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The Setup

@ Data matrix: A p x n matrix X consisting of n observations of a
p-dimensional time series, i.e.,

X1 Xz o0 Xin

Xor Xoo -+ Xop
X=| . . )

Xo1 Xoz -+ Xpn

@ Sample covariance matrix: the p x p sample covariance matrix
(normalized) is given by

n p
xXT = nf(0) = [Z X,-tX,-tl
t=1

ij=1
@ Objective: study the ordered eigenvalues
/1(1) > /1(2) >...2> /l(p)
of the p x p sample covariance matrix XX .
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The Setup-continued

Data matrix and sample covariance matrix:

X1 Xz oo Xin

Xor Xoo -0 Xon "
X=| . . . and XX' = nl(0)

Xo1 Xoz -+ Xpn

@ Note that if the rows are independent and identically distributed
ergodic time series (with mean 0 and variance 1), then for p fixed,

A

F(0) S Ip.

@ Relation to PCA: 4(4) is the empirical variance of the first principal
component, 4z of the second, and so on.
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Known results for the largest eigenvalue
@ Assume the entries of X are iid Gaussian (with mean zero and

variance one)
@ For n — oo and fixed p, Anderson [1963] proved that

@(%—1)&N(0,1).
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Known results for the largest eigenvalue

@ Assume the entries of X are iid Gaussian (with mean zero and
variance one)
@ For n — oo and fixed p, Anderson [1963] proved that

@(%—1)3N(0,1).

@ Johnstone [2001] showed that for p,n — o0 s.t. p/n — y € (0, c0)
Vn+ \p [ A1

R+ e (v ve)

) 1] i Tracy-Widom distribution
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Known results for the largest eigenvalue

@ Assume the entries of X are iid Gaussian (with mean zero and
variance one)
@ For n — oo and fixed p, Anderson [1963] proved that

@(%—1)3N(0,1).

@ Johnstone [2001] showed that for p,n — co s.t. p/n — ¥ € (0, )
Vn+ \p [ A1)
Y+
@ The assumption of Gaussianity in Johnstone’s result can be relaxed
to a moment condition (c.f. Four Moment Theorem by Tao and

Vu [2011]; and work by Erdds, Johansson, Péché, Schiein,
Soshnikov, Yau and others).

5 - 1] i Tracy-Widom distribution
v+ Vb)
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Setting

@ Suppose X = (Xi)ir, i=1,...,p, t =1,...,n, with

i h(k,j)Zi-kt-j -

@ The noise (Z;;) is iid with regularly varying tails of index « € (0,4)
(infinite fourth moment), i.e

o0
Xit =
j=0k

nP(|Z11| > apx) = x ¥ as n — oo, for x > 0,
(an = L(n)n"?) and

P(Zy1 > x
Iimy

=py and lim M
x—e P(|Z44] > x)

— 1
x=eo P(|Z44] > x) P

Davis (Columbia University) Self-Normalized Asymptotics May 19-23, 2014



Conditions on h

Summability assumptions on h(k, I):

(SO o]

Z Z lh(k,j)I° < co for some & < min{1, a}
k=0 j=0

and
0o oo a/2-€
Z(Zlh(k,j)l] <o, fork=0,1,2.....
t=0\ j=t

Note: latter condition is implied by

[

ij/a+e’|h(kaj)|<°°’ k=0,1,...,,
=0

for € > 0 arbitrarily close to zero.
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Setting (cont)

@ Let A4,..., 1, be the eigenvalues of

XXT, if @ € (0,2),
XXT — E(XXT), ifae(2,4).

@ Let (Ds) be the iid sequence given by

n
. -0 - 322,
t=1

Note:

@ The D play a key role in determining the asymptotic properties of the

ordered eigenvalues A1y > -+ > A(p).

@ Large deviations result implies pP(D; > a2,x) — x~%/? for a € (0, 2).

np
(Mean correct Dy for a € (2,4).)
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One more thing!

Set h; = (hi, hj1,...)" and define the matrix H = (hg, hy,...,). Let

M=HH.
i.e., the (i, j)th entry of M is
Mj=hlh;=> iy, i,j=01,..,.
1=0

By construction, M is symmetric and non-negative definite and has

ordered eigenvalues
Vi=>Vo2>Vg2>---

Let r < oo be the rank of M so that v, > 0 while v,;.1 = 0if r < co.
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One more thing!

