Self-normalized Extreme Eigenvalues of Large Dimensional Covariance Matrices of Heavy-Tailed Multivariate Time Series

Richard A. Davis, Columbia University

Thomas Mikosch, University of Copenhagen Oliver Pfaffel, Munich Re

May 19-23, 2014

Self-Normalized Asymptotics Institute for Mathematical Sciences National University of Singapore

Game Plan

- The Setup
- Background
- Main result
 - Corollaries and applications
 - Elements of the proof I
 - Elements of the proof II
 - The separable case
- Extension to nonlinear models—stochastic volatility and GARCH(1,1)

The Setup

Data matrix: A p × n matrix X consisting of n observations of a p-dimensional time series, i.e.,

$$X = \begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1n} \\ X_{21} & X_{22} & \cdots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{p1} & X_{p2} & \cdots & X_{pn} \end{bmatrix}.$$

• Sample covariance matrix: the $p \times p$ sample covariance matrix (normalized) is given by

$$XX^T = n\hat{\Gamma}(0) = \left[\sum_{t=1}^n X_{it}X_{jt}\right]_{i,j=1}^p$$
.

Objective: study the ordered eigenvalues

$$\lambda_{(1)} \ge \lambda_{(2)} \ge \ldots \ge \lambda_{(p)}$$

of the $p \times p$ sample covariance matrix XX^T .

The Setup-continued

Data matrix and sample covariance matrix:

$$X = \begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1n} \\ X_{21} & X_{22} & \cdots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{p1} & X_{p2} & \cdots & X_{pn} \end{bmatrix} \text{ and } XX^{T} = n\hat{\Gamma}(0)$$

 Note that if the rows are independent and identically distributed ergodic time series (with mean 0 and variance 1), then for p fixed,

$$\hat{\Gamma}(0) \stackrel{P}{\rightarrow} I_{p}$$
.

• Relation to PCA: $\lambda_{(1)}$ is the empirical variance of the first principal component, $\lambda_{(2)}$ of the second, and so on.

Known results for the largest eigenvalue

- Assume the entries of X are iid Gaussian (with mean zero and variance one)
- For $n \to \infty$ and fixed p, Anderson [1963] proved that

$$\sqrt{\frac{n}{2}}\left(\frac{\lambda_{(1)}}{n}-1\right)\stackrel{d}{\to} N(0,1)$$
.

Known results for the largest eigenvalue

- Assume the entries of X are iid Gaussian (with mean zero and variance one)
- For $n \to \infty$ and fixed p, Anderson [1963] proved that

$$\sqrt{\frac{n}{2}}\left(\frac{\lambda_{(1)}}{n}-1\right)\stackrel{d}{\to} \mathrm{N}(0,1)$$
.

• Johnstone [2001] showed that for $p, n \to \infty$ s.t. $p/n \to \gamma \in (0, \infty)$

$$\frac{\sqrt{n} + \sqrt{p}}{\sqrt[3]{\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{p}}}} \left(\frac{\lambda_{(1)}}{\left(\sqrt{n} + \sqrt{p}\right)^2} - 1 \right) \xrightarrow{d} \text{Tracy-Widom distribution}$$

Known results for the largest eigenvalue

- Assume the entries of X are iid Gaussian (with mean zero and variance one)
- For $n \to \infty$ and fixed p, Anderson [1963] proved that

$$\sqrt{\frac{n}{2}}\left(\frac{\lambda_{(1)}}{n}-1\right)\stackrel{d}{\to} \mathrm{N}(0,1)$$
.

• Johnstone [2001] showed that for $p, n \to \infty$ s.t. $p/n \to \gamma \in (0, \infty)$

$$\frac{\sqrt{n} + \sqrt{p}}{\sqrt[3]{\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{p}}}} \left(\frac{\lambda_{(1)}}{\left(\sqrt{n} + \sqrt{p}\right)^2} - 1 \right) \stackrel{d}{\to} \text{Tracy-Widom distribution}$$

 The assumption of Gaussianity in Johnstone's result can be relaxed to a moment condition (c.f. Four Moment Theorem by Tao and Vu [2011]; and work by Erdös, Johansson, Péché, Schlein, Soshnikov, Yau and others).

Setting

• Suppose $X = (X_{it})_{i,t}, i = 1, ..., p, t = 1, ..., n$, with

$$X_{it} = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} h(k,j) Z_{i-k,t-j}.$$

• The noise $(Z_{i,t})$ is iid with regularly varying tails of index $\alpha \in (0,4)$ (infinite fourth moment), i.e.,

$$nP(|Z_{11}| > a_n x) \rightarrow x^{-\alpha} \text{ as } n \rightarrow \infty, \text{ for } x > 0,$$

$$(\mathbf{a}_n = L(n)n^{1/\alpha})$$
 and

$$\lim_{x \to \infty} \frac{P(Z_{11} > x)}{P(|Z_{11}| > x)} = p_+ \quad \text{and} \quad \lim_{x \to \infty} \frac{P(Z_{11} \le -x)}{P(|Z_{11}| > x)} = 1 - p_+$$

Conditions on h

Summability assumptions on h(k, l):

$$\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} |h(k,j)|^{\delta} < \infty \quad \text{for some } \delta < \min\{1,\alpha\}$$

and

$$\sum_{t=0}^{\infty} \left(\sum_{j=t}^{\infty} |h(k,j)| \right)^{\alpha/2-\epsilon} < \infty, \quad \text{for } k = 0, 1, 2 \dots,$$

Note: latter condition is implied by

$$\sum_{j=0}^{\infty} j^{2/\alpha+\epsilon'} |h(k,j)| < \infty, \quad k = 0, 1, \ldots,,$$

for $\epsilon' > 0$ arbitrarily close to zero.

