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1. Introduction

A procedure of financial derivative pricing:

1 Collect data of the underlying assets

2 Model fitting for the prices of the underlying assets under the
physical measure (P-model)

3 Transform the fitted model to a risk-neutral counterpart
(Q-model)

4 Compute the no-arbitrage price of a contingent claim under
the Q-model

Data → P-model → Q-model → Pricing

Huang, S. F. EPMS 3/57
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1. Introduction (BS)

Data → P-model → Q-model → Pricing

BS model under the P measure:

dSt = µStdt + σStdWt

or
d log St = (µ− 0.5σ2)dt + σdWt

Goal: Find a risk-neutral measure Q such that {e−rtSt} is a
Q-martingale.

Huang, S. F. EPMS 4/57
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1. Introduction (BS)

Theorem (Girsanov’s Theorem)

Let Wt be a Brownian motion on a space (Ω,F ,P) with
information set Ft . Let

Λt = exp
{∫ t

0
θ(s)dWs −

1

2

∫ t

0
θ2(s)ds

}
, t ≤ T ,

where θ(t) is a stochastic process satisfying

EP
{

exp
( ∫ t

0 θ
2(s)ds

)}
<∞. Then,

1 Λt is a positive P-martingale.

2 If dQ = ΛTdP, then EQ(X ) = EP(ΛTX ).

3 WQ
t = Wt −

∫ t
0 θ(s)ds is a Q-Brownian motion.

Huang, S. F. EPMS 5/57
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1. Introduction (BS)

In particular, if

θ(s) =
µ− r

σ
,

then

Λt = exp
{µ− r

σ
Wt −

1

2

(µ− r

σ

)2
t
}
, t ≤ T ,

and

WQ
t = Wt +

(µ− r

σ

)
t

is a Brownian motion under Q.

The risk-neutral Q model is

d log St = (r − 0.5σ2)dt + σdWQ
t

Huang, S. F. EPMS 6/57
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1. Introduction (BS)

Under the Q model, {e−rtSt} and {e−rt ft} are both
Q-martingales, where ft denotes the value of a contingent
claim at time t. Therefore,

f0 = e−rTEQ(fT ),

where fT is the payoff of the contingent claim.

European call option: fT = (ST − K )+

Lookback call option: fT = ST −min0≤t≤T St

Up-and-in call option: fT = (ST − K )+δ{max0≤t≤T St≥B}

Huang, S. F. EPMS 7/57
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1. Introduction (GARCH Pricing)

Data → P-model → Q-model → Pricing

Particular features of financial data: non-normality, heavy tail,
non-constant volatility, volatility clustering, asymmetry
distribution,...

BS is not suitable to be directly used to depict the dynamics
of the prices of the underlying asset.

Huang, S. F. EPMS 8/57
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1. Introduction (GARCH Pricing)

Two pricing approaches have been adopted in practice:
Estimation and Calibration.

1 Estimation approach: fits the selected model (under P) to
historical stock prices, transforms the model to the one defined
under the risk-neutral measure Q, and finally performs the
numerical evaluation of the option.

2 Calibration approach: fits the selected model (under Q) to
currently observed market prices and performs the numerical
evaluation of the option.

We demonstrate the first approach for GARCH models.

Huang, S. F. EPMS 9/57
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1. Introduction (GARCH Pricing)

Data → P-model → Q-model → Pricing

Duan (1995)’s P model: Rt = log(St/St−1){
Rt = r + λσt − 0.5σ2

t + σtεt , εt ∼ N(0, 1)

σ2
t = α0 + α1σ

2
t−1ε

2
t−1 + βσ2

t−1

In finance, the parameter λ is often called the market price of
risk or the Sharpe ratio.

BS model:

d log St = (µ− 0.5σ2)dt + σdWt

Huang, S. F. EPMS 10/57
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1. Introduction (GARCH Pricing)

Data → P-model → Q-model → Pricing

The risk-neutral model is based on the following properties of
asset prices:

1 Martingale property under Q: EQ(er(t+1)St+1 | Ft) = ertSt .

2 Preserving local higher moments (the type of distribution): As
we are considering GARCH models with normal innovations, it
suffices to preserve the local variance.

varQ
(

log
St+1

St
| Ft−1

)
= varP

(
log

St+1

St
| Ft−1

)
.