Seth; = (h,‘o, hi, .. .)T and define the matrix H = (ho, hy,..., ) Let

M=HH.
i.e., the (i, j)th entry of M is
Mj=hlh;=> iy, i,j=01,..,.
1=0

By construction, M is symmetric and non-negative definite and has
ordered eigenvalues
Vi>2Vo2>Vg2>---

Let r < oo be the rank of M so that v, > 0 while v,;.1 = 0if r < co.
Remark: M is the covariance matrix of the vector X* = (X, X, .. .)T,

[ee)

X' =Y h(i.)Z, {Z)~1D(0,1)
I=0
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Example

Xit = Zit+Zit-1—(2Zi21t — 2Zi-1,1-1)

which has non-negative eigenvalues vy = 8 and vo = 2 (r = 2).
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Theorem (Main result to the point process convergence)
Let p = p, — oo be a sequence satisfying certain growth conditions (to be
specified later) and suppose k = k, — oo is any sequence such that
k% = o(p).
a) Ifa €(0,2), then

-2
a,, max '/1 —6-’—>0, n— oo,
L ()~ o)
where
o A(1) > -+ > A(p) are the ordered eigenvalues of XXT.

) 2
@ 0(1) 2 -+ = O(p) are the ordered values from the set
Wi i=1,...k, j=1,2,...,}.

Note: 5(1) = Vi D(1), (5(2) = V2D(1) V vy D(Q), etc.
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Theorem (Main result cont)
b) Ifa € (2,4), then
2 ~ =P
a,,p i:I”anp|/l(,-) —5,'| -0, n- o,
where

@ A1ys-es /"l(p) are the ordered eigenvalues ( ;) according to their
absolute values.

@ Oy =2 S(p) are the ordered values from the set
(D, -ED)v;, i=1,....k, j=1,2,...,}.
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Theorem (Point process convergence)

Let p = pp, — oo be a sequence satisfying certain growth conditions (to be
specified later). Then we have the point process convergence,

p r oo
No = D egn =N =20 D ey
i=1 j=1i=1

wherel'; = Ey + ... 4+ E; is the cumulative sum of iid standard (i.e., mean
one) exponentially distributed rv’s,

Note: The point process N* = > \° | 2/ is a Poisson process with
E(N*(dx)) = a/2x~/>"1dXx.
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The largest eigenvalues
Let d(1) = di2) = - - - be the ordered values of the set

yr2lei=1,....j=1.2..,)

i
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The largest eigenvalues
Let d(1) = di2) = - - - be the ordered values of the set
2o i=1,...,j=12..,)

day = vl 2%, diy = max(vel 2%, viT52/)
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The largest eigenvalues
Let d(1) = di2) = - - - be the ordered values of the set
2o i=1,...,j=12..,)

day = vl 2%, diy = max(vel 2%, viT52/)

@ The theorem implies the joint convergence of the m-largest
eigenvalues

ang (A0 Am) = (A1) ) -
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The largest eigenvalues
Let d(1) = di2) = - - - be the ordered values of the set
2o i=1,...,j=12..,)

day = vl 2%, diy = max(vel 2%, viT52/)

@ The theorem implies the joint convergence of the m-largest
eigenvalues

a8 (At Am) = (oo i)

/1(1) i VA4 I

Davis (Columbia University) Self-Normalized Asymptotics May 19-23, 2014



The largest eigenvalues
Let d(1) = di2) = - - - be the ordered values of the set
2o i=1,...,j=12..,)

day = vl 2%, diy = max(vel 2%, viT52/)

@ The theorem implies the joint convergence of the m-largest
eigenvalues

a8 (At Am) = (oo i)

/1(1) i VA4 I

In fact, we have more!!
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Self-normalization

Under the conditions of the theorem, the following limit results hold.
Q@ Ifae(0,2),then
P r oo
- d -2/ -2/a
an‘?(/l(ﬂ,Z/l,') - (I’12/ ,ZZeri 2/ ),
i=1 j=1 i=1
and in particular,

A1) d 12 r1_2/a
9 , N—> oo,
/l1+"'+/lp v1+...+vrz;>i1rl_—2/a
Q Ifae(2,4)then
1 r—2/(r
(1) _d> Vi 1 n— o

’

A+ 42 Vi+...+ Vv 60/2’
where

T —2/a —2/(1
Saj2 = 'y'[‘g Z (ri ey ~ T, ’{r,‘Z/">y})
i=1
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Example (cont)

Model: Xit = Zit + Zjt-1 — (2Zi-1t — 2Zi_1 t-1)
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Example (cont)