Setting (cont)

• Let $\lambda_1, \ldots, \lambda_p$ be the eigenvalues of

$$\begin{cases} XX^{\mathsf{T}}, & \text{if } \alpha \in (0,2), \\ XX^{\mathsf{T}} - E(XX^{\mathsf{T}}), & \text{if } \alpha \in (2,4). \end{cases}$$

• Let (D_s) be the iid sequence given by

$$D_{s} = D_{s}^{(n)} = \sum_{t=1}^{n} Z_{s,t}^{2}$$
.

Note:

- The D_s play a key role in determining the asymptotic properties of the ordered eigenvalues $\lambda_{(1)} \ge \cdots \ge \lambda_{(p)}$.
- 2 Large deviations result implies $pP(D_1 \ge a_{np}^2 x) \to x^{-\alpha/2}$ for $\alpha \in (0,2)$. (Mean correct D_1 for $\alpha \in (2,4)$.)

One more thing!

Set $\mathbf{h}_i = (h_{i0}, h_{i1}, ...)^T$ and define the matrix $H = (\mathbf{h}_0, \mathbf{h}_1, ...,)$. Let

$$M = H^T H$$
.

i.e., the (i, j)th entry of M is

$$M_{ij} = \mathbf{h}_{i}^{T} \mathbf{h}_{j} = \sum_{l=0}^{\infty} h_{il} h_{jl}, \quad i, j = 0, 1, ..., .$$

By construction, *M* is symmetric and non-negative definite and has ordered eigenvalues

$$v_1 \geq v_2 \geq v_3 \geq \cdots$$

Let $r \le \infty$ be the rank of M so that $v_r > 0$ while $v_{r+1} = 0$ if $r < \infty$.

One more thing!

Set $\mathbf{h}_i = (h_{i0}, h_{i1}, ...)^T$ and define the matrix $H = (\mathbf{h}_0, \mathbf{h}_1, ...,)$. Let

$$M = H^T H$$
.

i.e., the (i, j)th entry of M is

$$M_{ij} = \mathbf{h}_i^T \mathbf{h}_j = \sum_{l=0}^{\infty} h_{il} h_{jl}, \quad i, j = 0, 1, \ldots, .$$

By construction, *M* is symmetric and non-negative definite and has ordered eigenvalues

$$v_1 \geq v_2 \geq v_3 \geq \cdots$$

Let $r \le \infty$ be the rank of M so that $v_r > 0$ while $v_{r+1} = 0$ if $r < \infty$. Remark: M is the covariance matrix of the vector $\mathbf{X}^* = (X_0^*, X_1^*, \dots)^T$,

$$X_i^* = \sum_{l=0}^{\infty} h(i, l) Z_l, \quad \{Z_l\} \sim \mathsf{IID}(0, 1)$$

Example

$$X_{i,t} = Z_{i,t} + Z_{i,t-1} - (2Z_{i-1,t} - 2Z_{i-1,t-1})$$

$$H^{T} = \begin{pmatrix} 1 & 1 & 0 & 0 & \cdots \\ -2 & 2 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \cdots \end{pmatrix} \qquad M = H^{T}H = \begin{pmatrix} 2 & 0 & 0 & \cdots \\ 0 & 8 & 0 & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \cdots \end{pmatrix}$$

which has non-negative eigenvalues $v_1 = 8$ and $v_2 = 2$ (r = 2).

Theorem (Main result to the point process convergence)

Let $p = p_n \to \infty$ be a sequence satisfying certain growth conditions (to be specified later) and suppose $k = k_p \to \infty$ is any sequence such that $k^2 = o(p)$.

a) If $\alpha \in (0,2)$, then

$$a_{np}^{-2} \max_{i=1,\ldots,p} \left| \lambda_{(i)} - \delta_{(i)} \right| \stackrel{P}{\to} 0, \quad n \to \infty,$$

where

- $\lambda_{(1)} \ge \cdots \ge \lambda_{(p)}$ are the ordered eigenvalues of XX^T .
- $\delta_{(1)} \ge \cdots \ge \delta_{(p)}$ are the ordered values from the set $\{D_{(i)}v_j, i=1,\ldots,k, j=1,2,\ldots,\}$.

