{q_j}^2$.

1 Introduction

2 Least Squares Estimator (LSE) of TVECM

3 Smoothed LSE (SLSE)

4 Simulation and Empirical Studies

- Simulation Study
- Term Structure of Interest Rates

Model specification:

$$\Delta x_t = \begin{pmatrix} -1\\ 0.8 \end{pmatrix} z_{t-1} \{z_{t-1} < \gamma_{10}\} + \begin{pmatrix} -1\\ 0 \end{pmatrix} z_{t-1} \{\gamma_{10} \le z_{t-1} < \gamma_{20}\} \\ + \begin{pmatrix} -1\\ 0.3 \end{pmatrix} z_{t-1} \{z_{t-1} \ge \gamma_{20}\} + u_t,$$

where $z_{t-1} = x_{1,t-1} + \beta^0 x_{2,t-1}, \beta^0 = 2$. $u_t \sim \text{i.i.d } N(0, I_2)$ for $t = l + 1, \ldots n$, and $\Delta x_0 = u_0$.

Case 1:
$$\gamma^0 = (-1, 1)$$
, Case 2: $\gamma^0 = (-3, 3)$.

Sample sizes n=100 and 250 for case 1, and n=250 for case 2. 800 replications for each experiment. Notation of estimators.

- $\tilde{\beta}$: the Johansen's MLE.
- $\hat{\beta}, \hat{\gamma}$: the LSE.
- $\hat{\beta}^*, \hat{\gamma}^*$ the SLSE.
- $\hat{\gamma}_r(\hat{\gamma}_r^*)$ the restricted LSE (SLSE) when β^0 is given.
- $\hat{\beta}_s$ and $\hat{\gamma}_s$ ($\hat{\beta}_s^*$ and $\hat{\gamma}_s^*$) are the sequential LSE (SLSE). That is, the two thresholds are selected sequentially.

	mean	sd	MAE in log
	mean	30	MAL III IOg
n=100			
$\hat{\beta} - \beta^0$	2.34e-05	0.0026	-6.2415
$\hat{\gamma}_1 - \gamma_1^0$	0.4162	1.409	0.1381
$\hat{\gamma}_2 - \gamma_2^0$	0.2049	1.777	0.3913
$\hat{\beta}^* - \beta^0$	5.19e-05	0.0029	-6.1557
$\hat{\gamma}_{1}^{*} - \gamma_{1}^{0}$	0.4571	1.474	0.1779
$\hat{\gamma}_2^* - \gamma_2^0$	0.2095	1.838	0.4253
n=250			
$\hat{\beta} - \beta^0$	7.8611e-06	0.00054	-7.7729
$\hat{\gamma}_1 - \gamma_1^0$	0.1821	0.9852	-0.2869
$\hat{\gamma}_2 - \gamma_2^0$	-0.0679	1.6558	0.3177
$\hat{\beta}^* - \beta^0$	1.7008e-05	0.00058	-7.7381
$\hat{\gamma}_{1}^{*} - \gamma_{1}^{0}$	0.1448	1.0029	-0.2587
$\hat{\gamma}^*_{\alpha} - \gamma^0_{\alpha}$	-0.0525	1.6951	0.3334

Comparison of estimation for different n.

Conclusion: the performance of the LSE and SLSE is much improved when $n\uparrow$.

	mean	sd	MAE in log
case 1, n=250,	$\gamma^0 = c(1, -1)$		
$\hat{\beta} - \beta^0$	7.8611e-06	0.00054	-7.7729
$\hat{\gamma}_1 - \gamma_1^0$	0.1821	0.9852	-0.2869
$\hat{\gamma}_2 - \gamma_2^0$ $\hat{\beta}^* - \beta^0$	-0.0679	1.6558	0.3177
$\hat{\beta}^* - \beta^0$	1.7008e-05	0.00058	-7.7381
$\hat{\gamma}_1^* - \gamma_1^0$	0.1448	1.0029	-0.2587
$\hat{\gamma}_{2}^{*} - \gamma_{2}^{0}$	-0.0525	1.6951	0.3334
case 2, n=250,	$\gamma^0 = c(3, -3)$		
$\hat{\beta} - \beta^0$	-3.0012e-02	0.2433	-3.4921
$\hat{\gamma}_1 - \gamma_1^0$	0.1623	0.5483	-1.3868
$\hat{\gamma}_2 - \gamma_2^0$	-0.6184	1.1678	-0.2426
$\hat{\beta}^{*} - \hat{\beta}^{0}$	-3.0029e-02	0.2433	-3.4920
$\hat{\gamma}_1^* - \gamma_1^0$	0.1566	0.5421	-1.3881
$\hat{\gamma}_2^* - \gamma_2^0$	-0.6757	1.2554	-0.1726

Conclusion: the performance of the LSE and SLSE declines when magnitude of $\gamma\uparrow$.

