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Introduction

Variance ratio tests (Lo and MacKinlay (1988) and Poterba and Summers
(1988)) are widely used in empirical finance as a way of testing the
Effi cient Markets Hypothesis (EMH) and to measure the degree and
(cumulative) direction of departures from this hypothesis in financial time
series.
Under weak form EMH excess returns satisfy

E (excess returnst |Ft−1) = 0,

where Ft denotes the past history of prices. It follows that

var (low frequency returns)
var (high frequency returns)

=
high frequency
low frequency

Many applications/citations
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Crime against statistics?

It is not consistent against all (fixed of given order) alternatives unlike
the Box-Pierce statistics.
It is a linear functional of the autocorrelation function and so provides
no new information relative to that. It seems like a redundant test.
Faust (1992) argues that actually they form a class of tests optimal
against certain alternatives. Specifically, he considers a more general
class of univariate Filtered Variance Ratio tests. Let rφ

t = ∑m
i=0 φi rt−i

be a filtered return series for filter φ(L). Then consider tests based on
comparing var(rφ

t )/var(rt ). He shows that each such test can be
given a likelihood ratio interpretation and so is optimal against a
certain alternative that is of the mean reverting type.
An advantage of the variance ratio over the Box-Pierce statistic is
that it gives some sense of the direction of predictability (momentum
or contrarian), which is lost in the BP or other portmanteau tests.
Hillman and Salmon (2007) have argued that the variance ratio
(actually the related variogram) is better suited to irregularly spaced
data and some kinds of nonstationarity than correlogram tests.
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Our Contribution

We propose a number of different multivariate variance ratio statistics
and univariate quantities derived thereof

We give the asymptotic distribution under (stationary) martingale
difference assumptions with finite fourth moments. We do not impose
the "no leverage" assumption of Lo and MacKinlay (1987). Standard
errors are thus a little more complicated but not much.

We establish the limiting behaviour of the statistics under the
"fads" type of alternative model

We extend the framework to allow for deterministic nonparametric
trend and seasonals and show the limiting behaviour is the same as in
the stationary mds case.

We apply the method to five CRSP size sorted portfolios over the
period 1962-2014. We show that the variance ratios have come closer
to the EMH prediction over time

4 / 48



Definitions

Suppose that we have a vector stationary ergodic discrete time series
{Xt , t = 0,±1, . . .} ⊂ Rd . Let X̃t = Xt − µ, where µ = EXt , and define
the following population quantities for j = 0,±1, . . . .:

Σ = var(Xt ) = E (X̃t X̃
ᵀ
t )

D = diag
{
E (X̃ 21t ), . . . ,E

(
X̃ 2dt
)}

Ψ(j) = E (X̃t X̃
ᵀ
t−j )

Γ(j) = Σ−1/2Ψ(j)Σ−1/2

ΓL(j) = Ψ(j)Σ−1 ; ΓR (j) = Σ−1Ψ(j)

Γd(j) = D−1/2Ψ(j)D−1/2
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We define the multivariate ratio (population) statistic as

VR(K ) = var(Xt )−1/2var(Xt + Xt+1 + . . .+ Xt+K−1)var(Xt )−1/2/K .

Under the null hypothesis, we should have VR(K ) = Id .
Under the generic stationary alternative hypothesis we have

VR(K ) = I +
K−1
∑
j=1

(
1− j

K

)
(Γ(j) + Γ(j)

ᵀ
),

which is a symmetric matrix. The off-diagonal elements should be zero
under the null hypothesis of no predictability.
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An alternative definition is

VRa(K ) = var(Xt + Xt+1 + . . .+ Xt+K−1)var(Xt )−1/K ,

Under the null hypothesis, we should have VRa(K ) = Id .
Under the generic stationary alternative hypothesis we have

VRa(K ) = I +
K−1
∑
j=1

(
1− j

K

)(
ΓL(j) + ΓR (j)

ᵀ
)
.