Huang, S. F. EPMS 11/57
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1. Introduction (GARCH Pricing)

Data → P-model → Q-model → Pricing

Duan (1995)’s P model:{
Rt = r + λσt − 0.5σ2

t + σtεt , εt ∼ N(0, 1)

σ2
t = α0 + α1σ

2
t−1ε

2
t−1 + βσ2

t−1

The risk-neutral Q model obtained by the locally risk-neutral
valuation relationship with an expected utility maximizer: let
ξt = λ+ εt and then{

Rt = r − 0.5σ2
t + σtξt , ξt ∼ N(0, 1)

σ2
t = α0 + α1σ

2
t−1(ξt−1 − λ)2 + βσ2

t−1

BS Q-model: d log St = (r − 0.5σ2)dt + σdWQ
t

Huang, S. F. EPMS 12/57
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1. Introduction (con.)

Data → P-model → Q-model → Pricing

We don’t have an explicit representation for the distribution of
RT (or ST ). Thus, the no-arbitrage price is approximated by

f0 = e−rTEQ(fT ) ≈ e−rT
1

n

n∑
i=1

fT (St,i , 0 ≤ t ≤ T ),

where the random paths of the stock prices St,i are generated
independently from the Q model for i = 1, . . . , n.

This is called the standard Monte Carlo simulation method.

Huang, S. F. EPMS 13/57
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1. Introduction (con.)

Data → P-model → Q-model → Pricing

Monte Carlo simulation (MCS) is a natural tool and has been
commonly used for solving this problem (Boyle, 1977; Kemna
and Vorst, 1990; Duan, 1995; Boyle et al., 1997).

The computational effort of the standard MCS usually
increases dramatically if high precision in option pricing is
required.

Huang, S. F. EPMS 14/57
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1. Introduction (con.)

Data → P-model → Q-model → Pricing

Duan and Simonato (1998) proposed an empirical martingale
simulation (EMS) to improve the efficiency of the MCS under
a risk-neutral framework.

The advantage of the EMS is that it can be easily
incorporated into the widely known variance reduction
procedures, such as antithetic and control-variate simulations,
and it is truly simple and practically requires no additional
programming efforts.

Huang, S. F. EPMS 15/57
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1. Introduction (con.)

Data → P-model → Q-model → Pricing
Data → P-model → → → → → Pricing

However, to obtain the explicit expression of a risk-neutral
model is not convenient when dealing with a complex model.

This study proposes a modification of the EMS from the
framework under a risk-neutral measure to a dynamic P
measure. Thus, we call it EPMS.

Huang, S. F. EPMS 16/57
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2 EPMS

Let ΛT denote a Radon-Nikodým derivative of a Q measure
with respect to the dynamic P measure.

For any given payoff fT of a contingent claim, note that

EQ(fT ) = EP(fTΛT ),

where dQ = ΛTdP.

Generate random paths under P measure (i.e., from the
physical model)

Huang, S. F. EPMS 17/57



Introduction
EPMS Method

Asymptotic Results
Simulation Study

Conclusion

2 EPMS (con.)

1. Generate n random paths of the stock prices, St,i ,
i = 1, 2, . . . , n, t = 0, 1, . . . ,T , from the dynamic GARCH
model.

Standard Monte Carlo simulation:

path 1 S0,1 S1,1 S2,1 · · · ST ,1

path 2 S0,2 S1,2 S2,2 · · · ST ,2

...
...

path n S0,n S1,n S2,n · · · ST ,n

Huang, S. F. EPMS 18/57
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2 EPMS (con.)

2. The first adjusting step: Assume Λt being a change of
measure process and denote Λt,i = Λt(Su,i , 0 ≤ u ≤ t). Let
Λ̃0,i = Λ0,i = 1 and define Λ̃t,i , i = 1, . . . , n, iteratively by

Λ̃t,i =
Wi (t, n)

W0(t, n)
,

where Wi (t, n) =
Λ̃t−1,i

Λt−1,i
Λt,i and W0(t, n) = 1

n

∑n
i=1 Wi (t, n).

Huang, S. F. EPMS 19/57
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2 EPMS (con.)