Note: $\delta_{(1)} = v_1 D_{(1)}, \ \delta_{(2)} = v_2 D_{(1)} \vee v_1 D_{(2)}, \text{ etc.}$

Theorem (Main result cont)

b) If $\alpha \in (2,4)$, then

$$a_{np}^{-2} \max_{i=1,\ldots,p} \left| \widetilde{\lambda}_{(i)} - \widetilde{\delta}_i \right| \stackrel{P}{\to} 0, \quad n \to \infty,$$

where

- $\tilde{\lambda}_{(1)}, \dots, \tilde{\lambda}_{(p)}$ are the ordered eigenvalues (λ_i) according to their absolute values.
- $\tilde{\delta}_{(1)} \ge \cdots \ge \tilde{\delta}_{(p)}$ are the ordered values from the set $\{(D_{l_i} ED)v_j, i = 1, \ldots, k, j = 1, 2, \ldots, \}.$

Theorem (Point process convergence)

Let $p = p_n \to \infty$ be a sequence satisfying certain growth conditions (to be specified later). Then we have the point process convergence,

$$N_p := \sum_{i=1}^p \epsilon_{a_{np}^{-2}\lambda_i} \stackrel{d}{\to} N = \sum_{j=1}^r \sum_{i=1}^\infty \epsilon_{v_j \Gamma_i^{-2/\alpha}},$$

where $\Gamma_i = E_1 + ... + E_i$ is the cumulative sum of iid standard (i.e., mean one) exponentially distributed rv's,

Note: The point process $N^* = \sum_{i=1}^{\infty} \epsilon_{\Gamma_i^{-2/\alpha}}$ is a Poisson process with $E(N^*(dx)) = \alpha/2x^{-\alpha/2-1}dx$.

Let $d_{(1)} \ge d_{(2)} \ge \cdots$ be the ordered values of the set

$$\{v_j\Gamma_i^{-2/\alpha}, i=1,\ldots,j=1,2,\ldots,\}$$

Let $d_{(1)} \ge d_{(2)} \ge \cdots$ be the ordered values of the set

$$\{v_j \Gamma_i^{-2/\alpha}, i = 1, \dots, j = 1, 2, \dots, \}$$

$$d_{(1)} = v_1 \Gamma_1^{-2/\alpha}, \quad d_{(2)} = \max(v_2 \Gamma_1^{-2/\alpha}, v_1 \Gamma_2^{-2/\alpha})$$

Let $d_{(1)} \ge d_{(2)} \ge \cdots$ be the ordered values of the set

$$\begin{aligned} \{v_j \Gamma_i^{-2/\alpha}, \ i = 1, \dots, \ j = 1, 2, \dots, \} \\ d_{(1)} &= v_1 \Gamma_1^{-2/\alpha}, \qquad d_{(2)} = \max(v_2 \Gamma_1^{-2/\alpha}, v_1 \Gamma_2^{-2/\alpha}) \end{aligned}$$

 The theorem implies the joint convergence of the m-largest eigenvalues

$$a_{np}^{-2}\left(\lambda_{(1)},\ldots,\lambda_{(m)}\right)\stackrel{d}{\rightarrow}\left(d_{(1)},\ldots,d_{(m)}\right)$$
.

Let $d_{(1)} \ge d_{(2)} \ge \cdots$ be the ordered values of the set

$$\{v_j\Gamma_i^{-2/\alpha}, i = 1, \dots, j = 1, 2, \dots, \}$$

$$d_{(1)} = v_1\Gamma_1^{-2/\alpha}, \qquad d_{(2)} = \max(v_2\Gamma_1^{-2/\alpha}, v_1\Gamma_2^{-2/\alpha})$$

• The theorem implies the joint convergence of the *m*-largest eigenvalues

$$a_{np}^{-2}\left(\lambda_{(1)},\ldots,\lambda_{(m)}\right)\stackrel{d}{\rightarrow}\left(d_{(1)},\ldots,d_{(m)}\right)$$
.

 $\bullet \ (\lambda_{(1)}/a_{np}^2)^{-\alpha/2} \xrightarrow{d} v_1^{-\alpha/2} \Gamma_1$

Let $d_{(1)} \ge d_{(2)} \ge \cdots$ be the ordered values of the set

$$\{v_j\Gamma_i^{-2/\alpha}, i = 1, \dots, j = 1, 2, \dots, \}$$

$$d_{(1)} = v_1\Gamma_1^{-2/\alpha}, \qquad d_{(2)} = \max(v_2\Gamma_1^{-2/\alpha}, v_1\Gamma_2^{-2/\alpha})$$

• The theorem implies the joint convergence of the *m*-largest eigenvalues

$$a_{np}^{-2}\left(\lambda_{(1)},\ldots,\lambda_{(m)}\right)\stackrel{d}{\rightarrow}\left(d_{(1)},\ldots,d_{(m)}\right).$$

 $\bullet \ (\lambda_{(1)}/a_{np}^2)^{-\alpha/2} \xrightarrow{d} v_1^{-\alpha/2} \Gamma_1$

•

$$\frac{\lambda_{(1)}}{\lambda_{(1)}+\cdots+\lambda_{(m)}}\stackrel{d}{\to}\frac{v_1\Gamma_1^{-2/\alpha}}{d_{(1)}+\cdots+d_{(m)}},\quad n\to\infty.$$

Let $d_{(1)} \ge d_{(2)} \ge \cdots$ be the ordered values of the set

$$\begin{aligned} \{v_j \Gamma_i^{-2/\alpha}, \ i = 1, \dots, j = 1, 2, \dots, \} \\ d_{(1)} &= v_1 \Gamma_1^{-2/\alpha}, \qquad d_{(2)} = \max(v_2 \Gamma_1^{-2/\alpha}, v_1 \Gamma_2^{-2/\alpha}) \end{aligned}$$

• The theorem implies the joint convergence of the *m*-largest eigenvalues

$$a_{np}^{-2}\left(\lambda_{(1)},\ldots,\lambda_{(m)}\right)\stackrel{d}{\rightarrow}\left(d_{(1)},\ldots,d_{(m)}\right).$$

- $\lambda_{(1)}$ $\lambda_{(1)}$ $\lambda_{(1)}$ $\lambda_{(1)}$ $\lambda_{(1)}$

$$\frac{\lambda_{(1)}}{\lambda_{(1)}+\cdots+\lambda_{(m)}}\stackrel{d}{\to}\frac{v_1\Gamma_1^{-2/\alpha}}{d_{(1)}+\cdots+d_{(m)}},\quad n\to\infty.$$

In fact, we have more!!

