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1. Introduction

Let X,X1, X2, · · · , Xn be independent identically distributed (i.i.d.)

random variables and let

Sn =

n∑
i=1

Xi, V 2
n =

n∑
i=1

X2
i .

Assume EX = 0 and σ2 = EX2 <∞.

Standardized sum: Sn/(σ
√
n)

Self-normalized sum: Sn/Vn
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Why are we interested in the self-normalized sum?

• It is of interest from the probability theory alone

• It has a close relation with Studentized statistics.

Let Hn = Hn(θ, λ) be a sequence of statistics under considera-

tion, where θ contains parameters of interest and λ is a vector

of some unknown nuisance parameters. It is a common practice

that one needs to estimate λ first from the data, say, the estima-

tor is λ̂, and then substitute λ̂ in Hn, which naturally brings a

studentized statistic Ĥn = Hn(θ, λ̂). Typical examples include:

– Student’s t-statistic

– Hotelling’s T 2 statistics

– Studentized U-statistics

– The largest eigenvalue of sample correlation matrices
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2. Classical limit theorems

Let X,X1, X2, · · · , Xn be independent identically distributed (i.i.d.)

random variables and let

Sn =

n∑
i=1

Xi.

Law of large numbers:

EX = µ ⇐⇒ Sn
n
−→ µ a.s.

Law of the iterated logarithm:

EX = 0, 0 < σ2 = EX2 <∞

⇐⇒ lim sup
n→∞

Sn
σ
√
n (2 log log n)1/2

= 1 a.s.
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The central limit theorem:

• If EX = 0 and σ2 = EX2 <∞, then

Sn
σ
√
n

d.−→ N(0, 1)

• If EX = 0 and EX2I{|X| ≤ x} is slowly varying, then there

exist an and bn such that

1

an
Sn − bn

d.−→ N(0, 1)

Uniform Berry-Esseen bounds:

sup
x
|P (

Sn
σ
√
n
≤ x)− Φ(x)| ≤ .7975E|X|3√

nσ3
.
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Non-uniform Berry-Esseen bounds:

|P (
Sn
σ
√
n
≤ x)− Φ(x)| ≤ C E|X|3

(1 + |x|3)
√
nσ3
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Cramér - Chernoff’s large deviation:

If Eet0X <∞ for some t0 > 0, then ∀ x > EX ,

P

(
Sn
n
≥ x

)1/n

→ inf
t≥0

e−txEetX .

Cramér’s moderate deviation:

Assume EX = 0 and σ2 = EX2 <∞.

• If Eet0|X1|1/2 <∞ for t0 > 0, then

P
(

Sn
σ
√
n
≥ x

)
1− Φ(x)

→ 1

uniformly in 0 ≤ x ≤ o(n1/6).

• If Eet0|X1| <∞ for t0 > 0, then for x ≥ 0 and x = o(n1/2)

P
(

Sn
σ
√
n
≥ x

)
1− Φ(x)

= exp

{
x2λ(

x√
n

)

}(
1 + O(

1 + x√
n

)
)
,

where λ(t) is the Cramér’s series.
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Conclusion: Classical limit theorem

• The normalizing constants are deterministic

• Moment conditions play a crucial role
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3. Self-normalized limit theorems: a brief review

Self-normalized sum:

Sn/Vn, where V 2
n =

n∑
i=1

X2
i .

Do the classical limit theorems remain valid for Sn/Vn?
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3.1 The central limit theorem:

• If EX = 0 and EX2 <∞, then

Sn/Vn
d.−→ N(0, 1)

• Gine-Götze-Mason (1995):

EX = 0 and EX2I{|X| ≤ x} is slowly varying

⇐⇒ Sn/Vn
d.−→ N(0, 1)
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• Bentkus-Götze (1996):

If EX = 0, σ2 = EX2 and E|X|3 <∞, then

sup
x
|P (Sn/Vn ≤ x)− Φ(x)| ≤ C n−1/2E|X|3/σ3

3.2 Self-normalized limit distribution for X ∈ DASL

• Logan-Mallows-Rice-Shepp (1973):

If X ∈ DASL(α), then the limiting density function p(x) of

Sn/Vn exists and satisfies

p(x) ∼ 1

α

(
2

π

)1/2

ταe
−x2τ2α/2

Conjecture: τα is the solution of
c1Dα(−τ ) + c2Dα(τ ) = 0 if α 6= 1

eτ
2/2

τ
−
∫ τ

0

ex
2/2 dx = 0 if α = 1
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where Dα(x) is the parabolic cylinder function.
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3.3 Self-normalized law of the iterated logarithm (Griffin and Kuelbs

(1989))

(a) If EX = 0 and EX2I{|X| ≤ x} is slowly varying, then

lim sup
n→∞

Sn
Vn(2 log log n)1/2

= 1 a.s.