3. The second adjusting step: Let S̃0,i = S0 and define the
empirical martingale stock prices S̃t,i , i = 1, . . . , n, iteratively
by

S̃t,i = S0
Zi (t, n)

Z0(t, n)
,

where Zi (t, n) =
S̃t−1,i

St−1,i
St,i and

Z0(t, n) = e−rt

n

∑n
i=1 Zi (t, n)Λ̃t,i .

Huang, S. F. EPMS 20/57
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2 EPMS (con.)

MC path 1 S0,1 (S1,1,Λ1,1)

path 2 S0,2 (S1,2,Λ1,2)

...
...

...

path n S0,n (S1,n,Λ1,n)

EPMS path 1 S̃0,1 (S̃1,1, Λ̃1,1)

path 2 S̃0,2 (S̃1,2, Λ̃1,2)

...
...

...

path n S̃0,n (S̃1,n, Λ̃1,n)

Huang, S. F. EPMS 21/57
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2 EPMS (con.)

MC path 1 S0,1 (S1,1,Λ1,1) (S2,1,Λ2,1)

path 2 S0,2 (S1,2,Λ1,2) (S2,2,Λ2,2)

...
...

...

path n S0,n (S1,n,Λ1,n) (S2,n,Λ2,n)

EPMS path 1 S̃0,1 (S̃1,1, Λ̃1,1) (S̃2,1, Λ̃2,1)

path 2 S̃0,2 (S̃1,2, Λ̃1,2) (S̃2,2, Λ̃2,2)

...
...

...

path n S̃0,n (S̃1,n, Λ̃1,n) (S̃2,n, Λ̃2,n)

Huang, S. F. EPMS 22/57
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2 EPMS (con.)

MC path 1 S0,1 (S1,1,Λ1,1) (S2,1,Λ2,1) (S3,1,Λ3,1)

path 2 S0,2 (S1,2,Λ1,2) (S2,2,Λ2,2) (S3,2,Λ3,2)

...
...

...

path n S0,n (S1,n,Λ1,n) (S2,n,Λ2,n) (S3,n,Λ3,n)

EPMS path 1 S̃0,1 (S̃1,1, Λ̃1,1) (S̃2,1, Λ̃2,1) (S̃3,1, Λ̃3,1)

path 2 S̃0,2 (S̃1,2, Λ̃1,2) (S̃2,2, Λ̃2,2) (S̃3,2, Λ̃3,2)

...
...

...

path n S̃0,n (S̃1,n, Λ̃1,n) (S̃2,n, Λ̃2,n) (S̃3,n, Λ̃3,n)

Huang, S. F. EPMS 23/57
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2 EPMS (con.)

MC path 1 S0,1 · · · (ST−1,1,ΛT−1,1) (ST ,1,ΛT ,1)

path 2 S0,2 · · · (ST−1,2,ΛT−1,2) (ST ,2,ΛT ,2)

...
...

...

path n S0,n · · · (ST−1,n,ΛT−1,n) (ST ,n,ΛT ,n)

EPMS path 1 S̃0,1 · · · (S̃T−1,1, Λ̃T−1,1) (S̃T ,1, Λ̃T ,1)

path 2 S̃0,2 · · · (S̃T−1,2, Λ̃T−1,2) (S̃T ,2, Λ̃T ,2)

...
...

...

path n S̃0,n · · · (S̃T−1,n, Λ̃T−1,n) (S̃T ,n, Λ̃T ,n)

Huang, S. F. EPMS 24/57
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2 EPMS (con.)

4. Approximate f0 by

f̃0 = e−rT
1

n

n∑
i=1

f̃T ,i Λ̃T ,i , (vs. f0 = EP(e−rT fTΛT ))

where f̃T ,i = fT (S̃t,i ; t = 0, 1, . . . ,T ).

Huang, S. F. EPMS 25/57



Introduction
EPMS Method

Asymptotic Results
Simulation Study

Conclusion

2 EPMS (con.)

Both Λ̃t,i and S̃t,i satisfy the “empirical P-martingale
property”:

Λ̃0,i =
1

n

n∑
i=1

Λ̃t,i (vs. Λ0 = EP(Λt)),

and

S0 =
1

n

n∑
i=1

e−rt S̃t,i Λ̃t,i (vs. S0 = EP(e−rtStΛt)),

for any integer n and t = 1, . . . ,T .