Comparison of estimation for different γ s

	mean	sd	MAE in log
$\tilde{\beta} - \beta^0$	2.1381e-05	0.00045	-7.9221
$\hat{\beta} - \beta^0$	7.8611e-06	0.00054	-7.7729
$\hat{\beta}^* - \beta^0$	1.7008e-05	0.00058	-7.7381
$\hat{\beta_s} - \beta^0$	2.0909e-05	0.00053	-7.7798
$\hat{\beta}_s^* - \beta^0$	3.9289e-06	0.00052	-7.8185
LSE and SLSE	simultaneous estimators for γ		
$\hat{\gamma}_1 - \gamma_1^0$	1.8213e-01	0.9852	-0.2869
$\hat{\gamma}_2 - \gamma_2^0$	-6.7928e-02	1.6557	0.3177
$\hat{\gamma}_1^* - \gamma_1^0$	1.4489e-01	1.0028	-0.2587
$\hat{\gamma}_{2}^{*} - \gamma_{2}^{0}$	-5.2532e-02	1.6951	0.3334
LSE and SLSE	sequential estimators for γ		
$\hat{\gamma}_{s,1} - \gamma_1^0$	4.8364e-02	0.971	-0.3241
$\hat{\gamma}_{s,2} - \gamma_{2}^{0}$	6.6848e-01	1.6701	0.3741
$\hat{\gamma}_{s,1}^{*} - \gamma_{1}^{0}$	-4.5039e-02	0.9764	-0.3141
$\hat{\gamma}_{s,2}^* - \gamma_2^0$	6.8553e-01	1.763	0.4305
LSE and SLSE	estimators when β^0 known		
$\hat{\gamma}_{r,1} - \gamma_1^0$	1.7321e-01	0.993	-0.2475
$\hat{\gamma}_{r,2} - \gamma_2^0$	-6.3433e-02	1.6141	0.2866
$\hat{\gamma}_{r,1}^{*} - \gamma_{1}^{0}$	8.0666e-02	0.9798	-0.2910
$\hat{\gamma}_{r,2}^* - \gamma_2^0$	-3.5652e-02	1.6840	0.3346

For estimators of β ,

- The Johansen's MLE does not perform as well as the other estimators.
- The LSE outperforms the SLSE.

For estimators of γ ,

- The LSE $\hat{\gamma}$ performs slightly better than the SLSE $\hat{\gamma}^*$.
- $\hat{\gamma}$ and $\hat{\gamma}^*$ shows superiority over the sequential estimators $\hat{\gamma}_s$ and $\hat{\gamma}^*_s$ respectively.
- $\hat{\gamma}_r$ and $\hat{\gamma}_r^*$ outperform the unrestricted estimators $\hat{\gamma}$ and $\hat{\gamma}^*$. Improvement from $\hat{\gamma}$ to $\hat{\gamma}_r$ is limited.

Conclusions.

Simulation results agree with the the theories developed.

With our choice of \mathcal{K} and h, the SLSE performs almost as we as the LSE and is therefore recommended.

Empirical Study

Campbell and Shiller (1987): the term structure of interest rates implies that long-term and short-term interest rates are cointegrated with $\alpha = (1, -1)$.

 R_t and r_t : interest rates of the twelve-month and 120-month bonds of the US during in the period 1952-1991.