Model: Xit = Zit + Zjt-1 — (2Zi-1t — 2Zi_1 t-1)
Then,

(5]

2 d
Noi= D €aga = N =2, (€8r;2’“ * 62r,f2’“) '
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Example (cont)
Model: Xit = Zit + Zjt-1 — (2Zi-1t — 2Zi_1 t-1)
Then,

2 d
Noi= D €aga = N =2, (68r;2’“ * 62r,f2’“) '

(5]
i=1 i=1

Results:
d ___
() 355/1(1) - 8F12/“
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Example (cont)
Model: Xit = Zit + Zjt-1 — (2Zi-1t — 2Zi_1 t-1)
Then,

P o
Np = Z €, 2/1, Z (68r;2/a + 62r;2/n) .

i=1 i=1
Results:
d _
-] 352/1(1) - 8F 2/

o a,2(A(1). A(2)) = (sr 2le ar 2/ v 8r2')
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Example (cont)
Model: Xit = Zit + Zjt—1 — (2Zi—1t — 2Zj_1,1-1)
Then,

P o
Np = Z €, 2/1, Z (68r;2/a + 62r;2/n) .

i=1 i=1
Results:
d _
) 352/1(1) — 8F 2/

o a,2(A(1). A(2)) = (sr 2le ar 2/ v 8r2')
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QQ-Plot via ratio of partial sums to A1

Model: Xit = Zit + Zit-1 — (2Zi-1t — 2Zj_1 +-1), Pareto noise wih @ = 1.5
and a = 3.0, replications = 200

n=1000,p=200,N=200,c=(1,1,-2,2),a=1.5,pareto,non-centered

08 08 10
I i

04

Normalized partial sums of the tranf. largest ey
02

0.0
1

200
QQ-plot via ratios of partial sums of the largest eigenvalue
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QQ-Plot via ratio of partial sums to A1

Model: Xit = Zit + Zit-1 — (2Zi-1t — 2Zj_1 +-1), Pareto noise wih @ = 1.5
and a = 3.0, replications = 200

n=1000,p=200,N=200,c=(1,1,-2,2),=1.5 pareto,non-centered QQ-plot via ratios of partial sums of the largest eigenvalue
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3 3 T S
£ £
] ]
4 3
° °
2 o L o]
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E ° E °
5 5
z Z

o o | &

=
= T T T T T T T T T T T T
0.0 0.2 04 06 08 1.0 0.0 02 04 0.6 08 1.0
200 i/200
QQ-plot via ratios of partial sums of the largest eigenvalue n=1000,p=200,N=200,c=(1,1,-2,2),a.=3,pareto,centered
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Example: Ratio of largest to second largest, A(1)/A2):

Recall:
A 4, if 87,%/% < 2,2/,
20) 9 r1—2/“ _
A(2) Y otherwise
2

It follows that

Jim P(14) =4de) = P(2r*" > 8r,”")
E;
Ei+ E2

<2 ") =2""= 354(a¢=15)

and

. Eq - -
lim P(A(1) = 4424 2x)=P 27%E; < 8x7/?).
Aim P(At) = 44@)l ) > appx) = P(g— 5 < 27IE < 8777
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centeredA(1)

E4

n—oo

<27%) =27 = 354(a = 1.5)

n=1000,p=200,N=200,c=(1,1,-2,2),a=1.5,pareto,noncentered

4000 6000 8000
I

2000

0
i

T T T
0 500 1000 1500 2000

centered A(2)
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centeredA(1)

lim P(1) = 44@) = P( Ey

n—oo

n=1000,p=200,N=200,c=(1,1,-2,2),a=1.5,pareto,noncentered

— <
Ei+Ex

P(A(1)=4A(2)|A(1)>x) from simulation and asymptotic distribution

27%) = 27 = 354(a = 1.5)

% b . imuation
asymptotic distribution |~~~ T -
g+ 5
=7
< |
° T T T T T T T T T T T
0 500 1000 1500 2000 0 100 200 300 400 500
centered A(2) |
n=1000,p=200,N=1000,¢c=(1,1,-2,2),a=1.5,pareto,noncentered
liMn_eo P(A(1y = 4A(2)|A(1) > @2,X) = P(zE= < 27?|E; < 8x~/2)
n—o0 (1 (2)1(1) =~ “np Ei+E2 :
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Growth conditions on pj,

@ Typical entry in XX involves sums of terms involving squares Z2 and
cross-products Zs, Zs, with sy # sp.
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Growth conditions on pj,

@ Typical entry in XX involves sums of terms involving squares Z2 and
cross-products Zs, Zs, with sy # sp.