Huang, S. F. EPMS 26/57
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Asymp. dist. of the EPMS with continuous payoffs
Asymp. dist. of the EPMS with discontinuous payoffs

3 Asymptotic Results

3.1 Strong consistency of the EPMS

Theorem 1

Let {e−rtStΛt} be a positive P-martingale process over the time
index set {t : t = 0, 1, . . . ,T}. Suppose that the payoff function,
f (S1, . . . ,ST ), satisfies EQ(|f (S1, . . . ,ST )|) <∞ and is Lipschitz
continuous. Then we have

n−1
n∑

i=1

{f (S̃1,i , ..., S̃T ,i ) Λ̃T ,i} → E0{f (S1, ...,ST ) ΛT},

almost surely, as n→∞, where Λ̃t,i and S̃t,i are generated by the
EPMS.

Huang, S. F. EPMS 27/57
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Asymp. dist. of the EPMS with discontinuous payoffs

3.1 Strong consistency of the EPMS (con.)

For example, the payoff functions of European calls,
(ST − K )+, are Lipschitz continuous.

However, some payoff functions of contingent claims do not
satisfy the Lipschitz continuity, like the digital,
f (ST ) = δ{ST>K}, and barrier
f (St , 0 ≤ t ≤ T ) = (ST − K )+δ{Smax≥B}, options.

Huang, S. F. EPMS 28/57
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Asymp. dist. of the EPMS with continuous payoffs
Asymp. dist. of the EPMS with discontinuous payoffs

3.1 Strong consistency of the EPMS (con.)

In order to accommodate the case of discontinuous payoff
functions, the Lipschitz continuity is replaced by the following
generic Lipschitz condition.

Definition 1

A function f (x), mapping from Rm
+ to R, is said to satisfy the

generic Lipschitz condition if there exists q <∞ such that

|f (x)| < q(1 + ||x ||)

for any x ∈ Rm
+ , where || · || stands for the Euclidean norm, and

there exists a finite partition, A`, ` = 1, . . . , k , of its domain such
that each A` is a connected set and f (·) is Lipschitz continuous
over any A`.

Huang, S. F. EPMS 29/57
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Asymp. dist. of the EPMS with discontinuous payoffs

3.1 Strong consistency of the EPMS (con.)

Theorem 2

Let {e−rtStΛt} be a positive P-martingale process over the time
index set {t : t = 0, 1, . . . ,T}. If the payoff function,
f (S1, . . . ,ST ), satisfies EQ(|f (S1, . . . ,ST )|) <∞ and the generic
Lipschitz condition, and the multivariate distribution of
(S1, . . . ,ST ) under Q has a bounded density function, then as
n→∞,

n−1
n∑

i=1

{f (S̃1,i , . . . , S̃T ,i ) Λ̃T ,i} → E0{f (S1, . . . ,ST ) ΛT},

almost surely, where Λ̃t,i and S̃t,i are generated by the EPMS.

Huang, S. F. EPMS 30/57
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3.2 Asymp. dist. of the EPMS with piecewise smooth and

continuous payoffs

Let f : < → < be a piecewise smooth and continuous
function:

f (x) =
m+1∑
j=1

fj(x)δAj
(x), (1)

where Aj ’s form a partition of <.

A1 = (−∞, k1), Aj = [kj−1, kj), for j = 2, 3, . . . ,m + 1 and
km+1 =∞, and δA(·) is an indicator function.

fj ’s have continuous first order derivatives and
fj(kj) = fj+1(kj), j = 1, . . . ,m, to ensure the continuity of f .

Huang, S. F. EPMS 31/57
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3.2 Asymp. dist. of the EPMS with continuous payoffs (con.)

We use f ′(x) to denote the right first derivative and write

f ′(x) =
m+1∑
j=1

f ′j (x)δAj
(x). (2)

Definition 2

A function f : < → < is said to have a polynomial growth rate q if
there exist a constant C > 0 and a positive integer q such that for
any real number x ∈ <, |f (x)| ≤ C (1 + |x |q).

Huang, S. F. EPMS 32/57
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3.2 Asymp. dist. of the EPMS with continuous payoffs (con.)

