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e What is the self-normalization? Why?
e Classical limit theorems

e Self-normalized large deviations

e Self-normalized moderate deviations

e Self-normalized Cramér type moderate deviations
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1. Introduction

Let X, X1, Xy, .-+, X,, be independent identically distributed (i.i.d.)

random variables and let

S, = zn:X V= znjxf.
=1 1=1

Assume EX =0 and 0?2 = EX? < .

Standardized sum: S,,/(o+/n)

Self-normalized sum: S, /V},



Why are we interested in the self-normalized sum?

e |t is of interest from the probability theory alone

e It has a close relation with Studentized statistics.

Let H, = H,(0, \) be a sequence of statistics under considera-
tion, where 6 contains parameters of interest and A is a vector
of some unknown nuisance parameters. It is a common practice
that one needs to estimate A first from the data, say, the estima-
tor is )\, and then substitute \ in H,, which naturally brings a
studentized statistic H,, = H,,(0, 5\) Typical examples include:

— Student’s t-statistic
— Hotelling's T? statistics
— Studentized U-statistics

— The largest eigenvalue of sample correlation matrices



2. Classical limit theorems

Let X, X1, Xy, .-+, X,, be independent identically distributed (i.i.d.)

random variables and let
n
i=1
Law of large numbers:

Sn
EX =y < — —pu a.s.
n

Law of the iterated logarithm:

EX =0, 0<o*=FEX*<o0

Sn
< lims =1 a.s.
el o n (2 loglog n)l/2




The central limit theorem:

e If EX =0and 0 = EX? < o0, then

Sn d.
" — N(0,1)

o If EX = 0 and EX?I{|X| < z} is slowly varying, then there

exist a,, and b,, such that

1
— S, — b, -

Qn,

N(0,1)

Uniform Berry-Esseen bounds:

T9T5E| X

sup | P(25= < a) = 0(a)] < T

x 0'\/>



Non-uniform Berry-Esseen bounds:

. CEXP
— (1+ [z[*)y/no?




Cramér - Chernoff’s large deviation:

If EeloX < 0o for some ty > 0, thenV & > EX,

P (—n > x) — infe "R,

n t>0

Cramér's moderate deviation:

Assume EX =0 and 02 = EX? < 0.

o |f Eetop(l’l/2 < oo for tg > 0, then
Sn
P = 2)
1 — &(x)
uniformly in 0 < z < o(n!/%).

— 1

o If EelX1l < oo for ty > 0, then for > 0 and & = o(n'/?)

P52

T {ﬁA(%)} (1 + o<1%’3)),

where A(t) is the Cramér’s series.




Conclusion: Classical limit theorem

e The normalizing constants are deterministic

e Moment conditions play a crucial role
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3. Self-normalized limit theorems: a brief review

Self-normalized sum:

S./Vy, where V= ZXZQ

1=1

Do the classical limit theorems remain valid for S, /V;,?
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3.1 The central limit theorem:

e If EX =0 and £EX? < oo, then

S,/ Vi~ N(0,1)

e Gine-Gotze-Mason (1995):
EX =0and EX?I{|X| < 2} is slowly varying

— S,/V, LN N(0,1)
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e Bentkus-Gotze (1996):
If EX =0, 0° = EX? and F|X|? < oo, then

sup |P(S,/V, < z) — ®(z)| < Cn V2E|XP /o

3.2 Self-normalized limit distribution for X € DASL

e Logan-Mallows-Rice-Shepp (1973):

If X € DASL(«), then the limiting density function p(z) of
S,/ Vi, exists and satisfies

Conjecture: T, is the solution of

y

1Dy (—T) + 2D (7) =0 if a # 1

67'2/2

—/ er/zd:c:O if a=1
0

\ T
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where D, (x) is the parabolic cylinder function.
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3.3 Self-normalized law of the iterated logarithm (Griffin and Kuelbs
(1989))

(a) If EX =0 and EX?I{|X| < z} is slowly varying, then
Sn

li =1 a.s.
Tp V,(2loglog n)l/? -

(b) If X is symmetric and

l
P(XZx):%, 0<a<?2,

where [(x) is a slowly varying function, then there exists 0 <

(', < oo such that

i S C
im su = a.s.
— V. (log log n)1/2 )
However, for any a,, — oo
. Sn
limsup— =0 a.s.or oo a.s.
n—00 an
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4. Self-normalized large deviations

Question: |s there a self-normalized large deviation without assuming

moment condition?

Answer: YES!

Observe that for z > 0

P(S,/V?>x) = P(S, > zV?)

n

= PO) (X; —aX}) > 2)

i=1
Assume that EX = 0 or EX? = co. We have

EX —zEX?* <0

and

EelX—tX) 55 for t > ().
Therefore, by the Chernoff large deviation

P(S,/V? > z)Y" — inf FetX-vX%)

t>0
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Question: What if the normalizing constant is V,,\/n?

