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Motivation

1 Geometric Sum:

Let X1, X2, . . . be a sequence of independent identically
distributed (i.i.d.) random variables.
Let ν ∼ Geo(p), p ∈ (0, 1) be a geometric random variable
with parameter p ∈ (0, 1).
Denote Sν = X1 +X2 + . . .+Xν the geometric sum. By
convention S0 = 0.

2 Geometric sum has attracted much attention (both in pure
and applied maths).

3 Relationship between Geometric Sums and Ruin Probabilities
(in Classical Risk Models) via Pollazeck-Khinchin formula.

4 Renyi’s Theorem (1957) is one of well-known limit theorems
in Probability Theory and related Problems.
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Classical Renyi Limit Theorem

Renyi’s Theorem, 1957, WLLN

Let X1, X2, . . . be a sequence of i.i.d. random variables with
mean 0 < m = E(X1)

Let ν ∼ Geo(p), p ∈ (0, 1) be a geometric random variable
with success probability P (ν = k) = p(1− p)k−1, k = 1, 2, . . .

Denote Sν = X1 +X2 + . . .+Xν ;S0 = 0 the geometric sum.

Let Z(m) be an exponential random variable with positive
mean m, i.e. Z(m) ∼ Exp( 1

m).

Then

pSν
d−→ Z(m) as p→ 0+
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Toda’s Theorem, 2012

Let X1, X2, . . . be a sequence of independent non-identically
distributed random variables with mean
0 = E(Xn), 0 < σ2n = D(Xn) <∞;n = 1, 2, . . . .

Let aj be a real sequence such that a := lim
n→∞

1
n

n∑
j=1

aj exists.

Let lim
n→∞

n−ασ2n = 0 for some 0 < α < 1 and

σ2 := 1
n

n∑
j=1

σ2j > 0.

for all ε > 0, we have an analog of Lindeberg’s condition:

lim
p→0

∞∑
j=1

(1− p)j−1pE
[
X2
j {| Xj |≥ εp−

1
2 }
]

= 0.
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Toda’s Theorem, 2012

Theorem

Then

p
1
2

ν∑
j=1

(Xj + p
1
2aj)

d−→W0,a,σ as p→ 0.

where W0,a,σ is an asymmetric Laplace distributed random variable
with parameters (0, a, σ).

Goal

The rate of convergence in Renyi-type limit theorems

The rate of convergence in generalized Renyi-type limit
theorems (for negative-binomial random sums).
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The Trotter’s Operator

Definition, H. F. Trotter, 1959

Let CB(R) be the set of all real-valued bounded and uniformly
continuous functions f on R and ‖f‖ = sup

x∈R
|f (x)| Let X be a

random variable. A linear operator AX : CB(R)→ CB(R), is said
to be Trotter operator and it is defined by

AXf(t) := Ef(X + t) =

∫
R
f(x+ t)dFX(x)

where FX is the distribution function of X, t ∈ R, f ∈ CB(R).
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The Trotter’s Operator

Properties

The operator AX is a linear positive ”contraction” operator,
i.e.,

‖ AXf ‖≤‖ f ‖,

for each f ∈ CB(R).

The operators AX1 and AX2 commute.
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The Trotter’s Operator

Properties

The equation AXf(t) = AY f(t) for f ∈ CB(R), t ∈ R,
provided that X and Y are identically distributed random
variables.

If X1, X2, . . . , Xn are independent random variables, then for
f ∈ CB(R)

AX1+...+Xn(f) = AX1 . . . AXn(f).
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Trotter Operator

Properties

Suppose that X1, X2, . . . , Xn and Y1, Y2, . . . , Yn are
independent random variables (in each group) and they are
independent. Then for each f ∈ CB(R)

‖AX1+...+Xn(f)−AY1+...+Yn(f)‖ ≤
n∑
i=1

‖ AXi(f)−AYi(f) ‖ .

For two independent random variables X and Y, for each
f ∈ CB(R) and n = 1, 2, . . .