(b) If X is symmetric and

P (X ≥ x) =
l(x)

xα
, 0 < α < 2,

where l(x) is a slowly varying function, then there exists 0 <

Cα <∞ such that

lim sup
n→∞

Sn
Vn(log log n)1/2

= Cα a.s.

However, for any an →∞

lim sup
n→∞

Sn
an

= 0 a.s.or ∞ a.s.
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4. Self-normalized large deviations

Question: Is there a self-normalized large deviation without assuming

moment condition?

Answer: YES!

Observe that for x > 0

P (Sn/V
2
n ≥ x) = P (Sn ≥ xV 2

n )

= P (

n∑
i=1

(Xi − xX2
i ) ≥ x)

Assume that EX = 0 or EX2 =∞. We have

EX − xEX2 < 0

and

Eet(X−xX
2) <∞ for t ≥ 0.

Therefore, by the Chernoff large deviation

P (Sn/V
2
n ≥ x)1/n → inf

t≥0
Eet(X−xX

2)
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Question: What if the normalizing constant is Vn
√
n?

It is well-know that

ab ≤ (a2 + b2)/2

Indeed, we have

ab = (1/2) inf
c>0

(c a2 + b2/c)

for a, b > 0. Thus

Vn
√
n = (1/2) inf

c>0
(V 2

n /c + c n)
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and

P (
Sn

Vn
√
n
≥ x)

= P (Sn ≥ xVn
√
n)

= P (Sn ≥ x(1/2) inf
c>0

(V 2
n /c + c n)

= P

(
sup
c≥0

cSn − x(1/2)(V 2
n + c2n) ≥ 0

)
= P

(
sup
c≥0

n∑
i=1

{cXi − x(1/2)(X2
i + c2)} ≥ 0

)
.

Theorem 1.1 [Shao (1997)]

If EX = 0 or EX2 =∞, then ∀ x > 0

P
(
Sn/Vn ≥ xn1/2

)1/n

→ sup
c≥0

inf
t≥0

Eet(cX−x(|X|2+c2)/2)
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5. Self-normalized moderate deviations

Theorem 1.2 [Shao (1997)]

(a) If EX = 0 and EX2I{|X| ≤ x} is slowly varying, then

lnP (Sn/Vn > xn) ∼ −x2
n/2

for xn →∞ and xn = o(
√
n), i.e., ∀ ε > 0

e−(1+ε)x2n/2 ≤ P (Sn/Vn > xn) ≤ e−(1−ε)x2n/2

(b) Let X be a symmetric random variable satisfying

P (X ≥ x) =
l(x)

xα
, 0 < α < 2.

where l(x) is a slowly varying function. Then ∀ xn → ∞, xn =

o(
√
n)

lnP

(
Sn
Vn
≥ xn

)
∼ −βα x2

n

where βα is the solution of∫ ∞
0

2− e2x−x2/β − e−2x−x2/β

xα+1
dx = 0. (1.1)
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6. Self-normalized Cramér type moderate deviations

Theorem 1.3 (Shao (1999)) If EX = 0 and E|X|3 <∞, then

P (Sn/Vn ≥ x)

1− Φ(x)
→ 1

uniformly in 0 ≤ x ≤ o(n1/6).

Theorem 1.4 [Jing-Shao-Wang (2003)].

If EX = 0 and E|X|3 <∞, then

P (Sn/Vn ≥ x)

1− Φ(x)
= 1 + O(1)

(1 + x)3E|X|3√
nσ3

for x ≥ 0, and

|P (Sn/Vn ≥ x)− (1− Φ(x))|

≤ A(1 + x)3e−x
2/2n−1/2E|X|3/σ3

for 0 ≤ x ≤ n1/6σ/(E|X|3)1/3.
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7. Self-normalized Cramér moderate deviations for independent ran-

dom variables

Let X1, X2, · · · , Xn be independent random variables with EXi = 0

and EX2
i <∞. Put

Sn =

n∑
i=1

Xi, V
2
n =

n∑
i=1

X2
i , B

2
n = ES2

n

and

∆n,x =
(1 + x)2

B2
n

n∑
i=1

EX2
i I{|Xi|>Bn/(1+x)}

+
(1 + x)3

B3
n

n∑
i=1

E|Xi|3I{|Xi|≤Bn/(1+x)}

for x > 0.