@ From Embrechts and Goldie (1980),
P(1Z1] > x) = Li(x)x™® and P(|Z1Zz2] > x) = Lo(x)x™®

where Ly and L, are SV functions.
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Growth conditions on pj,

@ Typical entry in XX involves sums of terms involving squares Z2 and
cross-products Zs, Zs, with sy # sp.
@ From Embrechts and Goldie (1980),

P(1Z1] > x) = Li(x)x™® and P(|Z12Zz| > x) = Lo(x)x™@

where Ly and L, are SV functions.

@ Precise conditions on p,, rely on the asymptotic relationship between
l_1 and Lg.

General conditions:
e Fora €(0,1), limsup,_,., p[np P(1Z1Zs| > aj,)] = 0.
@ For a € (1,2), there exists y € (a, 2) but arbitrarily close to @ such
that lim sup,,_,., p” [np P(1Z1 Z2| > a3,)] = 0.
@ For a € (2,4), there exists y € (@, 4) arbitrarily close to « such that
M SUP,_,o 177217 [N p (121 Z2| > a2,)] = co.
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Growth conditions on p,
Case P(Zy > x) ~ cx™*: Here Lp(x) = Clog(x).

@ Fora €(0,2),
pn = O(nP), foranys>0.

Can allow for a touch faster growth rate (p, = O(exp{cn}), where
c2/n — 0inthe a € (0,1) case.

@ Fora € (2,4),
pn=0(), Be(0,(4-a)/[2(a-1)]).

This excludes the case p, ~ cn.

Davis (Columbia University) Self-Normalized Asymptotics May 19-23, 2014
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Elements of the proof I:

Special case: Xj; = 6pZ;t + 61Zi-1

n n

2 2 -2 2 2
int = Zeozi,t + 6014 1t+29091ZZ:tZ:1t
t=1 t=1 ﬁ/—’ =1 ——
tail index «/2 tail index o

= G3Dj+ 67Dy + 0p(a5)

n
ZX,-tXi+1,t = 6ot Z t+ op(a
t=1

= 6pb4 D,‘+ Op( np)

and
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Elements of the proof I:

Special case: Xj; = 6pZ;t + 61Zi-1

n n
2 2 -2 2 -2
ZX = D BZh+ ezu+zeoe1zznzm

t=1 t=1
tail index /2 tail index «

= G3Dj+ 67Dy + 0p(a5)

n
ZXitXi+1,t = 90912 2+ 0p(a
t=1

= 6pb4 D,‘+ Op( np)

XTX; X X 6 6ob4 6> 0
~ 0 . 1 .
[ s ) = s % o (5 0 )on

i+1
0 O
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The covariance matrix can be approximated by
p
XXT =" DiM; + 0p(ahy)
i=1
where M; is the p x p matrix consisting of all zeros except for a 2 x 2 matrix,

62 6o0
— 0
v=( o, )

whose NW corner is pinned to the i position on the diagonal. For
example,

65 66y 0 --- 0 0 0 0 0
bty 65 0 0 0 65 6o 0
M=| 0 0 0 0| My=|0 6061 67 0
0 0 0 0 O 0 0 0 0 O
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Denote the order statistics of the D;'s by D1y > D) = -+ = D) and write
DL,- = D(,-).

Then,
o XXT =37, DMy, + 05(a3,) in the sense that

p
_ P
e IXXT = " DiMillo = 0,
i=1

where

[|All, = \/Iargest eigenvalue of AAT (operator 2-norm).

Davis (Columbia University) Self-Normalized Asymptotics May 19-23, 2014
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Elements of the proof I

@ For k — oo sufficiently slow,

£o.

k
XxT =" DM,
i=1

-2
anp
2

@ Since the Ds are iid, (L1, ..., L) is a random permutation of (1,..

and hence the set Ax = {|Li— Lj| > 1, i,j=1,...,k,i # j} has
probability converging to 1 provided k? = o(p).

Davis (Columbia University) Self-Normalized Asymptotics May 19-23, 2014
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Elements of the proof I

@ For k — oo sufficiently slow,

k
a2 |XxT - > pum| S o.
i=1 2
@ Since the Ds are iid, (L1,...,Lp) is a random permutation of (1,...,p)

and hence the set Ay = {|L; — Lj| > 1, i,j=1,....k,i # j} has
probability converging to 1 provided k? = o(p).