‖ AnX(f)−AnY (f) ‖≤ n ‖ AX(f)−AY (t) ‖ .
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Trotter Operator

Properties

Suppose that X1, X2, . . . , Xn and Y1, Y2, . . . , Yn, are i.i.d.
random variables (in each group) and they are independent.

Assume that ν ∈ Geo(p), p ∈ (0, 1) is geometric distributed
random variable, independent of all Xj and Yj , j = 1, 2, . . . .
Then, for each f ∈ CB(R)

‖ AX1+...+Xν (f)−AY1+...+Yν (f) ‖≤ 1

p
‖ AX1(f)−AY1(f) ‖ .
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Trotter Operator

Properties

Let

lim
n→∞

‖ AXn(f)−AX(f) ‖= 0,∀f ∈ CrB(R), r ∈ N

Then,

Xn
d−→ X as n→∞

Tran Loc Hung University of Finance and Marketing (HCMC, Vietnam)

On the rate of convergence in limit theorems for geometric sums of i.i.d. random variables



References related to the Trotter’s Operator

P. L. Butzer, L. Hahn, and U. Westphal, (1975), On the rate
of approximation in the central limit theorem, Journal of
Approximation Theory, vol. 13, 327–340.

P. L. Butzer and Hahn, (1978), General theorems on Rates of
Convergence in Distribution of Random Variables I. General
Limit Theorems, Journal of Multivariate Analysis, vol. 8,
181–201.

P. L. Butzer and L. Hahn, (1978), General Theorems on Rates
of Convergence in Distribution of random Variables. II.
Applications to the Stable Limit Laws and Weak Laws of
Large Numbers, Journal of Multivariate Analysis 8, 202–221

Tran Loc Hung University of Finance and Marketing (HCMC, Vietnam)

On the rate of convergence in limit theorems for geometric sums of i.i.d. random variables



References related to the Trotter’s Operator

A. Renyi, (1970), Probability theory, Akademiai Kiado,
Budapest.
Z. Rychlick and D. Szynal, (1975), Convergence rates in the
central limit theorem for sums of a random number of
independent random variables, Probability Theory and its
applications, Vol. 20, N. 2, 359–370.
Z. Rychlick and D. Szynal, (1979), On the rate of
convergence in the central limit theorem, Probability Theory,
Banach Center Publications, Volume 5, Warsaw, 221-229.
V. Sakalauskas, (1977), On an estimate in the
multidimensional limit theorems, Liet. matem.rink, 17,
195–201.
H. F. Trotter, (1959), An elementary proof of the central limit
theorem, Arch. Math (Basel), 10, 226–234.

Tran Loc Hung University of Finance and Marketing (HCMC, Vietnam)

On the rate of convergence in limit theorems for geometric sums of i.i.d. random variables



Geometrically infinitely divisibility (G.I.D.)

Definition, Klebanov, 1984

A real-valued random variable X is said to be a geometrically
infinitely divisible (g.i.d.) if for any p ∈ (0, 1), there exists a
sequence of real-valued independent identically distributed random
variables Xj(p), such that

X
d
=

ν∑
j

Xj(p),

where ν ∼ Geo(p), p ∈ (0, 1), and ν and all Xj(q), j = 1, 2, . . . are
independent.

Tran Loc Hung University of Finance and Marketing (HCMC, Vietnam)

On the rate of convergence in limit theorems for geometric sums of i.i.d. random variables



Geometrically infinitely divisibility (G.I.D.)

Theorem, Klebanov, 1984

A characteristic function of X is geometrically infinitely divisible if,
and only if, it has the form

fX(t) =
1

1− ln Ψ(t)
,

where Ψ(t) is an infinitely divisibility characteristic function.
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Geometrically infinitely divisibility (G.I.D.)

Theorem, Klebanov, 1984

Let X1, X2, . . . be a sequence of independent identically distributed
random variables. Suppose that ν is a positive integer-valued
random variable having geometric distribution with success
probability P (ν = k) = p(1− p)k−1, k = 1, 2, . . . ; p ∈ (0, 1).
Assume that ν and X1, X2, . . . are independent. Let us denote by
Sν = X1 +X2 + . . .+Xν the geometric random sum. Suppose
that

p

ν∑
j=1

Xj(p)
d−→ X as q → 0.