Self-normalization

Under the conditions of the theorem, the following limit results hold.

• If $\alpha \in (0,2)$, then

$$a_{np}^{-2}\Big(\lambda_{(1)},\sum_{i=1}^{p}\lambda_{i}\Big) \stackrel{d}{\rightarrow} \Big(\Gamma_{1}^{-2/\alpha},\sum_{j=1}^{r}\sum_{i=1}^{\infty}v_{j}\Gamma_{i}^{-2/\alpha}\Big),$$

and in particular,

$$\frac{\lambda_{(1)}}{\lambda_1 + \cdots + \lambda_p} \xrightarrow{d} \frac{\mathbf{v}_1}{\mathbf{v}_1 + \cdots + \mathbf{v}_r} \frac{\Gamma_1^{-2/\alpha}}{\sum_{i=1}^{\infty} \Gamma_i^{-2/\alpha}}, \quad n \to \infty.$$

② If $\alpha \in (2,4)$ then

$$\frac{\lambda_{(1)}}{\lambda_1 + \cdots + \lambda_p} \xrightarrow{d} \frac{\mathbf{v}_1}{\mathbf{v}_1 + \cdots + \mathbf{v}_r} \frac{\Gamma_1^{-2/\alpha}}{\xi_{\alpha/2}}, \quad n \to \infty,$$

where

$$\xi_{\alpha/2} = \lim_{\gamma \downarrow 0} \sum_{i=1}^{\infty} \left(\Gamma_i^{-2/\alpha} I_{\{\Gamma_i^{-2/\alpha} > \gamma\}} - E \Gamma_i^{-2/\alpha} I_{\{\Gamma_i^{-2/\alpha} > \gamma\}} \right)$$

Model:
$$X_{i,t} = Z_{i,t} + Z_{i,t-1} - (2Z_{i-1,t} - 2Z_{i-1,t-1})$$

Model:
$$X_{i,t} = Z_{i,t} + Z_{i,t-1} - (2Z_{i-1,t} - 2Z_{i-1,t-1})$$

Then,

$$N_p := \sum_{i=1}^p \epsilon_{a_{np}^{-2}\lambda_i} \stackrel{d}{\to} N = \sum_{i=1}^\infty \left(\epsilon_{8\Gamma_i^{-2/\alpha}} + \epsilon_{2\Gamma_i^{-2/\alpha}} \right).$$

Model:
$$X_{i,t} = Z_{i,t} + Z_{i,t-1} - (2Z_{i-1,t} - 2Z_{i-1,t-1})$$

Then,

$$N_p := \sum_{i=1}^p \epsilon_{a_{np}^{-2}\lambda_i} \overset{d}{\to} N = \sum_{i=1}^\infty \left(\epsilon_{8\Gamma_i^{-2/\alpha}} + \epsilon_{2\Gamma_i^{-2/\alpha}} \right).$$

Results:

$$\bullet \ a_{np}^{-2}\lambda_{(1)} \stackrel{d}{\to} 8\Gamma_1^{-2/\alpha}$$

Model:
$$X_{i,t} = Z_{i,t} + Z_{i,t-1} - (2Z_{i-1,t} - 2Z_{i-1,t-1})$$

Then,

$$N_p := \sum_{i=1}^p \epsilon_{a_{np}^{-2}\lambda_i} \overset{d}{\to} N = \sum_{i=1}^\infty \left(\epsilon_{8\Gamma_i^{-2/\alpha}} + \epsilon_{2\Gamma_i^{-2/\alpha}} \right).$$

Results:

- $a_{np}^{-2}\lambda_{(1)} \stackrel{d}{\rightarrow} 8\Gamma_1^{-2/\alpha}$
- $a_{np}^{-2}(\lambda_{(1)},\lambda_{(2)}) \stackrel{d}{\rightarrow} (8\Gamma_1^{-2/\alpha},2\Gamma_1^{-2/\alpha}\vee 8\Gamma_2^{-2/\alpha})$

Model:
$$X_{i,t} = Z_{i,t} + Z_{i,t-1} - (2Z_{i-1,t} - 2Z_{i-1,t-1})$$

Then,

$$N_p := \sum_{i=1}^p \epsilon_{a_{np}^{-2}\lambda_i} \overset{d}{\to} N = \sum_{i=1}^\infty \left(\epsilon_{8\Gamma_i^{-2/\alpha}} + \epsilon_{2\Gamma_i^{-2/\alpha}} \right).$$

Results:

•
$$a_{np}^{-2}\lambda_{(1)} \stackrel{d}{\to} 8\Gamma_1^{-2/\alpha}$$

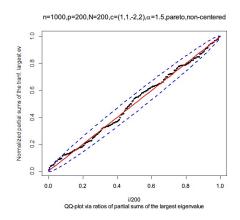
•
$$a_{np}^{-2}(\lambda_{(1)},\lambda_{(2)}) \stackrel{d}{\rightarrow} (8\Gamma_1^{-2/\alpha},2\Gamma_1^{-2/\alpha}\vee 8\Gamma_2^{-2/\alpha})$$

0

$$\frac{\lambda_{(1)}}{\lambda_1 + \dots + \lambda_p} \xrightarrow{d} \frac{8}{10} \frac{\Gamma_1^{-2/\alpha}}{\sum_{i=1}^{\infty} \Gamma_i^{-2/\alpha}}, \quad n \to \infty.$$

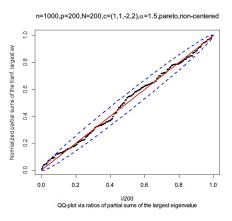
QQ-Plot via ratio of partial sums to $\lambda_{(1)}$

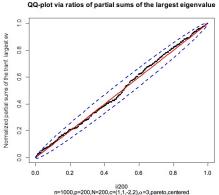
Model: $X_{i,t} = Z_{i,t} + Z_{i,t-1} - (2Z_{i-1,t} - 2Z_{i-1,t-1})$, Pareto noise wih $\alpha = 1.5$ and $\alpha = 3.0$, replications = 200



QQ-Plot via ratio of partial sums to $\lambda_{(1)}$

Model: $X_{i,t} = Z_{i,t} + Z_{i,t-1} - (2Z_{i-1,t} - 2Z_{i-1,t-1})$, Pareto noise wih $\alpha = 1.5$ and $\alpha = 3.0$, replications = 200





Example: Ratio of largest to second largest, $\lambda_{(1)}/\lambda_{(2)}$:

Recall:

$$\frac{\lambda_{(1)}}{\lambda_{(2)}} \stackrel{d}{\to} \begin{cases} 4, & \text{if } 8\Gamma_2^{-2/\alpha} < 2\Gamma_1^{-2/\alpha}, \\ \frac{\Gamma_1^{-2/\alpha}}{\Gamma_2^{-2/\alpha}}, & \text{otherwise} \end{cases}$$

It follows that

$$\lim_{n \to \infty} P(\lambda_{(1)} = 4\lambda_{(2)}) = P(2\Gamma_1^{-2/\alpha} > 8\Gamma_2^{-2/\alpha})$$

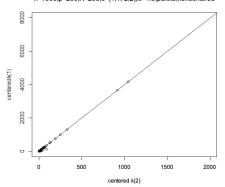
$$= P(\frac{E_1}{E_1 + E_2} < 2^{-\alpha}) = 2^{-\alpha} = .354(\alpha = 1.5)$$

and

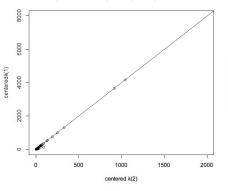
$$\lim_{n\to\infty} P(\lambda_{(1)} = 4\lambda_{(2)}|\lambda_{(1)} > a_{np}^2 x) = P(\frac{E_1}{E_1 + E_2} < 2^{-\alpha}|E_1 < 8x^{-\alpha/2}).$$

$$\lim_{n\to\infty} P(\lambda_{(1)} = 4\lambda_{(2)}) = P(\frac{E_1}{E_1 + E_2} < 2^{-\alpha}) = 2^{-\alpha} = .354(\alpha = 1.5)$$

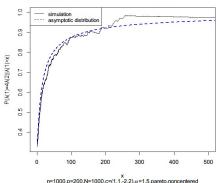
n=1000,p=200,N=200,c=(1,1,-2,2),a=1.5,pareto,noncentered



$$\lim_{n\to\infty} P(\lambda_{(1)} = 4\lambda_{(2)}) = P(\frac{E_1}{E_1 + E_2} < 2^{-\alpha}) = 2^{-\alpha} = .354(\alpha = 1.5)$$



 $P(\lambda(1)=4\lambda(2)|\lambda(1)>x)$ from simulation and asymptotic distribution



$$\lim_{n\to\infty} P(\lambda_{(1)} = 4\lambda_{(2)}|\lambda_{(1)} > a_{np}^2 x) = P(\frac{E_1}{F_1 + F_2} < 2^{-\alpha}|E_1 < 8x^{-\alpha/2}).$$

Growth conditions on p_n

• Typical entry in XX^T involves sums of terms involving squares Z_s^2 and cross-products $Z_{s_1}Z_{s_2}$ with $s_1 \neq s_2$.

Growth conditions on p_n

- Typical entry in XX^T involves sums of terms involving squares Z_s^2 and cross-products $Z_{s_1}Z_{s_2}$ with $s_1 \neq s_2$.
- From Embrechts and Goldie (1980),

$$P(|Z_1| > x) = L_1(x)x^{-\alpha}$$
 and $P(|Z_1Z_2| > x) = L_2(x)x^{-\alpha}$

where L_1 and L_2 are SV functions.

Growth conditions on p_n

- Typical entry in XX^T involves sums of terms involving squares Z_s^2 and cross-products $Z_{s_1}Z_{s_2}$ with $s_1 \neq s_2$.
- From Embrechts and Goldie (1980),

$$P(|Z_1| > x) = L_1(x)x^{-\alpha}$$
 and $P(|Z_1Z_2| > x) = L_2(x)x^{-\alpha}$

where L_1 and L_2 are SV functions.