This has a regression interpretation, see Chitturi (1974) and Wang (2003,
p62).
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We may instead look at the diagonally normalized variance ratio

VRd(K ) = D−1/2var(Xt + Xt+1 + . . .+ Xt+K−1)D−1/2/K

Under the null hypothesis, we should have VRa(K ) = Id .
Under the generic stationary alternative hypothesis we have

VRd(K ) = Γd(0) +
K−1
∑
j=1

(
1− j

K

)
(Γd(j) + Γd(j)

ᵀ
),

where Γd(0) = D−1/2Ψ(0)D−1/2 is the d × d contemporaneous
correlation matrix.
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We may also consider a two parameter family of variance ratio statistics,
as in Poterba and Summers (1988) - e.g., to calculate weekly variance
ratios with daily data
First definition

VR(K , L) =
L
K

var(Xt + Xt+1 + . . .+ Xt+L−1)−1/2

×var(Xt + Xt+1 + . . .+ Xt+K−1)
×var(Xt + Xt+1 + . . .+ Xt+L−1)−1/2

for K , L. Under the null hypothesis, we should have VR(K , L) = Id . An
alternative definition is

VR∗(K , L) = VR(L)−1/2 × VR(K )× VR(L)−1/2,

which satisfies VR∗(K , L) = Id under the null hypothesis.
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Univariate parameters of interest

The determinant and trace are commonly used univariate functions of
covariance matrices that feature in a lot of likelihood ratio testing
literature, see for example Szroeter (1978). These quantities are both
invariant to nonsingular linear transformations of the data, i.e.,
Xt 7→ a+ AXt , where A is a nonsingular d × d matrix. Furthermore, for
both these functions f , f (VRa(K )) = f (VR(K )).
Define the spectrum

σ(VR(K )) = {λ ∈ R : VR(K )x = λx for some x ∈ Rd\{0}}

of the variance ratio statistic and let λmax(K ),λmin(K ) denote the largest
(smallest) elements of σ(VR(K )) (likewise VRd(K )).
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Under the null hypothesis, λmax(K ) = λmin(K ) = 1, but under the
alternative hypothesis they can take any non-negative values. These
quantities give univariate measures of multivariate directional predictability
of the series. Consider a portfolio of assets with fixed weights w ∈ Rd , we
have (abusing the notation somewhat)

VR(K ;w
ᵀ
Xt ) = VR(K ;w

ᵀ
Σ1/2Σ−1/2Xt )

= VR(K ; w̃
ᵀ
Yt )

=
w̃
ᵀ
VR(K ;Yt )w̃
w̃ ᵀw̃

=
w̃
ᵀ
VR(K ;Xt )w̃
w̃ ᵀw̃

≤ λmax(VR(K ;Xt )),

where VR(K ;w
ᵀ
Xt ) denotes the univariate variance ratio of the portfolio

w
ᵀ
Xt , while w̃ = Σ1/2w and Yt = Σ−1/2Xt .
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Another parameter of interest is the average of the off diagonal elements
of VRd(K ), which is

CS(K ) =
2

d(d − 1)
d−1
∑
i=1

d

∑
j=i+1

VRdij (K )

=
1

d(d − 1){i
ᵀ
VRd(K )i − tr(VRd(K ))},

see Bailey, Kapetanios, and Pesaran (2012) who consider the case K = 0
and large d .
This measures in some average sense the cross dependence at different
lags. It is also related to the expected profit of the Lo and MacKinlay
(1990) portfolio momentum strategies (they chose weights
wit (k) = −(1/d)(Xi ,t−k − X t−k ), where X t−k is the equally weighted
"market portfolio", and showed that the expected profit of this strategy
π(k) = tr(Γ(k))/d − i ᵀΓ(k)i/d2, in the case where each asset has the
same mean and variance).

12 / 48



One sided Statistics

In the univariate case, the variance ratio process and the autocorrelation
function contain the same information and one can recover the
autocorrelation function from the variance ratio function. This is not so in
the multivariate case because VR(K ) and VRd(K ) are both symmetric
matrices whereas the autocorrelation function Γd(j) is not necessarily
symmetric.
We propose the following quantities based on:

VR+(K ) = I + 2
K−1
∑
j=1

(
1− j

K

)
Γ(j) ;

and the negative counterparts VR−(K ) = VR
ᵀ
(K ) and

VRd−(K ) = VRd
ᵀ
(K ), which have the property that:

VR(K ) = (VR+(K ) + VR
ᵀ
+(K ))/2.
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Estimation

We estimate the population quantities by sample averages: for
j = 0, 1, 2, . . .