Then, X is geometrically infinitely divisible random variable.
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Geometrically strictly stability (G.S.S.)

Definition, Klebanov, 1984

A real-valued random variable Y is said to be a geometrically
strictly stability (g.s.s.) if for any q ∈ (0, 1), there exists a positive
constant c = c(p) > 0 such that

Y
d
= c(p)

ν∑
j

Yj(p),

where ν ∼ Geo(p), p ∈ (0, 1), independent of all
Yj(p), j = 1, 2, . . . .
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Geometrically strictly stable (G.S.S.)

Theorem, Klebanov, 1984

Let Y be a non-degenerate distributed random variable. The
characteristic function of Y is geometrically strictly stable if, and
only if, it has the form

fY (t) =
1

1 + λ | t |α exp
(
− i

2θαsgn(t)
) ,

where λ, α, θ are parameters such that
0 < α ≤ 2, | θ |≤ θα = min(1, 2α − 1), λ > 0.
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Examples

1 the exponential random variable Zm ∼ Exp( 1
m) is GID

Z(m) d
= p

ν∑
j

Zj

where Zj ∼ Exp( 1
m)

2 the Laplace random variable is GSS

W0,σ
d
= p

1
2

ν∑
j

Wj ,
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Exponential random variable with mean m

1 Density function:

pZ(x) =
1

m
e−

1
m
x, x ≥ 0.

2 Characteristic function:

fZ(t) =
1

1− imt
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Symmetric Laplace random variable W0,σ

1 Density function:

pW (x) =
σ

2
exp−σ|x|.

2 Characteristic function:

fW (t) =
1

1 + i 1
σ2 t2

Note: W is a double exponential random variable.
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Lipschitz class

The modulus of continuity of function f is defined for
f ∈ CB(R), δ ≥ 0 by

ω(f ; δ) := sup
|h|≤δ

‖ f(x+ h)− f(x) ‖ . (1)

The modulus of continuity ω(f ; δ) is a monotonely decreasing
function of δ with ω(f ; δ)→ 0 for δ → 0+, and

ω(f ;λδ) ≤ (1 + λ)ω(f ; δ) for λ > 0.

A function f ∈ CB(R) is said to satisfy a Lipschitz condition
of order α, 0 < α ≤ 1, in symbol f ∈ Lip(α), if
ω(f ; δ) = O(δα.) It is easily seen that f ∈ Lip(1), if
f

′ ∈ CB(R).

Tran Loc Hung University of Finance and Marketing (HCMC, Vietnam)

On the rate of convergence in limit theorems for geometric sums of i.i.d. random variables



Main Results

Theorem 1

Let (Xnj , j = 1, 2, . . . , n;n = 1, 2, . . .) be a row-wise
triangular array of non-negative independent identically
distributed random variables with
E(| Xn1 |k) < +∞, n = 1, 2, . . . , k = 1, 2, . . . , r; r = 1, 2, . . . .

Let ν be a geometric random variable with parameter
p, p ∈ (0, 1) and for every n = 1, 2, . . . Xn1, Xn2, . . . , ν are
independent.

Moreover, assume that

E| Xn1 |k = E| Z(m)
1 |

k
, k = 1, 2, . . . , r; r = 1, 2, . . . .
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Continuous

Theorem 1

Then, for f ∈ CrB(R)

‖ ApSνf −AZ(m) ‖= o(pr−1), as p→ 0.

where Z(m) is a exponential distributed random variable with
positive mean E(Z(m)) = m.
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An analog of Renyi Theorem

Corollary 1

(Xnj , j = 1, 2, . . . , n;n = 1, 2, . . .) be a row-wise triangular
array of non-negative independent identically distributed
random variables with mean
0 < E(Xnj) = m, j = 1, 2, . . . , n;n = 1, 2, . . . .

ν be a geometric random variable with parameter p, p ∈ (0, 1)
and for every n = 1, 2, . . . Xn1, Xn2, . . . , ν are independent.