Hansen and Seo (2002) found them to be threshold cointegrated via a two-regime TVECM estimated by the MLE:

$$\begin{split} \Delta R_t &= \left\{ \begin{array}{ll} 0.54 + 0.34z_{t-1} + 0.35\Delta R_{t-1} - 0.17\Delta r_{t-1} + u_{2,t}, & \text{if } z_{t-1} \leq -0.63, \\ 0.01 - 0.02z_{t-1} - 0.08\Delta R_{t-1} + 0.09\Delta r_{t-1} + u_{1,t}, & \text{if } z_{t-1} > -0.63, \end{array} \right. \\ \Delta r_t &= \left\{ \begin{array}{ll} 1.45 + 1.41z_{t-1} + 0.92\Delta R_{t-1} - .04\Delta r_{t-1} + u_{2,t}, & \text{if } z_{t-1} \leq -0.63, \\ -0.04 + 0.04z_{t-1} - 0.07\Delta R_{t-1} + 0.23\Delta r_{t-1} + u_{2,t}, & \text{if } z_{t-1} > -0.63, \end{array} \right. \end{split}$$

where $z_{t-1} = R_{t-1} - 0.984r_{t-1}$. The estimated cointegrating vector (1, -0.984) is very close to (1, -1) and (8%, 92%) of data fall into the two regimes.

We take one step further and consider a three-regime TVECM. By the LSE, the model is estimated as:

$$\begin{split} \Delta R_t &= \left\{ \begin{array}{ll} 0.53 + 0.37z_{t-1} + .37\Delta R_{t-1} - .28\Delta r_{t-1} + u_{1,t}, & \text{if } z_{t-1} \leq -0.62, \\ 0.44 - 0.94z_{t-1} - 0.06\Delta R_{t-1} + 0.11\Delta r_{t-1} + u_{1,t}, & \text{if } 1.58 \geq z_{t-1} > -0.62, \\ -0.02 - 0.00z_{t-1} - 0.02\Delta R_{t-1} + 0.11\Delta r_{t-1} + u_{1,t}, & \text{if } z_{t-1} > 1.58, \end{array} \right. \\ \Delta r_t &= \left\{ \begin{array}{ll} 1.45 + 1.43z_{t-1} + 0.74\Delta R_{t-1} - .28\Delta r_{t-1} + u_{2,t}, & \text{if } z_{t-1} \leq -0.62, \\ -0.42 + 1.0z_{t-1} - 0.14\Delta R_{t-1} - 0.29\Delta r_{t-1} + u_{2,t}, & \text{if } z_{t-1} \geq -0.62, \\ -0.01 - 0.01z_{t-1} + 0.17\Delta R_{t-1} + 0.25\Delta r_{t-1} + u_{2,t}, & \text{if } z_{t-1} > 1.58. \end{array} \right. \end{split}$$

 $(1, \hat{\beta}) = (1, -0.983)$, data in three regimes (8%, 72%, 20%).

For the SLSE, the model is estimated as:

$$\begin{split} \Delta R_t &= \left\{ \begin{array}{ll} 0.56 + 0.41z_{t-1} + .21\Delta R_{t-1} - .25\Delta r_{t-1} + u_{1,t}, & \text{if } z_{t-1} \leq -0.84, \\ 0.73 - 0.33z_{t-1} - 0.096\Delta R_{t-1} - 0.23\Delta r_{t-1} + u_{1,t}, & \text{if } 1.58 \geq z_{t-1} > -0.84, \\ 0.03 - 0.05z_{t-1} + 0.04\Delta R_{t-1} + 0.08\Delta r_{t-1} + u_{1,t}, & \text{if } z_{t-1} > 1.58, \end{array} \right. \\ \Delta r_t &= \left\{ \begin{array}{ll} 1.82 + 1.65z_{t-1} + 0.42\Delta R_{t-1} - .22\Delta r_{t-1} + u_{2,t}, & \text{if } z_{t-1} \leq -0.84, \\ 0.65 - 0.25z_{t-1} - 0.21\Delta R_{t-1} - 0.02\Delta r_{t-1} + u_{2,t}, & \text{if } z_{t-1} \geq -0.84, \\ 0.002 - 0.02z_{t-1} + 0.08\Delta R_{t-1} + 0.21\Delta r_{t-1} + u_{1,t}, & \text{if } z_{t-1} > 1.58. \end{array} \right. \end{split}$$

 $(1, \hat{\beta}^*) = (1, -0.981)$, data in three regimes (5.4%, 73.15%, 21.45%).

A three-regime TVECM seems to be more reasonable:

- Situations of R_t relatively high and R_t relatively low are both abnormal.
- ② The three-regime models keep the data in the left regime and divide the rest to two more regimes.
- **③** Both the two models are different in the middle and right regimes.

They both indicate: market is more sensitive to low R_t than high R_t .

Thank You!