It is well-know that
ab < (a2 + b2)/2
Indeed, we have

ab = (1/2) inf(ca® + b*/c)

c>0

for a,b > 0. Thus

Vov/n = (1/2)inf(V/c + cn)

c>0
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and

P 2 p
= P(S > zVpv/n)
= P(S, 1/2)mf(V2/c—|—cn)

sup ¢S, — z(1/2)(V* + ¢*n) > O>

c=>0

c=0

|
/"_“\,/’_‘\

SupZ{cX —(1/2)(X? 4+ %)} > O) :

Theorem 1.1 [Shao (1997)]
IFEX =0 or EX? =00, thenV x > 0

1/n
P (Sn/Vn > In1/2> /

— supinf Ee’ HeX—a(IXP+e)/2)
>0 120
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5. Self-normalized moderate deviations
Theorem 1.2 [Shao (1997)]
(a) If EX =0 and EX?I{|X| < x} is slowly varying, then
In P(S,/V, > x,) ~ —2/2
for x, — oo and x, = o(y/n), i.e., Ve >0

o~ (1+e)ai /2 < P(S,)Vy > x,) < p—(1-€)z7/2

(b) Let X be a symmetric random variable satisfying

[
P(sz):@, 0<a<?2.
CCOZ

where () is a slowly varying function. Then Y x, — 0o, z, =
o(v/n) .
In P (Vn > xn> ~ —Baxi

n
where (3, is the solution of

/oo 9 _ €2x—1:2/6 . e—2x—x2/ﬁ
0

xoz—i—l

dx = 0. (1.1)
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6. Self-normalized Cramér type moderate deviations

Theorem 1.3 (Shao (1999)) /f EX =0 and E|X|* < oo, then

P(Sn/Vy 2 @)
1 — &(x)

uniformly in 0 < x < 0(n1/6).

Theorem 1.4 [Jing-Shao-Wang (2003)].

If EX =0 and E|X|? < oo, then

P(S,/V, > x) B
1—&(x)
for x > 0, and

[P(Sn/ Vi 2 ) = (1 = ®())]
< Al +x)3e_x2/2n_1/2E\X\3/03

for 0 < x < n'/Sq/(E|X )3,
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7. Self-normalized Cramér moderate deviations for independent ran-

dom variables

Let X1, X5, -+, X, be independent random variables with £ X, = 0
and FX? < oo. Put

5 =3 X, V2= X% B! = S
i=1 1=1

and
(1+2)? ¢ 2
Buw = g 2 BT xpon )
-
(14 2)? ¢ 3
7R > EIXiPIix<p,00)
noi=l
forx > 0.

Theorem 1.5 [Jing-Shao-Wang (2003)].
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There is an absolute constant A (> 1) such that

P(Sn > Z’Vn) _ O0MAnx
1 —d(x)

for all x > 0 satisfying

r* max EX? < B2
1<i<n

and
Aps < (14 x)Q/A,

where |O(1)] < A
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Theorem 1.6 [Jing-Shao-Wang (2003)].

[P(Sn/ Vo 2 ) — (1 = O(2))]
3 —332/22?:1E‘Xi‘3

< A(l+axz)% R

for

By,
(Doimy BIXG[?)Y8

0<zx<
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8. Cramér moderate deviations for self-normalized processes
8.1 A general result

Let &1, ..., &, be independent random variables satisfying
E& =0, 1<i<n, Y E&=1 (1.2)
i=1

Assume the nonlinear process of interest can be decomposed as a
standardized partial sum of {{;}",, say, W, plus a remainder, say,

D, 1, while its self-normalized version can be written as

Wn + Dn 1
T, = - 1.3

n n 1/2
W, =3¢, vn—(zgz) |
=1 =1

and D,, 1, D,, 5 are measurable functions of {&;}7_,. Examples satisfy-

where

ing (1.3) include t-statistic, Studentized U-statistics and L-statistics.
In this section, we establish a general Cramér type moderation
theorem for self-normalized process T), in the form of (1.3). For 1 <
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1 <nandzx >0, let

0w = (L+ 2V Bl T avayg1] + (L+ @) BI&P Lagl<ny):
Apz = Z 0ir and I, , = E[exW”_x2V7’L2/2] — H e[exﬁi_m%gm].
i=1 i=1
Let Df,f)l and DS)Q for each 1 <7 < n, be arbitrary measurable func-

tions of {;}7_; ;;, such that {D(i) DS)Q} and &; are independent.

n,1»

Set also for z > 0 that

Ru = I} x { BllalDual + 2|, B4

+ > Blmin(z|g], 1)(|Duy — D] + 2| Dy — Dflf)?,)ezﬁei(xfjx%;/z)]}?

i=1
where > ., = Z?:Lj#i.