Then,

pSν
d−→ Z(m), as p→ 0

where Sν = Xn1 +Xn2 + . . .+Xnν , for n = 1, 2, . . . and Z(m)

is a exponential distributed random variable with positive mean
E(Z(m)) = m. Note that S0 = 0 by convention.
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Main Results

Theorem 3

(Xnj , j = 1, 2, . . . , n;n = 1, 2, . . .) be a row-wise triangular
array of non-negative valued, independent and identically
distributed random variables with finite r-th absolute moment
E(| Xnj |r) < +∞, j = 1, 2, . . . ; r ≥ 1.

ν be a geometric variable with parameter p, p ∈ (0, 1) and ν is
independent of all Xnj , j = 1, 2, . . . , n;n = 1, 2, . . . .

E(| Xnj |k) = E(| Z(m)
j |

k
); k = 1, 2, . . . , r − 1; r ≥ 1.
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Continuous

Theorem 3

Then, for every f ∈ Cr−1B (R),

‖ ApSνf −AZ(m)f ‖≤
2pr−1

(r − 1)!
ω(f (r−1); p)

(
mr−1(r − 1)! +mrr!

)
where Z

(m)
j are independent exponential distributed random

variables with common mean m, i.e. Z
(m)
j ∼ Exp( 1

m), j = 1, 2, . . .
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Main Results

Corollary 2

(Xnj , j = 1, 2, . . . , n;n = 1, 2, . . .) be a row-wise triangular
array of non-negative valued, independent and identically
distributed random variables with mean E(Xn1) = m < +∞
and finite variance
0 < D(Xn1) = σ2 < +∞, j = 1, 2, . . . , n;n = 1, 2, . . . .

ν be a geometric variable with parameter p, p ∈ (0, 1),

ν is independent of all Xnj , j = 1, 2, . . . , n;n = 1, 2, . . . .

Then, for every f ∈ C1
B(R),

‖ ApSνf −AZ(m)f ‖≤ 2ω(f
′
; p)

(
m+

1

2
σ2 +m2

)
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Main Results

Continuous

In particular, suppose that
f

′ ∈ Lip(α,M), 0 < α ≤ 1, 0 < M < +∞. Then

‖ ApSνf −AZ(m)f ‖≤ 2

(
m+

1

2
σ2 +m2

)
Mpα.
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Main Results

Corollary 3

(Xnj , j = 1, 2, . . . , n;n = 1, 2, . . .) be a row-wise triangular
array of non-negative valued, independent and standard
normal distributed random variables.

ν be a geometric variable with parameter p, p ∈ (0, 1), and ν
is independent of all Xnj , j = 1, 2, . . . , n;n = 1, 2, . . . .

Denote by S2
ν := X2

n1 + . . .+X2
nν by the geometric sum of

squared standard normal random variables (another word we
call is by chi-squared random variable with geometric degree
of freedom)
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Main Results

Corollary 3 (continuous)

Then, for every f ∈ C2
B(R),

‖ ApS2
ν
f −AZ(1)f ‖≤

p

2
‖ f ′′ ‖

(
1 + 24ω(f

′′
; p
)
,

where Z(1) ∼ Exp(1).
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Main Results

Theorem 4

Let (Xnj , j = 1, 2, . . . , n;n = 1, 2, . . .) be a row-wise
triangular array of independent identically distributed random
variables with
E(| Xn1 |k) < +∞, n = 1, 2, . . . , k = 1, 2, . . . , r; r = 1, 2, . . . .

Let ν be a geometric random variable with parameter
p, p ∈ (0, 1) and for every n = 1, 2, . . . Xn1, Xn2, . . . , ν are
independent.

Let W is a Laplace distributed random variable W ∼ L(0, σ).
Moreover, assume that

E| Xn1 |k = E|W |k, k = 1, 2, . . . , r; r = 1, 2, . . . .
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Continuous

Theorem 4

Then, for f ∈ CrB(R)

‖ A√pSνf −AW f ‖= o(p
r
2
−1), as p→ 0.
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Main Results

Corollary 4

Let (Xnj , j = 1, 2, . . . , n;n = 1, 2, . . .) be a row-wise
triangular array of independent identically distributed random
variables with√
pa = E(Xn1);σ

2 = D(Xn1) < +∞, n = 1, 2, . . . .