X =
1
T

T

∑
t=1
Xt ; Ψ̂(j) =

1
T

T

∑
t=j+1

(
Xt − X

) (
Xt−j − X

)ᵀ
Σ̂ = Ψ̂(0) ; D̂ = diag[Ψ̂(0)] ; Γ̂(j) = Σ̂−1/2Ψ̂(j)Σ̂−1/2;

Γ̂d(j) = D̂−1/2Ψ̂(j)D̂−1/2 ; Γ̂L(j) = Ψ̂(j)Σ̂−1 ; Γ̂R (j) = Σ̂−1Ψ̂(j)

V̂R(K ) = I +
K−1
∑
j=1

(
1− j

K

)
(Γ̂(j) + Γ̂(j)

ᵀ
)

V̂R+(K ) = I + 2
K−1
∑
j=1

(
1− j

K

)
Γ̂(j)
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Lo and MacKinlay (1988)

Assumption H.
H1. For all t, EX̃t = 0 and E [X̃t X̃t−j ] = 0
H2. X̃t is α−mixing with coeffi cients α(m) of size r/(r − 1), where r > 1,
such that for all t and for any j ≥ 0, there exists some δ > 0 for which
E [|X̃t X̃t−j |2(r+δ)] < ∆ < ∞
H3. limT→∞

1
T ∑T

t=1 E [X̃
2
t ] = σ2 < ∞

H4. For all t, E [X̃ 2t X̃t−j X̃t−k ] = 0 for any j , k 6= 0 with j 6= k
Whang and Kim (2003) dispense with H4
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Our Framework

Assumption A.
A1. The process X̃t is a stationary ergodic Martingale Difference sequence
A2. The process X̃t has finite fourth moments, i.e., for all i , j , k , l ,
E [|XtiXtjXtkXtl |] < ∞
A3. Assume that

∞

∑
k=0

∥∥∥∥∥ limT→∞

1
T

T

∑
t=1
E
[(
X̃t−k X̃

ᵀ
t ⊗ X̃t−k X̃

ᵀ
t

)]∥∥∥∥∥ < ∞.

A4. For j , k = 0, 1, 2, . . . ,K

∞

∑
τ=0

∥∥∥∥∥ limT→∞

1
T

T

∑
t=1
E
[
vt ,τ,j ,kv

ᵀ
t ,τ,j ,k

]∥∥∥∥∥ < ∞

vt ,τ,j ,k = vec
(
X̃t+τ−j X̃

ᵀ
t+τ−k ⊗ X̃t+τX̃

ᵀ
t+τ

)
.

16 / 48



Asymptotic Variance Matrices

Ξjk = lim
T→∞

1
T

T

∑
t=1
E
[(
X̃t−j X̃

ᵀ
t−k ⊗ X̃t X̃

ᵀ
t

)]
; cj ,K = 2

(
1− j

K

)

Q(K ) =
K−1
∑
j=1

K−1
∑
k=1

cj ,K ck ,K
(

Σ−1/2 ⊗ Σ−1/2
)

Ξjk
(

Σ−1/2 ⊗ Σ−1/2
)

Qd(K ) =
K−1
∑
j=1

K−1
∑
k=1

cj ,K ck ,K
(
D−1/2 ⊗D−1/2

)
Ξjk
(
D−1/2 ⊗D−1/2

)
Qa(K ) =

K−1
∑
j=1

K−1
∑
k=1

cj ,K ck ,K
(
Σ−1 ⊗ I

)
Ξjk
(
Σ−1 ⊗ I

)
.