Theorem 3

Let the asset price ST be a positive random variable with a
continuous distribution, ΛT be a Radon-Nikodým derivative, and
the payoff function f (ST ) be piecewise smooth and continuous as
defined in (1). If f ′(·) exists and has a polynomial growth rate q,

E(S
2(q+1)
T Λ2

T ) <∞ and E(Λ2
T ) <∞, then

√
n(C

(n)
EPMS − C )

L−→ N (0,V ), as n→∞,

where C is the true derivative price,
L−→ denotes convergence in

distribution, and

Huang, S. F. EPMS 33/57
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3.2 Asymp. dist. of the EPMS with continuous payoffs (con.)

Theorem 3 (con.)

V = e−2rT
(
Var[f (ST )ΛT ] + Var[STΛT ]Φ2 + Var[ΛT ]Ψ2

−2{ΦCov[f (ST )ΛT ,STΛT ] + ΨCov[f (ST )ΛT ,ΛT ]

−ΦΨCov[STΛT ,ΛT ]}
)
, (3)

in which Φ = e−rTE[f ′(ST )STΛT ]/S0, and
Ψ = E[f (ST )ΛT ]− S0e

rTΦ.

Huang, S. F. EPMS 34/57
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3.3 Asymp. dist. of the EPMS with piecewise smooth and

discontinuous payoffs

In financial markets, there are derivative contracts with
discontinuous payoffs such as the binary (digital) options.

Yuan and Chen (2009): a conjecture for the asymptotic
distribution of the EMS estimator when the payoffs are
discontinuous.

We derive the asymptotic distribution of the EPMS estimator
when f is discontinuous.

Huang, S. F. EPMS 35/57
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3.3 Asymp. dist. of the EPMS with discontinuous payoffs

(con.)

Theorem 4

Let the asset price ST be a positive continuous random variable
with density function p(·,T ), ΛT be a Radon-Nikodým derivative,
and f (ST ) be a piecewise smooth and discontinuous payoff
function that jumps at ki with jump height Ji , i = 1, . . . ,m. If
f ′(·) exists and has a polynomial growth rate q,

E(S
2(q+1)
T Λ2

T ) <∞ and E(Λ2
T ) <∞, then

√
n(C

(n)
EPMS − C )

L−→ N (0,V ∗), as n→∞,

where C is the true derivative price and

Huang, S. F. EPMS 36/57
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3.3 Asymp. dist. of the EPMS with discontinuous payoffs

(con.)

Theorem 4 (con.)

V ∗ = e−2rT
(
Var[f (ST )ΛT ] + Var[STΛT ]Φ∗2 + Var[ΛT ]Ψ∗2

−2{Φ∗Cov[f (ST )ΛT , STΛT ] + Ψ∗Cov[f (ST )ΛT ,ΛT ]

−Φ∗Ψ∗Cov[STΛT ,ΛT ]}
)
, (4)

in which Φ∗ = Φ + 1
S0erT

∑m
i=1 Ji ki ΛT (ki )× p(ki ,T ) and

Ψ∗ = E[f (ST )ΛT ]− S0e
rTΦ∗.

Huang, S. F. EPMS 37/57
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3.3 Asymp. dist. of the EPMS with discontinuous payoffs

(con.)

If there is no jump, then Ji ’s are zero and the V ∗ in Theorem
4 reduces to V in Theorem 3.

If the measures P and Q coincide, i.e., ΛT = 1, then the
EPMS reduces to the EMS.

Huang, S. F. EPMS 38/57
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4 Simulation Study

GARCH models with normal, shifted gamma and double
exponential innovations are considered.

The change of measure process: the Esscher transform

The coverage rates of the EPMS price estimator are
investigated when the payoff are continuous or discontinuous.

Huang, S. F. EPMS 39/57
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4 Simulation Study (con.)

Esscher transform

Let the density of the log returns under the P measure be
g(x) and the density of the log returns under the Q measure
be

g(x ; θ) ∝ eθxg(x)

The parameter θ is chosen such that e−rtSt is a Q martingale.

Huang, S. F. EPMS 40/57
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4.1 GARCH-N model

Duan (1995):{
Rt = r + λσt − 0.5σ2

t + σtεt , εt ∼ N(0, 1)

σ2
t = α0 + α1σ

2
t−1ε

2
t−1 + βσ2

t−1

(5)

Proposition 1

For Model (5), the change of measure process Λess
t derived by the

Esscher transform is

Λess
t =

t∏
k=1

exp{−[λ2σ2
k + 2λσk(Rk − µk)]/(2σ2

k)},

where µk = r + λσk − 0.5σ2
k .
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4.1 GARCH-N model (con.)