Theorem 1.5 [Jing-Shao-Wang (2003)].
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There is an absolute constant A (> 1) such that

P (Sn ≥ xVn)

1− Φ(x)
= eO(1)∆n,x

for all x ≥ 0 satisfying

x2 max
1≤i≤n

EX2
i ≤ B2

n

and

∆n,x ≤ (1 + x)2/A,

where |O(1)| ≤ A .
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Theorem 1.6 [Jing-Shao-Wang (2003)].

|P (Sn/Vn ≥ x)− (1− Φ(x))|

≤ A(1 + x)3e−x
2/2

∑n
i=1E|Xi|3

B3
n

for

0 ≤ x ≤ Bn

(
∑n

i=1E|Xi|3)1/3
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8. Cramér moderate deviations for self-normalized processes

8.1 A general result

Let ξ1, ..., ξn be independent random variables satisfying

Eξi = 0, 1 ≤ i ≤ n,

n∑
i=1

Eξ2
i = 1. (1.2)

Assume the nonlinear process of interest can be decomposed as a

standardized partial sum of {ξi}ni=1, say, Wn, plus a remainder, say,

Dn,1, while its self-normalized version can be written as

Tn =
Wn + Dn,1

Vn(1 + Dn,2)1/2
, (1.3)

where

Wn =

n∑
i=1

ξi, Vn =

( n∑
i=1

ξ2
i

)1/2

,

and Dn,1, Dn,2 are measurable functions of {ξi}ni=1. Examples satisfy-

ing (1.3) include t-statistic, Studentized U -statistics and L-statistics.

In this section, we establish a general Cramér type moderation

theorem for self-normalized process Tn in the form of (1.3). For 1 ≤
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i ≤ n and x ≥ 0, let

δi,x = (1 + x)2E[ξ2
i I{(1+x)|ξi|>1}] + (1 + x)3E[|ξi|3I{(1+x)|ξi|≤1}],

∆n,x =

n∑
i=1

δi,x and In,x = E[exWn−x2V 2
n /2] =

n∏
i=1

e[exξi−x
2ξ2i /2].

Let D
(i)
n,1 and D

(i)
n,2, for each 1 ≤ i ≤ n, be arbitrary measurable func-

tions of {ξj}nj=1,j 6=i, such that {D(i)
n,1, D

(i)
n,2} and ξi are independent.

Set also for x > 0 that

Rn,x := I−1
n,x ×

{
E[(x|Dn,1| + x2|Dn,2|)e

∑n
j=1(xξj−x2ξ2j /2)]

+

n∑
i=1

E[min(x|ξi|, 1)(|Dn,1 −D(i)
n,1| + x|Dn,2 −D(i)

n,2|)e
∑
j 6=i(xξj−x2ξ2j /2)]

}
,

where
∑

j 6=i =
∑n

j=1,j 6=i.

Theorem 1.7 (Shao and Zhou (2012)) Let Tn be defined in (1.3).

Then there is an absolute constant A (> 1) such that

exp{O(1)∆n,x}
(
1− ARn,x

)
≤ P (Tn ≥ x)

1− Φ(x)
(1.4)
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and

P (Tn ≥ x) ≤
(
1− Φ(x)

)
exp{O(1)∆n,x}

(
1 + ARn,x

)
(1.5)

+P
{
|Dn,1|/Vn > 1/(4x)

}
+ P

{
|Dn,2| > 1/(4x2)

}
for all x > 1 satisfying

max
1≤i≤n

δi,x ≤ 1 (1.6)

and

∆n,x ≤ (1 + x)2/A, (1.7)

where |O(1)| ≤ A.
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8.2 Studentized U-statistics

Let X1, X2, · · · , Xn be a sequence of i.i.d. random variables

and let h : Rm → R be a Borel measurable symmetric function of m

variables, where 2 ≤ m < n/2. Consider Hoeffding’s U -statistic with

a kernel h of degree m given by

Un =

(
n

m

)−1 ∑
1≤i1<...<im≤n

h(Xi1, ..., Xim), (1.8)

which is an unbiased estimate of θ = eh(X1, ..., Xm). The U -statistic

is a basic statistic and its asymptotic properties have been extensively

studied in literature. Let

g(x) = Eh(x,X2, ..., Xm), x ∈ R and σ2 = Var(g(X1)).