Note that under H4, Ξjk = 0 if j 6= k and only the c2j ,K terms remain.
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We show below how our theory is robust to certain types of
nonstationarity. We present the results for the one sided statistics.
Theorem 1. Suppose that Assumption A1-A3 holds or Assumption
H1-H3 holds. Then,

√
Tvec

(
V̂R+(K )− Id

)
=⇒ N (0,Q(K ))

√
Tvec

(
V̂Rd+(K )− Γ̂d(0)

)
=⇒ N (0,Qd(K ))

√
Tvec

(
V̂Ra+(K )− Id

)
=⇒ N (0,Qa(K )) .
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It follows from this that, for example,
√
Tvech(V̂R(K )− Id ) =⇒ N(0, S(K )), S(K ) = D+n NnQ(K )N

ᵀ
nD

+ᵀ
n ,

where Nn and D+n are the matrices of zeros and ones defined on pages 48
and 56 in Magnus (1988). Likewise for the other variance ratio statistics.
The asymptotic distribution for smooth functions of the variance ratio
matrix can easily be obtained via the delta method.
Note that under the Lo and MacKinlay (1988) condition H4 we have
Ξjk = 0 unless j = k, so that the asymptotic variance simplifies, a little

Q(K ) =
K−1
∑
j=1

c2j ,K
(

Σ−1/2 ⊗ Σ−1/2
)

Ξjj
(

Σ−1/2 ⊗ Σ−1/2
)

In the iid case, we further have Ξjj = Σ⊗ Σ and

Q(K ) =
K−1
∑
j=1

c2j ,K Id 2 .
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The two parameter variance ratio
V̂R(K , L) = V̂R(L)−1/2 × V̂R(K )× V̂R(L)−1/2, satisfies

√
Tvec

(
V̂R+(K , L)− Id

)
=⇒ N (0,Q(K , L)) ,

where Q(K , L) is as Q(K ) except with weights

c̃j ,K = cj ,K − cj ,L =
K − L
KL

j1(j ≤ L− 1) +
(
1− j

K

)
1(L ≤ j ≤ K − 1).

We can compare the variance ratio estimator effi cency in the case that
K = LJ for J, L positive integers. We show that the relative effi ciency
(when returns are iid) for the general J, L case is

∑K−1
j=1 c̃

2
j ,K

∑K−1
j=1 c

2
j ,K

=
(2J − 2)L2 + 1
L2 (2J − 1)

= 1− L2 − 1
L2 (2J − 1)

< 1

for any L, J ≥ 2, i.e., the two parameter statistic using the highest
frequency data is more effi cient in this case.
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Inference

From the expressions in Theorem 1 we can obtain pointwise confidence
intervals for scalar functions of the matrices V̂R(K ) or V̂Rd(K )− Γ̂d(0)
or V̂Ra(K ). Specifically, let

Ξ̂jk =
1
T

T

∑
t=max{j ,k}+1

(
Xt−j − X

) (
Xt−k − X

)ᵀ
⊗
(
Xt − X

) (
Xt − X

)ᵀ

Q̂(K ) =
K−1
∑
j=1

K−1
∑
k=1

cj ,K ck ,K
(

Σ̂−1/2 ⊗ Σ̂−1/2
)

Ξ̂jk
(

Σ̂−1/2 ⊗ Σ̂−1/2
)
.

Then (under the further summability condition A4), Q̂(K )→ Q(K ) in
probability and

Q̂(K )−1
√
Tvec

(
V̂R+(K )− Id

)
=⇒ N (0, Id 2)
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Note that under the Lo and MacKinlay (1988) condition H4 we have
Ξjk = 0 unless j = k, so that the asymptotic variance simplifies, a little.
The commonly used standard error

Q̂LM (K ) =
K−1
∑
j=1

c2j ,K
(

Σ̂−1/2 ⊗ Σ̂−1/2
)

Ξ̂jj
(

Σ̂−1/2 ⊗ Σ̂−1/2
)

reflects this structure. In the iid case, we further have Ξjj = Σ⊗ Σ and

Q(K ) =
K−1
∑
j=1

c2j ,K Id 2 .