The risk-neutral GARCH-N counterpart of Model (5) under
the Qess measure is written as follows,{

Rt = r − 0.5σ2
t + σtξt , ξt ∼ N(0, 1)

σ2
t = α0 + α1σ

2
t−1(ξt−1 − λ)2 + βσ2

t−1

(6)

which is the same as Duan (1995)’s result derived from the
locally risk-neutral valuation relationship with an expected
utility maximizer.

Huang, S. F. EPMS 42/57



Introduction
EPMS Method

Asymptotic Results
Simulation Study

Conclusion

GARCH-N model
GARCH-SG model
GARCH-DE model
Coverage rates of the EPMS

4.1 GARCH-N model (con.)

Parameter setting (Duan and Simonato, 1998):
S0=100, r=0.10 (annualized and 1 year = 365 days),
α0 = 0.00001, α1 = 0.20, β1 = 0.70, λ = 0.01, T = 1, 3, 9
months, S0/K = 0.9, 1, 1.1, and σ2

1 = α0/(1− α1 − β1).

Denote the ratios of the standard deviations obtained by the
MCS, EMS and EPMS with 10,000 sample paths and 100
replications as

RS1 ≡ std.(MCS)/ std.(EPMS)

and
RS2 ≡ std.(EMS)/ std.(EPMS).
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4.1 GARCH-N model (con.)

Table: European call option prices and the ratios of the standard
deviations, RS1 and RS2, for a GARCH-N model.

Maturity = 1 Month Maturity = 3 Months Maturity = 9 Months
S0/K 1.1 1.0 0.9 1.1 1.0 0.9 1.1 1.0 0.9

European call
MCS mean 9.9235 2.5352 0.1164 11.7523 5.0073 1.0616 16.7597 10.4681 5.1226

std. 0.0536 0.0338 0.0087 0.0898 0.0665 0.0307 0.1335 0.1132 0.0837
EMS mean 9.9208 2.5335 0.1164 11.7573 5.0108 1.0626 16.7600 10.4683 5.1230

std. 0.0061 0.0172 0.0088 0.0162 0.0301 0.0253 0.0322 0.0470 0.0524
EPMS mean 9.9208 2.5335 0.1163 11.7570 5.0103 1.0626 16.7596 10.4679 5.1224

std. 0.0066 0.0169 0.0082 0.0175 0.0305 0.0238 0.0363 0.0507 0.0529
RS1 8.1385 1.9933 1.0585 5.1406 2.1786 1.2889 3.6774 2.2334 1.5814
RS2 0.9295 1.0133 1.0709 0.9244 0.9858 1.0619 0.8872 0.9270 0.9904
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4.1 GARCH-N model (con.)

The EPMS is comparable to the EMS and the relative
efficiency of the EPMS against the MCS increases as the time
to maturity increases in most cases.
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4.2 GARCH-SG model

Siu, Tong and Yang (2004):{
Rt = r + λσt − 0.5σ2

t + σtεt , εt ∼ SG (0, 1, a)

σ2
t = α0 + α1σ

2
t−1ε

2
t−1 + βσ2

t−1

(7)

Proposition 2

For Model (7), the change of measure process Λess
t derived by the

Esscher transform is

Λess
t =

t∏
k=1

(1− δ∗kσk/
√
a)a exp{δ∗k(Rk − µk +

√
aσk)},

where µk = r + λσk − 0.5σ2
k , δ∗k =

√
a/σk − bqk and

bqk = [1− exp{(µk − r −
√
aσk)/a}]−1.
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4.2 GARCH-SG model (con.)

The risk-neutral GARCH-SG counterpart of Model (7) under
the Qess measure is written as follows,{

Rt = r + λσt − 0.5σ2
t −
√
a(σt − σ∗t ) + σ∗t ξ

∗
t , ξ

∗
t ∼ SG (0, 1, a)

σ2
t = α0 + α1{σ∗t−1ξ

∗
t−1 +

√
a(σ∗t−1 − σt−1)}2 + βσ2

t−1

(8)
where σ∗t =

√
a/bqt and bqt are defined as in Proposition 2.
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4.2 GARCH-SG model (con.)