For standardized (non-degenerate) U -statistic

Zn =

√
n

mσ
(Un − θ), (1.9)

where σ > 0 and m is fixed.
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Since σ is usually unknown, consider the following Studentized

U -statistic

Tn =

√
n

ms1
(Un − θ), (1.10)

where s2
1 is the leave-one-out Jackknife estimator of σ2 given by

s2
1 =

(n− 1)

(n−m)2

n∑
i=1

(qi − Un)2 with (1.11)

qi =

(
n− 1

m− 1

)−1 ∑
(l1,...,lm)∈Cm−1,i

h(Xi, Xl1, ..., Xlm−1)

and

Cm−1,i = {(l1, ..., lm−1) : 1 ≤ l1 < · · · < lm−1 ≤ n, lj 6= i for 1 ≤ j ≤ m−1}.

As a direct but non-trivial consequence of Theorem 1.7, we can

establish a sharp Cramér type moderate deviation theorem for Studen-

tized U -statistic Tn as follows.

Theorem 1.8 (Shao and Zhou (2012)) Let 2 < p ≤ 3 and assume

0 < σp := (E|g(X1)− θ|p)1/p <∞.
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Suppose that there are constants c0 ≥ 1 and τ ≥ 0 such that

(h(x1, ..., xm)− θ)2 ≤ c0

(
τσ2 +

m∑
i=1

(g(xi)− θ)2

)
. (1.12)

Then there exists a constant A > 1 only depending on m such that

P (Tn ≥ x)

1− Φ(x)
= 1 + O(1)

{
σpp(1 + x)p

σpn(p−2)/2
+ c0(1 + τ )

(1 + x)3

n1/2

}
, (1.13)

for any 0 < x < 1
A min{σn(p−2)/(2p)/σp, n

1/6/(c0(1 + τ ))1/6}, where

|O(1)| ≤ A. In particular, we have

P (Tn ≥ x)

1− Φ(x)
→ 1 (1.14)

uniformly in 0 ≤ x ≤ o(n(p−2)/(2p)).

Clearly, condition (1.12) is satisfied for the t-statistic (h(x1, x2) =

(x1 + x2)/2 with c0 = 2 and τ = 0), sample variance (h(x1, x2) =

(x1−x2)2/2, c0 = 10, τ = θ2/σ2), Gini’s mean difference (h(x1, x2) =

|x1 − x2|, c0 = 8, τ = θ2/σ2) and one-sample Wilcoxon’s statistic

(h(x1, x2) = 1{x1 + x2 ≤ 0}, c0 = 1, τ = 1/σ2). It would be
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interesting to know if condition (1.12) can be weakened, but it seems

impossible to remove condition (1.12) completely.
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9. Miscellanies

• Horváth-Shao (1996): Large deviation for Sn/max1≤i≤n |Xi|

• Dembo-Shao (1998): Self-normalized moderate and large devia-

tions in Rd

• Gine-Mason (2001): Sub-gaussian property for X in the Feller

class

• Bercu-Gassiat-Rio (2002): Concentration inequalities, large and

moderate deviations for self-normalized empirical processes

• De la Peña-Klass-Lai (2004): Self-normalized processes: exponen-

tial inequalities, moment and limit theorems

• Jing-Shao-Zhou (2004): Self-normalized saddle point approxima-

tions

• Jing-Shao-Wang (2003): The studentized bootstrap
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• He and Shao (1996): Bahadur efficiency of studentized score tests

• He and Shao (1996, 2000): Bahadur representations for M-estimators

• Horvath and Shao (1996): Change point analysis

• Chen and Shao (1997, 2000): Monte Carlo methods in Baysian

computations

• Liu and Shao (2013): Hotelling’s T 2 statistics
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Conclusion: Self-normalized limit theorems

• Require little or no moment assumption

• Results are more elegant and neater than many classical limit

theorems

• Provide much wider applicability to other fields and to statistics

in particular
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