In that case the standard error is nuisance parameter free.
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The eigenvalues are not smooth functions of the variance ratio matrix in
general - at the null hyptohesis they are all equal to one - and so other
methods need to be applied.
Specifically, Eaton and Tyler (1991) show that if the random symmetric
matrix

√
T (V̂R(K )− Id ) converges in distribution to a matrix random

variable, denoted W , then with id = (1, 1, . . . , 1)
ᵀ

√
T
(

σ(V̂R(K ))− id
)
=⇒ σ(W ).
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Alternative inference methods such as self normalization, Lobato (2001),
or bootstrap and subsampling, Whang and Kim (2003), may give better
results.
In the Appendix (section 7.1) we discuss a bias correction method based on
asymptotic expansions, which may give better performance for long lags.
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Multivariate Fads Model

We consider an alternative to the effi cient market hypothesis, which allows
for temporary misspricing through "fads" but assures that the rational
price dominates in the long run. Consider the multivariate fads model for
log prices:

p∗t = µ+ p∗t−1 + εt

pt = p∗t + ηt ,

where εt is iid with mean zero and variance matrix Ωε, while ηt is a
stationary weakly dependent process with unconditional variance matrix
Ωη, and the two processes are mutually independent. It follows that the
observed return satisfies

Xt = pt − pt−1 = εt + ηt − ηt−1.

This is a multivariate generalization of the Muth (1960) model. It allows
actual prices p to deviate from fundamental prices p∗ but only in the short
run through the fad process ηt . This process is a plausible alternative to
the effi cient markets hypothesis.
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Consider the K period returns

Xt (K ) = pt+K −pt−1 =
t+K

∑
s=t

εs +
t+K

∑
s=t
(ηs − ηs−1) =

t+K

∑
s=t

εs + ηt+K − ηt−1.

These have variance

ΣK = var(Xt (K )) = var

(
t+K

∑
s=t

εs

)
+ var

(
ηt+K − ηt−1

)
= KE εs ε

ᵀ
s + E

(
(ηt+K − ηt−1)(ηt+K − ηt−1)

ᵀ
)
= KΩε +Ωη(K ),

where Ωη(k) = var
(
ηt+k − ηt−1

)
≥ 0, k = 1, 2, . . . .
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Let Γdε(0), Γd(0) be the correlation matrices of εt and Xt respectively.
Theorem 2. Suppose that the multivariate fads model holds. Then,
VR(∞) = limK→∞ VR(K ) = I +∑∞

j=1(Γ(j) + Γ(j)
ᵀ
) exists and

VR(∞) ≤ Id

in the matrix partial order sense with strict inequality whenever Ωη > 0.
Likewise, VRd(∞) = limK→∞ VRd(K ) exists and

VRd(∞) ≤ Γdε(0) ≤ Γd(0).

This says that in particular all eigenvalues of the long run variance ratio
are less than or equal to one. We can test this hypothesis empirically. The
corresponding result for the diagonalized variance ratio is not so useful as
it involves the unknown contemporaneous correlation matrix, although we
can say in the special case where all the correlation entries are positive, the
eigenvalues of Γd (0) lie between zero and one.
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We consider what happens to the long horizon variance ratio statistic
under the fads model. We will consider the case where K → ∞ as T → ∞
such that K/T → 0 (in contrast with the framework of Richardson and
Stock (1989)). The consistency follows from the theory for the long run
variance statistic, Parzen (1957), Andrews (1991), and Liu and Wu
(2010). We adopt the framework of Liu and Wu (2010) and suppose that

Xt = R (. . . , et−1, et ) ,

where et are i.i.d random vectors of length p ≥ d . This includes a wide
range of linear and nonlinear processes for ηt , εt . Then define

δt = E
[∥∥(R (. . . , e0, . . . , et−1, et )− R

(
. . . , e ′0, . . . , et−1, et

))∥∥] ,
where e ′t is an i.i.d. copy of et and ||.|| denotes the Euclidean norm.
Assumption B. The vector process Xt is stationary with finite fourth
moments and weakly dependent in the sense that ∑∞

t=1 δt < ∞.
Theorem 3. Suppose that the multivariate fads model holds along with
Assumption B. Then,

V̂R(K )
P−→ VR(∞).
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Bubble Process