Table: European call option prices and the ratios of the standard
deviations, RS1 and RS2, for a GARCH-SG model.

Maturity = 1 Month Maturity = 3 Months Maturity = 9 Months
S0/K 1.1 1.0 0.9 1.1 1.0 0.9 1.1 1.0 0.9

European call
MCS mean 9.9075 2.5273 0.1367 11.7330 5.0012 1.0905 16.7166 10.4327 5.1232

std. 0.0497 0.0359 0.0103 0.0832 0.0627 0.0322 0.1395 0.1185 0.0856
EMS mean 9.9098 2.5310 0.1332 11.7287 4.9953 1.0911 16.7200 10.4380 5.1268

std. 0.0061 0.0152 0.0102 0.0140 0.0314 0.0293 0.0301 0.0433 0.0490
EPMS mean 9.9094 2.5283 0.1328 11.7286 4.9981 1.0894 16.7193 10.4348 5.1244

std. 0.0066 0.0178 0.0096 0.0183 0.0311 0.0254 0.0335 0.0455 0.0501
RS1 7.5612 2.0152 1.0812 4.5442 2.0115 1.2660 4.1642 2.6046 1.7068
RS2 0.9255 0.8528 1.0719 0.7643 1.0091 1.1523 0.8996 0.9515 0.9780
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4.2 GARCH-DE model

Consider the following GARCH model:{
Rt = r + λσt − 0.5σ2

t + σtεt , εt ∼ DE (0, 1)

σ2
t = α0 + α1σ

2
t−1ε

2
t−1 + βσ2

t−1

(9)

Proposition 2

For Model (9), the change of measure process Λess
t derived by the

Esscher transform is

Λess
t =

t∏
k=1

[1− 0.5 (δ∗kσk)2] exp{δ∗k(Rk − µk)},

where µk = r + λσk − 0.5σ2
k ,

δ∗k = {−σk + [akσ
2
k + 2(ak − 1)2]0.5}/[σk(1− ak)] and

ak = exp(λσk − 0.5σ2
k).
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4.2 GARCH-DE (con.)

Table: European call option prices and the ratios of the standard
deviations, RS1, for a GARCH-DE model.

Maturity = 1 Month Maturity = 3 Months Maturity = 9 Months
S0/K 1.1 1.0 0.9 1.1 1.0 0.9 1.1 1.0 0.9

European call
MCS mean 9.9344 2.4539 0.1355 11.7512 4.9143 1.0202 16.7253 10.3705 4.9977

std. 0.0509 0.0356 0.0114 0.0810 0.0607 0.0309 0.1369 0.1153 0.0844
EPMS mean 9.9418 2.4583 0.1357 11.7615 4.9214 1.0222 16.7407 10.3828 5.0054

std. 0.0097 0.0176 0.0107 0.0185 0.0275 0.0240 0.0331 0.0442 0.0476
RS1 5.2542 2.0188 1.0679 4.3832 2.2113 1.2865 4.1406 2.6098 1.7726

Huang, S. F. EPMS 50/57



Introduction
EPMS Method

Asymptotic Results
Simulation Study

Conclusion

GARCH-N model
GARCH-SG model
GARCH-DE model
Coverage rates of the EPMS

4.3 Coverage rates of the EPMS

Self-quanto options with payoff f (ST ) = ST max(ST − K , 0)
under the GARCH-N model: investigate the finite sample
performance of Theorem 3

The asymptotic confidence interval of confidence level 1− α
for the EPMS price estimator:[

C
(n)
EPMS − zα/2

√
V , C

(n)
EPMS + zα/2

√
V
]
.
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4.3 Coverage rates of the EPMS (con.)