Precise conditions on p_n rely on the asymptotic relationship between
 L₁ and L₂.

Growth conditions on p_n

- Typical entry in XX^T involves sums of terms involving squares Z_s^2 and cross-products $Z_{s_1}Z_{s_2}$ with $s_1 \neq s_2$.
- From Embrechts and Goldie (1980),

$$P(|Z_1| > x) = L_1(x)x^{-\alpha}$$
 and $P(|Z_1Z_2| > x) = L_2(x)x^{-\alpha}$

where L_1 and L_2 are SV functions.

• Precise conditions on p_n rely on the asymptotic relationship between L_1 and L_2 .

General conditions:

- For $\alpha \in (0,1)$, $\limsup_{n\to\infty} p[npP(|Z_1Z_2|>a_{np}^2)]=0$.
- For $\alpha \in (1,2)$, there exists $\gamma \in (\alpha,2)$ but arbitrarily close to α such that $\limsup_{n\to\infty} p^{\gamma} \left[n p P(|Z_1Z_2| > a_{np}^2) \right] = 0$.
- For $\alpha \in (2,4)$, there exists $\gamma \in (\alpha,4)$ arbitrarily close to α such that $\limsup_{n\to\infty} n^{\gamma/2-1} p^{\gamma} [n \, p \, P(|Z_1Z_2| > a_{np}^2)] = \infty$.

Growth conditions on p_n

Case
$$P(Z_1 > x) \sim cx^{-\alpha}$$
: Here $L_2(x) = C \log(x)$.

• For $\alpha \in (0, 2)$,

$$p_n = O(n^{\beta})$$
, for any $\beta > 0$.

Can allow for a touch faster growth rate $(p_n = O(\exp\{c_n\}))$, where $c_n^2/n \to 0$ in the $\alpha \in (0, 1)$ case.

• For $\alpha \in (2,4)$,

$$p_n = O(n^{\beta}), \quad \beta \in (0, (4-\alpha)/[2(\alpha-1)]).$$

This excludes the case $p_n \sim cn$.

Special case:
$$X_{i,t} = \theta_0 Z_{i,t} + \theta_1 Z_{i-1,t}$$

$$\sum_{t=1}^{n} X_{it}^{2} = \sum_{t=1}^{n} \underbrace{\theta_{0}^{2} Z_{i,t}^{2} + \theta_{1}^{2} Z_{i-1,t}^{2}}_{\text{tail index } \alpha/2} + 2\theta_{0}\theta_{1} \sum_{t=1}^{n} \underbrace{Z_{i,t} Z_{i-1,t}}_{\text{tail index } \alpha} = \theta_{0}^{2} D_{i} + \theta_{1}^{2} D_{i-1} + o_{p}(a_{np}^{2})$$

and

$$\sum_{t=1}^{n} X_{it} X_{i+1,t} = \theta_0 \theta_1 \sum_{t=1}^{n} Z_{i,t}^2 + o_p(a_{np}^2)$$
$$= \theta_0 \theta_1 D_i + o_p(a_{np}^2)$$

Special case:
$$X_{i,t} = \theta_0 Z_{i,t} + \theta_1 Z_{i-1,t}$$

$$\sum_{t=1}^{n} X_{it}^{2} = \sum_{t=1}^{n} \underbrace{\theta_{0}^{2} Z_{i,t}^{2} + \theta_{1}^{2} Z_{i-1,t}^{2}}_{\text{tail index } \alpha/2} + 2\theta_{0}\theta_{1} \sum_{t=1}^{n} \underbrace{Z_{i,t} Z_{i-1,t}}_{\text{tail index } \alpha}$$

$$= \theta_{0}^{2} D_{i} + \theta_{1}^{2} D_{i-1} + o_{p}(a_{np}^{2})$$

and

$$\sum_{t=1}^{n} X_{it} X_{i+1,t} = \theta_0 \theta_1 \sum_{t=1}^{n} Z_{i,t}^2 + o_p(a_{np}^2)$$
$$= \theta_0 \theta_1 D_i + o_p(a_{np}^2)$$

$$\begin{pmatrix} \mathbf{X}_{i}^{T} \mathbf{X}_{i} & \mathbf{X}_{i+1}^{T} \mathbf{X}_{i} \\ \mathbf{X}_{i+1}^{T} \mathbf{X}_{i} & \mathbf{X}_{i+1}^{T} \mathbf{X}_{i+1} \end{pmatrix} \approx \begin{pmatrix} \theta_{0}^{2} & \theta_{0} \theta_{1} \\ \theta_{0} \theta_{1} & \theta_{1}^{2} \end{pmatrix} D_{i} + \begin{pmatrix} \theta_{1}^{2} & 0 \\ 0 & 0 \end{pmatrix} D_{i-1} + \begin{pmatrix} 0 & 0 \\ 0 & \theta_{2}^{2} \end{pmatrix} D_{i+1}$$