Phillips and Yu (2010) and Phillips, Shi, and Yu (2012) considered the
following class of "bubble processes", i.e., mildly explosive price regimes
and martingale regimes:

pt = pt−11 (t < τe ) + δT 1 (τe ≤ t ≤ τf ) pt−1

+

(
t

∑
s=τf +1

εs + p∗τf

)
1 (t > τf ) + εt1 (t ≤ τf ) ,

where p∗τf represents the restarting price after the bubble collapses at time
τf , and δT > 1. The process is consistent with effi cient markets hypothesis
during [1, τe ] and [τf ,T ] but has an explosive irrational moment in the
middle. They propose methods to test for the presence of a bubble using
rolling window methods. One can imagine this process also holding for a
vector of asset prices caught up in the same bubble, so that εt is a vector
of shocks, the indicator function is applied coordinatewise, and the
coeffi cient δT is replaced by a diagonal matrix. Our simulations show that
in this case the variance ratio statistics diverge to infinity (as horizon
length K increases) for a long lasting bubble (that is, (τf − τe )/T > 0).

29 / 48



Time Varying Risk Premium and Calendar Time/Seasonal Effects

It is now widely accepted that the risk premium is time varying, Mehra and
Prescott (2008). There are many papers that model the risk premium and
its evolution over time. In general, one may have a parametric model for
the vector of conditional means

µt (θ0) = E (Xt |Ft−1)

see for example, Engle, Lilien and Robins (1987).
We note that the details vary considerably according to the model adopted
but generally the estimation of the risk premium parameters would affect
the asymptotic distribution of the variance ratio statistics.
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We focus on an alternative nonparametric framework. Specifically, suppose
that E (Xt |Ft−1) = µt , where

µt =
τ

∑
s=1

gs (t/T )1(t ∈ Js ),

where gs (.) are continuously differentiable but unknown vector functions
representing smooth trends that vary across s = 1, . . . , τ.
We take Js such that

{1, . . . ,T} = ∪τ
s=1Js with Js ∩ Jr = ∅ for r 6= s

and #Js = Ts such that Ts/T → cs for all s = 1, . . . , τ with τ fixed and
cs ∈ (0,∞).
The additive seasonal effect model in Vogt and Linton (2014, Biometrika)
is a special case.
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The trends capture the idea that the risk premium is slowly varying, like
Dimson, Marsh, and Staunton (2008).
The second aspect may represent a seasonal effect that would not be
represented inside a common trend function. τ could be the known period
of a common seasonal component and 1(t ∈ Js ) = 1(t = kτ + s for some
k) are then seasonal dummies, Vogt and Linton (2014). (Trading time
hypothesis with day of the week effects (i.e., not EMH))
We allow additionally some irregularity in the sets Js , to account for
example for public holidays like Easter and Christmas that vary over day of
the week, as encountered in French and Roll (1986). These quasi seasonal
effects could be consistent with a calendar time interpretation of the
returns process and therefore also represent the rational part of the stock
price variation.
This model could also capture structural change instead by taking the
intervals to be contiguous blocks of time.
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We suppose that for each Js we can order the observation times
ts1 < ts2 < · · · < tsTs such that max1≤j≤Ts−1 |tsj − tsj+1| ≤ C for some
C < ∞, which means that the information accumulates in the usual way.
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In this case we propose the following backward looking rolling window
estimators of the mean µt . We let

Ns (t,M,K ) = {M closest r to t in Js prior to t −K}

ĝs (t/T ) =
1
M ∑

r∈Ns (t ,M ,K )
Xr ; µ̂t =

τ

∑
s=1

ĝs (t/T )1(t ∈ Js )

In other words we smooth over time using just the observations in Js that
have the same seasonal affi liation. Then let

Ψ̂(j) =
1
T

T

∑
t=j+1

(
Xt − µ̂q(t ,t−j)

) (
Xt−j − µ̂t−j

)ᵀ
,

and all the variance ratio statistics based on this.
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We next discuss the asymptotic properties of this modified variance ratio
statistic. We further suppose that there is some uniformly bounded
deterministic family of covariance matrices Ωt , such that˜̃X t = Ωt

−1/2 (Xt − µt )

is stationary and ergodic (and a martingale difference sequence). This
allows for periodic and trending components in the variance as well.
Define Q̂(K ) is above but with

Ξ̂jk =
1
T

T

∑
t=max{j ,k}+1

(
Xt−j − µ̂t−max{j ,k}

) (
Xt−k − µ̂max{j ,k}

)ᵀ
⊗
(
Xt − µ̂t−max{j ,k}

) (
Xt − µ̂t−max{j ,k}

)ᵀ
.