Table: Coverage rates of the EPMS for computing self-quanto calls with
the GARCH-N model.

n = 500 sample paths
Maturity= 30 days Maturity= 90 days Maturity= 270 days

S0/K 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90
25% cov. rate 0.232 0.234 0.257 0.257 0.249 0.244 0.236 0.239 0.264
50% cov. rate 0.512 0.483 0.520 0.497 0.499 0.504 0.499 0.495 0.497
75% cov. rate 0.742 0.743 0.776 0.746 0.746 0.758 0.743 0.741 0.745
95% cov. rate 0.947 0.959 0.946 0.952 0.957 0.951 0.947 0.945 0.950

n = 10, 000 sample paths
Maturity= 30 days Maturity= 90 days Maturity= 270 days

S0/K 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90
25% cov. rate 0.283 0.251 0.254 0.261 0.246 0.246 0.250 0.260 0.260
50% cov. rate 0.525 0.494 0.531 0.514 0.513 0.492 0.529 0.526 0.522
75% cov. rate 0.755 0.766 0.768 0.758 0.766 0.734 0.784 0.771 0.762
95% cov. rate 0.952 0.954 0.942 0.956 0.949 0.952 0.959 0.952 0.947
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4.3 Coverage rates of the EPMS (con.)

Examine the validity of Theorem 4: digital option pricing,
f (ST ) = δ{ST>K}, is considered under the Black-Scholes
model since the density p(·,T ) of ST is analytically available.

The asymptotic confidence interval of confidence level 1− α
for the EPMS price estimator:[

C
(n)
EPMS − zα/2

√
V ∗, C

(n)
EPMS + zα/2

√
V ∗
]
.
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4.3 Coverage rates of the EPMS (con.)

Table: Coverage rates of the EPMS for digital option pricing with the
Black-Scholes model.

n = 500 sample paths
Maturity= 30 days Maturity= 90 days Maturity= 270 days

S0/K 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90
Theorem 3

25% cov. rate 0.121 0.048 0.213 0.062 0.035 0.109 0.014 0.019 0.039
50% cov. rate 0.317 0.237 0.442 0.292 0.237 0.369 0.155 0.184 0.229
75% cov. rate 0.659 0.555 0.738 0.612 0.569 0.683 0.520 0.546 0.571
95% cov. rate 0.880 0.863 0.917 0.923 0.877 0.952 0.902 0.947 0.956

Theorem 4
25% cov. rate 0.200 0.237 0.258 0.214 0.237 0.267 0.180 0.239 0.229
50% cov. rate 0.483 0.507 0.514 0.503 0.515 0.534 0.450 0.495 0.478
75% cov. rate 0.659 0.740 0.738 0.772 0.761 0.783 0.708 0.764 0.721
95% cov. rate 0.880 0.927 0.917 0.923 0.940 0.952 0.902 0.947 0.956

n = 10, 000 sample paths
Maturity= 30 days Maturity= 90 days Maturity= 270 days

S0/K 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90
Theorem 3

25% cov. rate 0.122 0.049 0.206 0.053 0.049 0.106 0.013 0.022 0.040
50% cov. rate 0.338 0.197 0.457 0.252 0.221 0.337 0.173 0.166 0.221
75% cov. rate 0.641 0.559 0.738 0.583 0.583 0.649 0.529 0.525 0.578
95% cov. rate 0.948 0.901 0.956 0.919 0.896 0.933 0.896 0.882 0.913

Theorem 4
25% cov. rate 0.210 0.205 0.272 0.196 0.248 0.246 0.178 0.210 0.224
50% cov. rate 0.445 0.451 0.525 0.445 0.524 0.485 0.426 0.479 0.493
75% cov. rate 0.741 0.740 0.778 0.726 0.758 0.740 0.698 0.728 0.740
95% cov. rate 0.948 0.935 0.956 0.938 0.944 0.942 0.935 0.940 0.950
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5 Conclusion

An EPMS is proposed to improve the efficiency of computing
the no-arbitrage prices under the dynamic P measure.

The proposed method can be applied to compute the
no-arbitrage prices even when the risk-neutral model can not
be expressed explicitly.

The strong consistency and the asymptotic normality of the
EPMS estimator are established.
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5 Conclusion (con.)

Simulation results show that the EPMS is comparable to the
EMS and the relative efficiency of the EPMS against the MCS
increases as the time to maturity increases.

Simulation results also show that the asymptotically normal
distribution serves as a persuasive approximation for samples
consisting of as few as 500 simulation paths.

The extensions to path-dependent contingent claims or
high-dimensional payoffs are interesting topics, and we refer
these extensions to our future study.
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Thank You for Your Attention!
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