The covariance matrix can be approximated by

$$XX^{T} = \sum_{i=1}^{p} D_{i}M_{i} + o_{p}(a_{np}^{2}),$$

where M_i is the $p \times p$ matrix consisting of all zeros except for a 2×2 matrix,

$$M = \begin{pmatrix} \theta_0^2 & \theta_0 \theta_1 \\ \theta_0 \theta_1 & \theta_1^2 \end{pmatrix},$$

whose NW corner is pinned to the i^{th} position on the diagonal. For example,

$$M_1 = \begin{pmatrix} \theta_0^2 & \theta_0\theta_1 & 0 & \cdots & 0 \\ \theta_0\theta_1 & \theta_1^2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad M_2 = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & \theta_0^2 & \theta_0\theta_1 & \cdots & 0 \\ 0 & \theta_0\theta_1 & \theta_1^2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Denote the order statistics of the D_i 's by $D_{(1)} \ge D_{(2)} \ge \cdots \ge D_{(p)}$ and write $D_{L_i} = D_{(i)}$.

Then,

• $XX^T = \sum_{i=1}^p D_{L_i} M_{L_i} + o_p(a_{np}^2)$ in the sense that

$$a_{np}^{-2}||XX^T - \sum_{i=1}^p D_{L_i}M_{L_i}||_2 \stackrel{P}{\to} 0,$$

where

 $||A||_2 = \sqrt{\text{largest eigenvalue of } AA^T \text{ (operator 2-norm)}}.$

• For $k \to \infty$ sufficiently slow,

$$a_{np}^{-2} \left\| XX^T - \sum_{i=1}^k D_{L_i} M_{L_i} \right\|_2 \stackrel{P}{\to} 0.$$

• Since the D_s are iid, (L_1, \ldots, L_p) is a random permutation of $(1, \ldots, p)$ and hence the set $A_k = \{|L_i - L_j| > 1, i, j = 1, \ldots, k, i \neq j\}$ has probability converging to 1 provided $k^2 = o(p)$.

• For $k \to \infty$ sufficiently slow,

$$a_{np}^{-2} \left\| XX^T - \sum_{i=1}^k D_{L_i} M_{L_i} \right\|_2 \stackrel{P}{\to} 0.$$

- Since the D_s are iid, (L_1, \ldots, L_p) is a random permutation of $(1, \ldots, p)$ and hence the set $A_k = \{|L_i L_j| > 1, i, j = 1, \ldots, k, i \neq j\}$ has probability converging to 1 provided $k^2 = o(p)$.
- On the set A_k , the matrix $\sum_{i=1}^k D_{L_i} M_{L_i}$ is block diagonal with nonzero eigenvalues $D_{L_i} v_1$, $i=1,\ldots,k$. Here we used the fact that M_{L_i} is a rank 1 matrix with nonzero ev equal to $v_1 = \theta_0^2 + \theta_1^2$.

• For $k \to \infty$ sufficiently slow,

$$a_{np}^{-2} \left\| XX^T - \sum_{i=1}^k D_{L_i} M_{L_i} \right\|_2 \stackrel{P}{\to} 0.$$

- Since the D_s are iid, (L_1, \ldots, L_p) is a random permutation of $(1, \ldots, p)$ and hence the set $A_k = \{|L_i L_j| > 1, i, j = 1, \ldots, k, i \neq j\}$ has probability converging to 1 provided $k^2 = o(p)$.
- On the set A_k , the matrix $\sum_{i=1}^k D_{L_i} M_{L_i}$ is block diagonal with nonzero eigenvalues $D_{L_i} v_1$, $i=1,\ldots,k$. Here we used the fact that M_{L_i} is a rank 1 matrix with nonzero ev equal to $v_1 = \theta_0^2 + \theta_1^2$.
- By Weyl's inequality

$$a_{np}^{-2} \max_{i=1,\dots,k} |\lambda_{(i)} - D_{L_i} v_1| \le a_{np}^{-2} \left\| X X^{\mathsf{T}} - \sum_{i=1}^k D_{L_i} M_{L_i} \right\|_2 \overset{P}{\to} 0.$$

Elements of the proof II (cont)

• Large deviations: $D_s^{(n)} = \sum_{t=1}^n Z_{s,t}^2$.

$$\sup_{x>b_n}\left|\frac{P(D_1>x)}{nP(Z_1^2>x)}-1\right|\to 0\,,$$

where $b_n/a_n^2 \to \infty$.

Classical EVT plus large deviations implies:

$$\sum_{i=1}^p \epsilon_{a_{np}^{-2}\lambda_i} \sim \sum_{i=1}^p \epsilon_{a_{np}^{-2}\mathbf{v}_1D_i} \overset{d}{\to} N = \sum_{i=1}^\infty \epsilon_{\mathbf{v}_1\Gamma_i^{-2/\alpha}} \,.$$

- Important tool: $||A||_2 = \sqrt{\text{largest eigenvalue of } AA^T}$ (operator 2-norm).
- Define $D \in \mathbb{R}^{p \times p}$ by $D_{ii} = (XX^T)_{ii}$ and $D_{ij} = 0$ for $i \neq j$. Then

$$a_{np}^{-2} \| XX^T - D \|_2 \stackrel{P}{\to} 0 \text{ as } p, n \to \infty.$$

By Weyl's inequality

$$a_{np}^{-2} \left| \lambda_{(1)} - \max_{1 \le i \le p} \sum_{t=1}^{n} X_{it}^{2} \right| \le a_{np}^{-2} \left\| XX^{T} - D \right\|_{2} \stackrel{P}{\to} 0 \text{ as } p, n \to \infty$$

and likewise for $\lambda_{(2)}, \lambda_{(3)}, \dots$

Hence, we "only" have to derive the extremal behavior of the diagonal elements $(\sum_{t=1}^{n} X_{it}^2)_i$ of XX^T .