Theorem 4. Under some regularity conditions including that M → ∞
and M/T → 0, we have

Q̂(K )−1/2
√
Tvec

(
V̂R+(K )− Id

)
=⇒ N(0, Id 2).
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We may further assume that

gs (u) = as + bsg(u)

for some common trend function g and seasonal coeffi cients with ∑ as = 0
and ∑ bs = 1 in which case we can obtain the common function g(.) by
averaging over s = 1, . . . , τ
Then do time series regression to get as , bs
Need the multiplicative scaling to be consistent with the calendar time
hypothesis in which case as = a and bM = 3 ∗ bTue etc.
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We note that this methodology is different from rolling window variance
ratio or autocorrelation tests (for example, Lo (2005)). We are only using
the rolling window to take care of slowly varying trends or periodic
components; we estimate the short term predictability using the whole
sample and compare it to a confidence interval obtained under the null
hypothesis that precludes predictability.
The full rolling window analysis could be analyzed under Theorem 1 but
with a smaller sample size (at least for the "pointwise case").
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Application

We apply our methodology to weekly size-sorted portfolio returns from the
Center for Research in Security Prices (CRSP) from 06/07/1962 to
27/12/2013.
We first test for the absence of serial correlation in each of three weekly
size-sorted equal-weighted portfolio returns (smallest quantile, central
quantile, and largest quantile).
We compare with the results reported in Campbell, Lo and Mackinlay
(1997, P71, Table 2.6). We divide the whole sample to two subsamples:
06/07/1962-23/12/1994 (1695 weeks) and 30/12/1994-27/12/2013 (992
weeks). Based on the multivariate variance ratio statistics VRd+(K ), we
test a series of hypotheses: [VRd+(K )]ii = 1 for i = 1, 2, 3. Panel A of
Table 1 reports the results for the portfolio of small-size firms, panel B
reports the results for the portfolio of medium-size firms, and panel C
reports the results for the portfolio of large-size firms. We examine
K = 2, 4, 8, 16 as in Campbell, Lo and Mackinlay (1997).
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Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16
A. Portfolio of firms with market values in smallest CRSP quantile

62:07:06– 94:12:23 1695
1.43
(10.72)∗

1.95
(11.05)∗

2.54
(9.96)∗

2.92
(8.19)∗

94:12:30– 13:12:27 992
1.21
(3.30)∗

1.47
(3.58)∗

1.7
(3.35)∗

1.82
(2.50)∗

B. Portfolio of firms with market values in central CRSP quantile

62:07:06– 94:12:23 1695
1.23
(5.93)∗

1.46
(6.18)∗

1.68
(5.38)∗

1.74
(3.81)∗

94:12:30– 13:12:27 992
0.99
(−0.02)

1.05
(0.38)

1.02
(0.10)

0.89
(−0.38)

C. Portfolio of firms with market values in largest CRSP quantile

62:07:06– 94:12:23 1695
1.04
(1.21)

1.11
(1.59)

1.15
(1.37)

1.12
(0.64)

94:12:30– 13:12:27 992
0.93
(−0.99)

0.94
(−0.46)

0.89
(−0.53)

0.81
(−0.62)
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Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16
A. Portfolio of firms with market values in smallest CRSP quantile

62:07:06– 94:12:23 1695
1.43
(10.86)∗

1.95
(11.25)∗

2.57
(10.22)∗

2.98
(8.56)∗

94:12:30– 13:12:27 992
1.21
(3.34)∗

1.47
(3.61)∗

1.71
(3.39)∗

1.83
(2.55)∗

B. Portfolio of firms with market values in central CRSP quantile

62:07:06– 94:12:23 1695
1.23
(5.94)∗

1.46
(6.20)∗

1.68
(5.46)∗

1.76
(3.92)∗

94:12:30– 13:12:27 992
1.00
(−0.01)