Theorem 1.7 (Shao and Zhou (2012)) Let T,, be defined in (1.3).
Then there is an absolute constant A (> 1) such that

P(T, > x)
1 —®(x)

exp{O(1)A,,}(1— AR, ;) < (1.4)
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and

P(T, > z) < (1 — @(z)) exp{O(1)A, .} (1 + AR,,) (1.5)
+P{‘Dn,1’/vn > 1/(43;)} +P{‘Dn,2‘ > 1/(4:62)}

for all x > 1 satisfying

max 0; , < 1 (16)
1<i<n
and

where |O(1)| < A.
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8.2 Studentized U-statistics

Let Xq, Xo, -, X, be a sequence of i.i.d. random variables
and let h : R™ — R be a Borel measurable symmetric function of m
variables, where 2 < m < n/2. Consider Hoeffding's U-statistic with

a kernel h of degree m given by

~1
n
U, = T ¢ .
" (m) | Z‘ W(Xiy, o Xi), (1.8)
1< <. <tm<n
which is an unbiased estimate of § = eh(X1, ..., X,;,). The U-statistic

is a basic statistic and its asymptotic properties have been extensively

studied in literature. Let
g(x) = Eh(z, Xy, ..., X)), z €R and o* = Var(g(X})).
For standardized (non-degenerate) U-statistic

z, =Y, o), 19)

mo

where o > 0 and m is fixed.
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Since o is usually unknown, consider the following Studentized
U-statistic
Vn

T, = Y (U, —0), 1.1
VLU, -0 (1.10)

where s7 is the leave-one-out Jackknife estimator of o2 given by

n

= %Z@—Un)? with (1.11)

n—1\"
G = (m_1> > WX, Xy, X, )

(l17...,lm)e(3m_1’i

and
Cm—l,z' = {(ll, ---alm—l) 1 < ll < e K lm—l <mn, lj 7é 7 for 1 S] < m—l}

As a direct but non-trivial consequence of Theorem 1.7, we can
establish a sharp Cramér type moderate deviation theorem for Studen-

tized U-statistic 1,, as follows.
Theorem 1.8 (Shao and Zhou (2012)) Let 2 < p < 3 and assume

0<0,:=(Elg(X)) —0")" < .

28



Suppose that there are constants co > 1 and 7 > 0 such that

(h(21, .oy Tp) — 0)? (m + Z (z;) — 6) ) (1.12)
Then there exists a constant A > 1 only depending on m such that

P(T,22) _, +O(1){0§5(1 + o) +cp(1 +r)<1 +x)3}, (1.13)

1 — &(x) oPn(p—2)/2 nl/2

for any 0 < x < +min{on®=2/®) /g, n1/6/(co(1 4 7))V}, where
|O(1)] < A. In particular, we have

P(T, > x)
1 —d(x)

uniformly in 0 < x < O(n(p_Q)/@p)).

—1 (1.14)

Clearly, condition (1.12) is satisfied for the t-statistic (h(x1, x2) =
(x1 + x2)/2 with ¢y = 2 and 7 = 0), sample variance (h(x1,x2) =
(71—12)?/2, cg = 10, 7 = 6% /5?), Gini's mean difference (h(z1, T2) =
|z1 — 19|, g = 8, 7 = 6?/0?) and one-sample Wilcoxon's statistic
(h(z1,29) = H{ay + 29 <0}, g = 1, 7 = 1/0%). It would be
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interesting to know if condition (1.12) can be weakened, but it seems

impossible to remove condition (1.12) completely.
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9. Miscellanies

e Horvath-Shao (1996): Large deviation for .S,/ maxj<;<y, | X;|

e Dembo-Shao (1998): Self-normalized moderate and large devia-

tions in R?

e Gine-Mason (2001): Sub-gaussian property for X in the Feller

class

e Bercu-Gassiat-Rio (2002): Concentration inequalities, large and

moderate deviations for self-normalized empirical processes

e De la Pefia-Klass-Lai (2004): Self-normalized processes: exponen-

tial inequalities, moment and limit theorems

e Jing-Shao-Zhou (2004): Self-normalized saddle point approxima-

tions

e Jing-Shao-Wang (2003): The studentized bootstrap
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e He and Shao (1996): Bahadur efficiency of studentized score tests
e He and Shao (1996, 2000): Bahadur representations for M-estimators
e Horvath and Shao (1996): Change point analysis

e Chen and Shao (1997, 2000): Monte Carlo methods in Baysian

computations

e Liu and Shao (2013): Hotelling’s T* statistics
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Conclusion: Self-normalized limit theorems

e Require little or no moment assumption

® Results are more elegant and neater than many classical limit

theorems

e Provide much wider applicability to other fields and to statistics

in particular
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