The separable case

Suppose h(k, l) is separable, i.e., $h(k, l) = \theta_k c_l$ and

$$X_{it} = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \theta_k c_l Z_{i-k,t-j}.$$

In this case,

$$\mathbf{h}_i^T \mathbf{h}_j = \theta_i \theta_j C, \quad C = \sum_{l=0}^{\infty} c_l^2.$$

The matrix $M = H^T H$ is then rank 1 with eigenvalue $v_1 = \Theta C$ $(\Theta = \sum_{i=0}^{\infty} \theta_i^2)$. Limits same as IID case, namely

The separable case

Suppose h(k, l) is separable, i.e., $h(k, l) = \theta_k c_l$ and

$$X_{it} = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \theta_k c_l Z_{i-k,t-j}.$$

In this case,

$$\mathbf{h}_i^T \mathbf{h}_j = \theta_i \theta_j C, \quad C = \sum_{l=0}^{\infty} c_l^2.$$

The matrix $M = H^T H$ is then rank 1 with eigenvalue $v_1 = \Theta C$ $(\Theta = \sum_{i=0}^{\infty} \theta_i^2)$. Limits same as IID case, namely

$$N_p := \sum_{i=1}^p \epsilon_{a_{np}^{-2}\lambda_i} \stackrel{d}{ o} N = \sum_{i=1}^\infty \epsilon_{\Theta C \Gamma_i^{-2/\alpha}},$$

The separable case

Suppose h(k, l) is separable, i.e., $h(k, l) = \theta_k c_l$ and

$$X_{it} = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \theta_k c_l Z_{i-k,t-j}.$$

In this case,

$$\mathbf{h}_i^T \mathbf{h}_j = \theta_i \theta_j C, \quad C = \sum_{l=0}^{\infty} c_l^2.$$

The matrix $M = H^T H$ is then rank 1 with eigenvalue $v_1 = \Theta C$ $(\Theta = \sum_{i=0}^{\infty} \theta_i^2)$. Limits same as IID case, namely

$$N_p := \sum_{i=1}^p \epsilon_{a_{np}^{-2}\lambda_i} \stackrel{d}{ o} N = \sum_{i=1}^\infty \epsilon_{\Theta C \Gamma_i^{-2/\alpha}} \,,$$

$$\frac{\lambda_{(1)}}{\lambda_1 + \dots + \lambda_p} \xrightarrow{d} \frac{\Gamma_1^{-2/\alpha}}{\sum_{i=1}^{\infty} \Gamma_i^{-2/\alpha}}, \quad n \to \infty.$$

Stochastic volatility models—special case

Suppose the rows are independent copies of the SV process given by

$$X_t = \sigma_t Z_t$$

where (Z_t) is iid RV (α) and $(\ln \sigma_t^2)$ is a purely nondeterministic stationary Gaussian process (this can be weakened), independent of (Z_t) .

Theorem Suppose $p_n, n \to \infty$ such that

$$\limsup_{n\to\infty}\frac{p_n}{n^\beta}<\infty\ ,\ \ \text{for some}\ \beta>0\ \text{satisfying}$$

- \bullet $\beta < \infty$ if $\alpha \in (0,1)$, and

Then, we have the point process convergence,

$$N_p := \sum_{i=1}^p \epsilon_{a_{np}^{-2}\lambda_{(i)}} \stackrel{d}{ o} N = \sum_{i=1}^\infty \epsilon_{\Gamma_i^{-2/\alpha}} \,.$$

Stochastic volatility models—special case

Point process convergence:

$$N_p := \sum_{i=1}^p \epsilon_{a_{np}^{-2}\lambda_{(i)}} \stackrel{d}{\to} N = \sum_{i=1}^\infty \epsilon_{\Gamma_i^{-2/\alpha}}.$$

Remarks:

- Proof uses a large deviation result of Davis and Hsing (1995); see also Mikosch and Wintenberger (2012).
- ullet Likely that we can weaken the restriction on eta
- Similar results hold for GARCH processes if X_t is RV(α) with $\alpha \in (0,2)$.

References

- Richard A. Davis, Oliver Pfaffel and Robert Stelzer
 Limit Theory for the largest eigenvalues of sample covariance matrices with heavy-tails. Stoch. Proc. Appl. 24, 2014, 18–50.
 - Richard A. Davis, Thomas Mikosch, and Oliver Pfaffel Asymptotic Theory for the Sample Covariance Matrix of a Heavy-Tailed Multivariate Time Series. Preprint 2013.
- Ian M. Johnstone
 On the Distribution of the Largest Eigenvalue in Principal Components
 Analysis. Ann. Statist., 2001, 29, 295-327.
- Alexander Soshnikov
 Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles.
 Lect. Notes in Phys., 2006, 690, 351-364.
 - Antonio Auffinger, Gérard Ben Arous, and Sandrine Péché Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Ann. Inst. H. Poincaré Probab. Statist., 2009, 45, 589-610.