1.05
(0.40)

1.02
(0.12)

0.90
(−0.36)

C. Portfolio of firms with market values in largest CRSP quantile

62:07:06– 94:12:23 1695
1.04
(1.19)

1.10
(1.57)

1.15
(1.36)

1.11
(0.61)

94:12:30– 13:12:27 992
0.94
(−0.99)

0.94
(−0.46)

0.89
(−0.53)

0.81
(−0.63)
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We then test zero cross-autocorrelation (no lead-lag relationship) between
returns of different size portfolios. Based on the multivariate ratio statistic
VRd+(K ), we test the hypothesis that [VRd+(K )− Γd(0)]ij = 0, for
i , j = 1, 2, 3, i 6= j .
These results can be compared with Campbell, Lo and Mackinlay (1997,
P71, Table 2.9) who look at the asymmetry of the cross-autocorrelation
matrices. We find the same direction of asymmetry consistent with their
results. The statistical significance does decline in the second period, but
is still quite strong.
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We finally test for the absence of serial correlation for the vector of
returns, based on eigenvalues of multivariate variance ratio statistic
VR(K ). The null hypothesis is H0 : λi (VR(K )) = 1. We report the
maximum eigenvalue of V̂R(K ) and the simulated p-value.

Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16

62:07:06– 94:12:23 1695 1.52 2.21 3.04 3.64
94:12:30– 13:12:27 992 1.32 1.75 2.21 2.62

As before, we find the magnitude of the effect and its statistical
significance has reduced in the later period.
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Leverage Effects

We also investigated the relevance of the "no leverage" assumption H4 of
Lo and MacKinlay (1988). Specifically, we compare the matrices Q̂(K )
with Q̂LM (K ) in the case that K = 16, using weekly returns in small-size
and large-size CRSP portfolios

Sample period Q̂(K = 16) Q̂LM (K = 16)

62:07:06– 94:12:23

98.75 0.84 9.58 -0.39

0.84 75.86 -0.39 19.55

9.58 -0.39 24.22 -2.30

-0.39 19.55 -2.30 39.29

34.33 -1.53 3.82 0.36

-1.53 23.60 0.36 1.28

3.82 0.36 26.73 -0.77

0.36 1.28 -0.77 39.97

94:12:30– 13:12:27

91.94 -1.67 1.57 29.79

-1.67 98.25 29.79 13.76

1.57 29.79 34.17 8.24

29.79 13.76 8.24 56.68

40.37 4.80 3.96 10.91

4.80 35.21 10.91 8.82

3.96 10.91 42.23 7.92

10.91 8.82 7.92 43.07
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Long Horizon/Individual Stocks

We look next at the long horizon, in particular out to two years. We shall
focus on individual stocks. Specifically, we chose two large stocks and two
small stocks from the CRSP universe and evaluate the long run behaviour
of the variance ratio matrices. In this case, we work with weekly data from
2000-2014. We work with the bias-corrected estimator (defined in
Appendix 8.1)

V̂R
bc
(K ) = V̂R(K ) +

K − 1
T

Id .

We show below the two eigenvalues of both V̂R(K ) (solid lines) and

V̂R
bc
(K ) (dotted lines) against lag K .
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Figure 1. The eigenvalues of the variance ratio matrix for large stocks as a
function of lag order.
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Figure 2. The eigenvalues of the variance ratio matrix for small stocks as a
function of lag order.

The result for large stock returns (Figure 1) seems to support the fads
interpretation rather than the explosive bubble process, while Figure 2
illustrates evidence of bubbles in small stock returns.
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Conclusions

Multivariate Ratio statistics convey more information than univariate
ones

MDS assumptions seem more appropriate than no leverage
assumption. Standard errors not complicated.

Methodology is robust to fitting a slowly varying time trend and
seasonal effects

Empirical results show that EMH violations have reduced for small
stocks
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