@ On the set A, the matrix Y. | D;;M,, is block diagonal with nonzero
eigenvalues D vy, i = 1,..., k. Here we used the fact that M|, is a
rank 1 matrix with nonzero ev equal to vy = 62 + 62.
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Elements of the proof I

@ For k — oo sufficiently slow,

k
a2 |XxT - > pum| S o.
i=1 2
@ Since the Ds are iid, (L1,...,Lp) is a random permutation of (1,...,p)

and hence the set Ay = {|L; — Lj| > 1, i,j=1,....k,i # j} has
probability converging to 1 provided k? = o(p).

@ On the set A, the matrix Y. | D;;M,, is block diagonal with nonzero
eigenvalues D vy, i = 1,..., k. Here we used the fact that M|, is a
rank 1 matrix with nonzero ev equal to vy = 62 + 62.

@ By Weyl’s inequality

£o.

2

k
XXT = > DM,
i=1

-2
anp

.....
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Elements of the proof Il (cont)

e Large deviations: D" = S22,

P(D1 > X)
nP(Z2 > x)

—1‘—)0,

x>bp

where b,/a2 — co.

@ Classical EVT plus large deviations implies:

P p d 0
Z ea,jg/li ~ Z ea;,?w D - N= Z 6v1 ITZ/“ :
i=1

i=1 i=1

Davis (Columbia University) Self-Normalized Asymptotics May 19-23, 2014
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Elements of the proof I

@ Important tool: ||All, = \/Iargest eigenvalue of AAT (operator
2-norm).
@ Define D € RP*P by D;; = (XXT),-,- and Dj = O for i # j. Then

ans | XX - D, £ o0as p,n — oo.

@ By Weyl’s inequality

n

A1) — max Z Xﬁ

- P
1<isp £ <a2||xx" - D|, > 0as p,n - o

-2
anp

and likewise for /1(2), /1(3), ce

Hence, we “only” have to derive the extremal behavior of the diagonal
elements (37_; X2); of XXT.

Davis (Columbia University) Self-Normalized Asymptotics May 19-23, 2014
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The separable case

Suppose h(k, ) is separable, i.e., h(k,l) = 6xc; and

Xit = Z Z OkCi ikt -

j=0 k=
In this case,
h’Thj = 9,‘9jC, C = Z C,2.
=0
The matrix M = HT H is then rank 1 with eigenvalue vy
(© = X2, 67). Limits same as IID case, namely

Davis (Columbia University) Self-Normalized Asymptotics
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The separable case

Suppose h(k, ) is separable, i.e., h(k,l) = 6xc; and
Xit = Z Z OkCi ikt -
j=0 k=
In this case,

h’Thj = 9,‘9jC, C = Z C,2.
=0
The matrix M = HT H is then rank 1 with eigenvalue vy = ©C
(© = X2, 67). Limits same as IID case, namely

p g oo
Np = Z €20 = N = Z €ocr 2/ >

i=1 i=1
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The separable case

Suppose h(k, ) is separable, i.e., h(k,l) = 6xc; and

Xit = Z Z OkCi ikt -

j=0 k=
In this case,
h’Thj = 9,‘9jC, C= Z C,2.
=0
The matrix M = HT H is then rank 1 with eigenvalue vy = ©C
(© = X2, 67). Limits same as IID case, namely

p g oo
Np = Z €20 = N = Z €ocr 2/ >

i=1 i=1

-2/
oy o T

n—oo.
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Stochastic volatility models—special case

Suppose the rows are independent copies of the SV process given by
Xt = O'tZt

where (Z;) is iid RV(a) and (Ino?) is a purely nondeterministic stationary
Gaussian process (this can be weakened), independent of (Z;).

Theorem  Suppose pn, N — oo such that

lim sup Pn < oo, forsome B > 0 satisfying

noeo NP
Q@ B<xifae(0,1), and
Q p<Eifac(1,2).
Then, we have the point process convergence,

p ; oo
Np := Z €21, N = Z er;Z/(y .
i=1

i=1
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Stochastic volatility models—special case

Point process convergence:

p

(o)
d
Npi= > €ziy = N=, -2t -
i=1

i=1

Remarks:
@ Proof uses a large deviation result of Davis and Hsing (1995); see
also Mikosch and Wintenberger (2012).

@ Likely that we can weaken the restriction on 8

@ Similar results hold for GARCH processes if X; is RV(a) with
a €(0,2).
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