Let ν be a geometric random variable with parameter
p, p ∈ (0, 1) and for every n = 1, 2, . . . Xn1, Xn2, . . . , ν are
independent.

Let W is a Laplace distributed random variable W ∼ L(0, σ).

Then,
√
pSν

d−→W, as p→ 0.
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Main Results

Corollary 5

Let (Xnj , j = 1, 2, . . . , n;n = 1, 2, . . .) be a row-wise
triangular array of independent identically distributed random
variables with

√
pa = E(Xn1);σ

2 = D(Xn1) <

+∞, E| Xnj |3 = γ <∞;n = 1, 2, . . . .

Let ν be a geometric random variable with parameter
p, p ∈ (0, 1) and for every n = 1, 2, . . . Xn1, Xn2, . . . , ν are
independent.

Let W is a Laplace distributed random variable W ∼ L(a, σ).
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Continuous

Corollary 5

Then, for every f ∈ C2
B(R),

‖ A√pSνf −AW f ‖≤
ω(f”;

√
p)

2

[
2σ2 +

3σ3√
2

+ γ

]
, as p→ 0.

If f” ∈ Lip(α,M) with 0 < α < 1, Then

‖ A√pSνf −AW f ‖≤
Mp

α
2 )

2

[
2σ2 +

3σ3√
2

+ γ

]
, as p→ 0.
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Negative-binomial random sum

Definition

Let (Xn1, Xn2, . . .) be a row-wise triangular array of
independent identically distributed random variables

Let τ be a negative-binomial random variable with parameter
l, p, p ∈ (0, 1), l = 1, 2, . . . such that
P (τ = k) = C l−1k−1p

l(1− p)k − l. Assume that for every
n = 1, 2, . . . Xn1, Xn2, . . . , τ are independent.

Denote by Sτ = Xn1 +Xn2 + . . .+Xnτ the
negative-binomial sum of i.i.d. random variables
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Main Results

Theorem 5

Let (Xnj , j = 1, 2, . . . , n;n = 1, 2, . . .) be a row-wise
triangular array of independent identically distributed random
variables with
E(| Xn1 | = m,n = 1, 2, . . . , k = 1, 2, . . . , r; r = 1, 2, . . . .

Let τ be a negative-binomial random variable with parameter
l, p; l ≥ 1, p ∈ (0, 1) and for every
n = 1, 2, . . . Xn1, Xn2, . . . , τ are independent.

Let G is a Gamma distributed random variable G ∼ Γ(l, lm).

Tran Loc Hung University of Finance and Marketing (HCMC, Vietnam)

On the rate of convergence in limit theorems for geometric sums of i.i.d. random variables



Continuous

Theorem 5

Then, for every f ∈ CrB(R)

‖ A p
l
f −AGf ‖= o

([p
l

]r−1)
, as p→ 0.
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Main Results

Corollary 6 (Generalized Renyi Theorem)

Let (Xnj , j = 1, 2, . . . , n;n = 1, 2, . . .) be a row-wise
triangular array of independent identically distributed random
variables with
E(| Xn1 | = m,n = 1, 2, . . . , k = 1, 2, . . . , r; r = 1, 2, . . . .

Let τ be a negative-binomial random variable with parameter
l, p; l ≥ 1, p ∈ (0, 1) and for every
n = 1, 2, . . . Xn1, Xn2, . . . , τ are independent.

Let G is a Gamma distributed random variable G ∼ Γ(l, lm).

Then,
p

l
Sτ

d−→ G, as p→ 0+.
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Conclusions

The Trotter method is elementary and elegant (apply to
multi-dimensional spaces).

This method can be applied to a wide class of random
variables (not only for continuous class)

The rates of convergence in limit theorems for geometric sums
should be estimated using a probability distance based on
Trotter operator

dA(pSν , Z; f) := sup
y∈R
| Ef(pSν + y)− Ef(Z + y) |

Consider the case for geometrical sums of independent
non-identically distributed random variables (Toda’s Theorem,
2012)
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Thanks

Thanks for your attention!
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